If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 2 | 1 |
GAS LAWS
|
Boyle's Law - Introduction and Experimental Investigation
|
By the end of the
lesson, the learner
should be able to:
State Boyle's law Explain Boyle's law using kinetic theory of matter Investigate the relationship between pressure and volume of a fixed mass of gas Plot graphs to illustrate Boyle's law |
Teacher demonstration: Use bicycle pump to show volume-pressure relationship. Students observe force needed to compress gas. Q/A: Review kinetic theory. Class experiment: Investigate pressure-volume relationship using syringes. Record observations in table format. Discuss observations using kinetic theory.
|
Bicycle pump, Syringes, Gas jars, Chart showing volume-pressure relationship
|
KLB Secondary Chemistry Form 3, Pages 1-3
|
|
| 2 | 2 |
GAS LAWS
|
Boyle's Law - Mathematical Expression and Graphical Representation
Boyle's Law - Numerical Problems and Applications |
By the end of the
lesson, the learner
should be able to:
Express Boyle's law mathematically Apply the equation PV = constant Plot and interpret pressure vs volume graphs Plot pressure vs 1/volume graphs |
Q/A: Recall previous lesson observations. Teacher exposition: Derive P₁V₁ = P₂V₂ equation from experimental data. Students plot graphs of pressure vs volume and pressure vs 1/volume. Analyze graph shapes and interpret mathematical relationship.
|
Graph papers, Scientific calculators, Chart showing mathematical expressions
Scientific calculators, Worked example charts, Unit conversion tables |
KLB Secondary Chemistry Form 3, Pages 3-4
|
|
| 2 | 3 |
GAS LAWS
|
Charles's Law - Introduction and Temperature Scales
Charles's Law - Experimental Investigation and Mathematical Expression Charles's Law - Numerical Problems and Applications |
By the end of the
lesson, the learner
should be able to:
State Charles's law Convert temperatures between Celsius and Kelvin scales Define absolute zero temperature Explain the concept of absolute temperature |
Teacher demonstration: Flask with colored water column experiment. Q/A: Observe volume changes with temperature. Exposition: Introduce Kelvin scale and absolute zero concept. Practice: Temperature conversions between °C and K. Discuss absolute zero and ideal gas concept.
|
Round-bottomed flask, Narrow glass tube, Colored water, Rubber bung, Hot and cold water baths
Glass apparatus, Thermometers, Graph papers, Water baths at different temperatures Scientific calculators, Temperature conversion charts, Application examples |
KLB Secondary Chemistry Form 3, Pages 6-8
|
|
| 2 | 4 |
GAS LAWS
|
Combined Gas Law and Standard Conditions
Introduction to Diffusion - Experimental Investigation |
By the end of the
lesson, the learner
should be able to:
Derive the combined gas law equation Apply PV/T = constant in problem solving Define standard temperature and pressure (s.t.p) Define room temperature and pressure (r.t.p) |
Q/A: Combine Boyle's and Charles's laws. Teacher exposition: Derive P₁V₁/T₁ = P₂V₂/T₂. Define s.t.p (273K, 760mmHg) and r.t.p (298K, 760mmHg). Worked examples: Problems involving changes in all three variables. Supervised practice: Complex gas law calculations.
|
Scientific calculators, Combined law derivation charts, Standard conditions reference table
KMnO₄ crystals, Bromine liquid, Gas jars, Combustion tube, Litmus papers, Stopwatch |
KLB Secondary Chemistry Form 3, Pages 12-14
|
|
| 2 | 5 |
GAS LAWS
|
Rates of Diffusion - Comparative Study
Graham's Law of Diffusion - Theory and Mathematical Expression |
By the end of the
lesson, the learner
should be able to:
Compare diffusion rates of different gases Investigate factors affecting diffusion rates Measure relative distances covered by diffusing gases Calculate rates of diffusion using distance and time data |
Class experiment: Ammonia and HCl diffusion in glass tube. Insert cotton wool soaked in concentrated NH₃ and HCl at opposite ends. Time the formation of white NH₄Cl ring. Measure distances covered by each gas. Calculate rates: distance/time. Compare molecular masses of NH₃ and HCl.
|
Glass tube (25cm), Cotton wool, Concentrated NH₃ and HCl, Stopwatch, Ruler, Safety equipment
Graham's law charts, Molecular mass tables, Mathematical derivation displays |
KLB Secondary Chemistry Form 3, Pages 16-18
|
|
| 3 | 1 |
GAS LAWS
|
Graham's Law - Numerical Applications and Problem Solving
|
By the end of the
lesson, the learner
should be able to:
Solve numerical problems using Graham's law Calculate relative rates of diffusion Determine molecular masses from diffusion data Compare diffusion times for equal volumes of gases |
Worked examples: Calculate relative diffusion rates using √(M₂/M₁). Problems involving time comparisons for equal volumes. Calculate unknown molecular masses from rate data. Supervised practice: Various Graham's law calculations. Real-life applications: gas separation, gas masks.
|
Scientific calculators, Worked example charts, Molecular mass reference tables
|
KLB Secondary Chemistry Form 3, Pages 20-22
|
|
| 3 | 2 |
THE MOLE
|
Relative Mass - Introduction and Experimental Investigation
|
By the end of the
lesson, the learner
should be able to:
Define relative mass using practical examples Compare masses of different objects using a reference standard Explain the concept of relative atomic mass Identify carbon-12 as the reference standard |
Experiment: Weighing different sized nails using beam balance. Use smallest nail as reference standard. Q/A: Discuss everyday examples of relative measurements. Teacher exposition: Introduction of carbon-12 scale and IUPAC recommendations. Calculate relative masses from experimental data.
|
Different sized nails ( 5-15cm), Beam balance, Fruits of different masses, Reference charts
|
KLB Secondary Chemistry Form 3, Pages 25-27
|
|
| 3 | 3 |
THE MOLE
|
Avogadro's Constant and the Mole Concept
|
By the end of the
lesson, the learner
should be able to:
Define Avogadro's constant and its value Explain the concept of a mole as a counting unit Relate molar mass to relative atomic mass Calculate number of atoms in given masses of elements |
Experiment: Determine number of nails with mass equal to relative mass in grams. Teacher exposition: Introduce Avogadro's constant (6.023 × 10²³). Discussion: Mole as counting unit like dozen. Worked examples: Calculate moles from mass and vice versa.
|
Beam balance, Various sized nails, Scientific calculators, Avogadro's constant charts
|
KLB Secondary Chemistry Form 3, Pages 27-30
|
|
| 3 | 4 |
THE MOLE
|
Interconversion of Mass and Moles for Elements
|
By the end of the
lesson, the learner
should be able to:
Apply the formula: moles = mass/molar mass Calculate mass from given moles of elements Convert between moles and number of atoms Solve numerical problems involving moles and mass |
Worked examples: Mass-mole conversions using triangle method. Supervised practice: Calculate moles in given masses of common elements. Problem solving: Convert moles to atoms using Avogadro's number. Assignment: Practice problems on interconversion.
|
Scientific calculators, Periodic table, Worked example charts, Formula triangles
|
KLB Secondary Chemistry Form 3, Pages 30-32
|
|
| 3 | 5 |
THE MOLE
|
Molecules and Moles - Diatomic Elements
Empirical Formula - Experimental Determination |
By the end of the
lesson, the learner
should be able to:
Distinguish between atoms and molecules Define relative molecular mass Calculate moles of molecules from given mass Determine number of atoms in molecular compounds |
Discussion: Elements existing as molecules (O₂, H₂, N₂, Cl₂). Teacher exposition: Difference between atomic and molecular mass. Worked examples: Calculate moles of molecular elements. Problem solving: Number of atoms in molecular compounds.
|
Molecular models, Charts showing diatomic elements, Scientific calculators
Crucible and lid, Magnesium ribbon, Bunsen burner, Beam balance, Tongs, Safety equipment |
KLB Secondary Chemistry Form 3, Pages 29-30
|
|
| 4 | 1 |
THE MOLE
|
Empirical Formula - Reduction Method
|
By the end of the
lesson, the learner
should be able to:
Determine empirical formula using reduction reactions Calculate empirical formula from reduction data Apply reduction method to copper oxides Analyze experimental errors and sources |
Experiment: Reduction of copper(II) oxide using laboratory gas. Measure masses before and after reduction. Calculate moles of copper and oxygen. Determine empirical formula from mole ratios. Discuss experimental precautions.
|
Combustion tube, Porcelain boat, Copper(II) oxide, Laboratory gas, Beam balance, Bunsen burner
|
KLB Secondary Chemistry Form 3, Pages 35-37
|
|
| 4 | 2 |
THE MOLE
|
Empirical Formula - Percentage Composition Method
|
By the end of the
lesson, the learner
should be able to:
Calculate empirical formula from percentage composition Convert percentages to moles Determine simplest whole number ratios Apply method to various compounds |
Worked examples: Calculate empirical formula from percentage data. Method: percentage → mass → moles → ratio. Practice problems: Various compounds with different compositions. Discussion: When to multiply ratios to get whole numbers.
|
Scientific calculators, Percentage composition charts, Worked example displays
|
KLB Secondary Chemistry Form 3, Pages 37-38
|
|
| 4 | 3 |
THE MOLE
|
Molecular Formula - Determination from Empirical Formula
|
By the end of the
lesson, the learner
should be able to:
Define molecular formula Relate molecular formula to empirical formula Calculate molecular formula using molecular mass Apply the relationship (empirical formula)ₙ = molecular formula |
Teacher exposition: Difference between empirical and molecular formulas. Worked examples: Calculate molecular formula from empirical formula and molecular mass. Formula: n = molecular mass/empirical formula mass. Practice problems with various organic compounds.
|
Scientific calculators, Molecular mass charts, Worked example displays
|
KLB Secondary Chemistry Form 3, Pages 38-40
|
|
| 4 | 4 |
THE MOLE
|
Molecular Formula - Combustion Analysis
Concentration and Molarity of Solutions |
By the end of the
lesson, the learner
should be able to:
Determine molecular formula from combustion data Calculate moles of products in combustion Relate product moles to reactant composition Apply combustion analysis to hydrocarbons |
Worked examples: Hydrocarbon combustion producing CO₂ and H₂O. Calculate moles of C and H from product masses. Determine empirical formula, then molecular formula. Practice: Various combustion analysis problems.
|
Scientific calculators, Combustion analysis charts, Molecular models of hydrocarbons
Scientific calculators, Molarity charts, Various salt samples for demonstration |
KLB Secondary Chemistry Form 3, Pages 40-41
|
|
| 4 | 5 |
THE MOLE
|
Preparation of Molar Solutions
|
By the end of the
lesson, the learner
should be able to:
Describe procedure for preparing molar solutions Use volumetric flasks correctly Calculate masses needed for specific molarities Prepare standard solutions accurately |
Experiment: Prepare 1M, 0.5M, and 0.25M NaOH solutions in different volumes. Use volumetric flasks of 1000cm³, 500cm³, and 250cm³. Calculate required masses. Demonstrate proper dissolution and dilution techniques.
|
Volumetric flasks (250, 500, 1000cm³), Sodium hydroxide pellets, Beam balance, Wash bottles, Beakers
|
KLB Secondary Chemistry Form 3, Pages 43-46
|
|
| 5 | 1 |
THE MOLE
|
Dilution of Solutions
|
By the end of the
lesson, the learner
should be able to:
Define dilution process Apply dilution formula M₁V₁ = M₂V₂ Calculate concentrations after dilution Prepare dilute solutions from concentrated ones |
Experiment: Dilute 25cm³ of 2M HCl to different final volumes (250cm³ and 500cm³). Calculate resulting concentrations. Worked examples using dilution formula. Safety precautions when diluting acids.
|
Volumetric flasks, Hydrochloric acid (2M), Measuring cylinders, Pipettes, Safety equipment
|
KLB Secondary Chemistry Form 3, Pages 46-50
|
|
| 5 | 2 |
THE MOLE
|
Stoichiometry - Experimental Determination of Equations
|
By the end of the
lesson, the learner
should be able to:
Determine chemical equations from experimental data Calculate mole ratios from mass measurements Write balanced chemical equations Apply stoichiometry to displacement reactions |
Experiment: Iron displacement of copper from CuSO₄ solution. Measure masses of iron used and copper displaced. Calculate mole ratios. Derive balanced chemical equation. Discuss spectator ions.
|
Iron filings, Copper(II) sulphate solution, Beam balance, Beakers, Filter equipment
|
KLB Secondary Chemistry Form 3, Pages 50-53
|
|
| 5 | 3 |
THE MOLE
|
Stoichiometry - Precipitation Reactions
|
By the end of the
lesson, the learner
should be able to:
Investigate stoichiometry of precipitation reactions Determine mole ratios from volume measurements Write ionic equations for precipitation Analyze limiting and excess reagents |
Experiment: Pb(NO₃)₂ + KI precipitation reaction. Use different volumes to determine stoichiometry. Measure precipitate heights. Plot graphs to find reaction ratios. Identify limiting reagents.
|
Test tubes, Lead(II) nitrate solution, Potassium iodide solution, Burettes, Ethanol, Rulers
|
KLB Secondary Chemistry Form 3, Pages 53-56
|
|
| 5 | 4 |
THE MOLE
|
Stoichiometry - Gas Evolution Reactions
Volumetric Analysis - Introduction and Apparatus |
By the end of the
lesson, the learner
should be able to:
Determine stoichiometry of gas-producing reactions Collect and measure gas volumes Calculate mole ratios involving gases Write equations for acid-carbonate reactions |
Experiment: HCl + Na₂CO₃ reaction. Collect CO₂ gas in plastic bag. Measure gas mass and calculate moles. Determine mole ratios of reactants and products. Write balanced equation.
|
Conical flask, Thistle funnel, Plastic bags, Rubber bands, Sodium carbonate, HCl solution
Pipettes (10, 20, 25cm³), Burettes (50cm³), Pipette fillers, Conical flasks, Various solutions |
KLB Secondary Chemistry Form 3, Pages 56-58
|
|
| 5 | 5 |
THE MOLE
|
Titration - Acid-Base Neutralization
|
By the end of the
lesson, the learner
should be able to:
Perform acid-base titrations accurately Use indicators to determine end points Record titration data properly Calculate average titres from multiple readings |
Experiment: Titrate 25cm³ of 0.1M NaOH with 0.1M HCl using phenolphthalein. Repeat three times for consistency. Record data in tabular form. Calculate average titre. Discuss accuracy and precision.
|
Burettes, Pipettes, 0.1M NaOH, 0.1M HCl, Phenolphthalein indicator, Conical flasks
|
KLB Secondary Chemistry Form 3, Pages 59-62
|
|
| 6 | 1 |
THE MOLE
|
Titration - Diprotic Acids
|
By the end of the
lesson, the learner
should be able to:
Investigate titrations involving diprotic acids Determine basicity of acids from titration data Compare volumes needed for mono- and diprotic acids Write equations for diprotic acid reactions |
Experiment: Titrate 25cm³ of 0.1M NaOH with 0.1M H₂SO₄. Compare volume used with previous HCl titration. Calculate mole ratios. Explain concept of basicity. Introduce dibasic and tribasic acids.
|
Burettes, Pipettes, 0.1M H₂SO₄, 0.1M NaOH, Phenolphthalein, Basicity reference chart
|
KLB Secondary Chemistry Form 3, Pages 62-65
|
|
| 6 | 2 |
THE MOLE
|
Standardization of Solutions
|
By the end of the
lesson, the learner
should be able to:
Define standardization process Standardize HCl using Na₂CO₃ as primary standard Calculate accurate concentrations from titration data Understand importance of primary standards |
Experiment: Prepare approximately 0.1M HCl and standardize using accurately weighed Na₂CO₃. Use methyl orange indicator. Calculate exact molarity from titration results. Discuss primary standard requirements.
|
Anhydrous Na₂CO₃, Approximately 0.1M HCl, Methyl orange, Volumetric flasks, Analytical balance
|
KLB Secondary Chemistry Form 3, Pages 65-67
|
|
| 6 | 3 |
THE MOLE
|
Back Titration Method
Redox Titrations - Principles |
By the end of the
lesson, the learner
should be able to:
Understand principle of back titration Apply back titration to determine composition Calculate concentrations using back titration data Determine atomic masses from back titration |
Experiment: Determine atomic mass of divalent metal in MCO₃. Add excess HCl to carbonate, then titrate excess with NaOH. Calculate moles of acid that reacted with carbonate. Determine metal's atomic mass.
|
Metal carbonate sample, 0.5M HCl, 0M NaOH, Phenolphthalein, Conical flasks
Potassium manganate(VII), Potassium dichromate(VI), Iron(II) solutions, Color change charts |
KLB Secondary Chemistry Form 3, Pages 67-70
|
|
| 6 | 4 |
THE MOLE
|
Redox Titrations - KMnO₄ Standardization
|
By the end of the
lesson, the learner
should be able to:
Standardize KMnO₄ solution using iron(II) salt Calculate molarity from redox titration data Apply 1:5 mole ratio in calculations Prepare solutions for redox titrations |
Experiment: Standardize KMnO₄ using FeSO₄(NH₄)₂SO₄·6H₂O. Dissolve iron salt in boiled, cooled water. Titrate with KMnO₄ until persistent pink color. Calculate molarity using 5:1 mole ratio.
|
Iron(II) ammonium sulfate, KMnO₄ solution, Dilute H₂SO₄, Pipettes, Burettes
|
KLB Secondary Chemistry Form 3, Pages 70-72
|
|
| 6 | 5 |
THE MOLE
|
Water of Crystallization Determination
|
By the end of the
lesson, the learner
should be able to:
Determine water of crystallization in hydrated salts Use redox titration to find formula of hydrated salt Calculate value of 'n' in crystallization formulas Apply analytical data to determine complete formulas |
Experiment: Determine 'n' in FeSO₄(NH₄)₂SO₄·nH₂O. Dissolve known mass in acid, titrate with standardized KMnO₄. Calculate moles of iron(II), hence complete formula. Compare theoretical and experimental values.
|
Hydrated iron(II) salt, Standardized KMnO₄, Dilute H₂SO₄, Analytical balance
|
KLB Secondary Chemistry Form 3, Pages 72-73
|
|
| 7 | 1 |
THE MOLE
|
Atomicity and Molar Gas Volume
|
By the end of the
lesson, the learner
should be able to:
Define atomicity of gaseous elements Classify gases as monoatomic, diatomic, or triatomic Determine molar gas volume experimentally Calculate gas densities and molar masses |
Experiment: Measure volumes and masses of different gases (O₂, CO₂, Cl₂). Calculate densities and molar masses. Determine volume occupied by one mole. Compare values at different conditions.
|
Gas syringes (50cm³), Various gases, Analytical balance, Gas supply apparatus
|
KLB Secondary Chemistry Form 3, Pages 73-75
|
|
| 7 | 2 |
THE MOLE
|
Combining Volumes of Gases - Experimental Investigation
|
By the end of the
lesson, the learner
should be able to:
Investigate Gay-Lussac's law experimentally Measure combining volumes of reacting gases Determine simple whole number ratios Write equations from volume relationships |
Experiment: React NH₃ and HCl gases in measured volumes. Observe formation of NH₄Cl solid. Measure residual gas volumes. Determine combining ratios. Apply to other gas reactions.
|
Gas syringes, Dry NH₃ generator, Dry HCl generator, Glass connecting tubes, Clips
|
KLB Secondary Chemistry Form 3, Pages 75-77
|
|
| 7 | 3 |
THE MOLE
ORGANIC CHEMISTRY I |
Gas Laws and Chemical Equations
Introduction to Organic Chemistry and Hydrocarbons |
By the end of the
lesson, the learner
should be able to:
Apply Avogadro's law to chemical reactions Use volume ratios to determine chemical equations Calculate product volumes from reactant volumes Solve problems involving gas stoichiometry |
Worked examples: Use Gay-Lussac's law to determine equations. Calculate volumes of products from given reactant volumes. Apply Avogadro's law to find number of molecules. Practice: Complex gas stoichiometry problems.
|
Scientific calculators, Gas law charts, Volume ratio examples
Carbon models, Hydrocarbon structure charts, Molecular model kits |
KLB Secondary Chemistry Form 3, Pages 77-79
|
|
| 7 | 4 |
ORGANIC CHEMISTRY I
|
Sources of Alkanes - Natural Gas, Biogas, and Crude Oil
|
By the end of the
lesson, the learner
should be able to:
Identify natural sources of alkanes Describe composition of natural gas and biogas Explain crude oil as major source of alkanes Describe biogas digester and its operation |
Discussion: Natural gas composition (80% methane). Explanation: Biogas formation from organic waste decomposition. Teacher demonstration: Biogas digester model/diagram. Q/A: Environmental benefits of biogas production.
|
Biogas digester model/diagram, Natural gas composition charts, Organic waste samples
|
KLB Secondary Chemistry Form 3, Pages 86-87
|
|
| 7 | 5 |
ORGANIC CHEMISTRY I
|
Fractional Distillation of Crude Oil
|
By the end of the
lesson, the learner
should be able to:
Explain fractional distillation process Perform fractional distillation of crude oil Identify different fractions and their uses Relate boiling points to molecular size |
Experiment: Fractional distillation of crude oil using improvised column. Collect fractions at different temperatures (120°C intervals up to 350°C). Test fractions for appearance, flammability, and viscosity. Record observations and relate to molecular size.
|
Crude oil sample, Boiling tubes, High-temperature thermometer, Sand/porcelain chips, Bunsen burner, Test tubes
|
KLB Secondary Chemistry Form 3, Pages 87-89
|
|
| 8 | 1 |
ORGANIC CHEMISTRY I
|
Cracking of Alkanes - Thermal and Catalytic Methods
|
By the end of the
lesson, the learner
should be able to:
Define cracking of alkanes Distinguish between thermal and catalytic cracking Write equations for cracking reactions Explain industrial importance of cracking |
Teacher exposition: Definition and purpose of cracking. Discussion: Thermal vs catalytic cracking conditions. Worked examples: Cracking equations producing smaller alkanes, alkenes, and hydrogen. Q/A: Industrial applications and hydrogen production.
|
Cracking process diagrams, Chemical equation charts, Catalyst samples for demonstration
|
KLB Secondary Chemistry Form 3, Pages 89-90
|
|
| 8 | 2 |
ORGANIC CHEMISTRY I
|
Alkane Series and Homologous Series Concept
Nomenclature of Alkanes - Straight Chain and Branched |
By the end of the
lesson, the learner
should be able to:
Define homologous series using alkanes Write molecular formulas for first 10 alkanes Identify characteristics of homologous series Apply general formula CₙH₂ₙ₊₂ for alkanes |
Teacher exposition: Homologous series definition and characteristics. Table completion: Names, molecular formulas, and structures of first 10 alkanes. Discussion: General formula application. Pattern recognition: Gradual change in physical properties.
|
Alkane series chart, Molecular formula worksheets, Periodic table
Structural formula charts, IUPAC naming rules poster, Molecular model kits |
KLB Secondary Chemistry Form 3, Pages 90-92
|
|
| 8 | 3 |
ORGANIC CHEMISTRY I
|
Isomerism in Alkanes - Structural Isomers
|
By the end of the
lesson, the learner
should be able to:
Define isomerism in alkanes Draw structural isomers of butane and pentane Distinguish between chain and positional isomerism Predict number of isomers for given alkanes |
Teacher exposition: Isomerism definition and types. Practical exercise: Draw all isomers of butane and pentane. Discussion: Physical property differences between isomers. Model building: Use molecular models to show isomeric structures.
|
Molecular model kits, Isomerism charts, Structural formula worksheets
|
KLB Secondary Chemistry Form 3, Pages 92-94
|
|
| 8 | 4 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Methane
|
By the end of the
lesson, the learner
should be able to:
Describe laboratory preparation of methane Perform methane preparation experiment safely Test physical and chemical properties of methane Write equation for methane preparation |
Experiment: Heat mixture of sodium ethanoate and soda lime. Collect methane gas over water. Tests: Color, smell, combustion, reaction with bromine in dark. Record observations in table format. Safety precautions during gas collection.
|
Sodium ethanoate, Soda lime, Round-bottomed flask, Gas collection apparatus, Bromine water, Wooden splints
|
KLB Secondary Chemistry Form 3, Pages 94-96
|
|
| 8 | 5 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethane
|
By the end of the
lesson, the learner
should be able to:
Prepare ethane using sodium propanoate and soda lime Compare preparation methods of methane and ethane Test properties of ethane gas Write general equation for alkane preparation |
Experiment: Prepare ethane from sodium propanoate and soda lime. Compare with methane preparation method. Carry out similar tests as for methane. Discussion: General pattern for alkane preparation from sodium alkanoates.
|
Sodium propanoate, Soda lime, Gas collection apparatus, Testing materials
|
KLB Secondary Chemistry Form 3, Pages 94-96
|
|
| 9 | 1 |
ORGANIC CHEMISTRY I
|
Physical Properties of Alkanes
Chemical Properties of Alkanes - Combustion and Substitution |
By the end of the
lesson, the learner
should be able to:
Describe physical properties of alkanes Explain trends in melting and boiling points Relate molecular size to physical properties Compare solubility in different solvents |
Data analysis: Study table of physical properties of first 10 alkanes. Graph plotting: Boiling points vs number of carbon atoms. Discussion: Intermolecular forces and property trends. Q/A: Solubility patterns in polar and non-polar solvents.
|
Physical properties data tables, Graph paper, Calculators, Solubility demonstration materials
Molecular models, Halogenation reaction charts, Chemical equation worksheets |
KLB Secondary Chemistry Form 3, Pages 96-97
|
|
| 9 | 2 |
ORGANIC CHEMISTRY I
|
Uses of Alkanes in Industry and Daily Life
|
By the end of the
lesson, the learner
should be able to:
List major uses of different alkanes Explain industrial applications of alkanes Describe environmental considerations Evaluate economic importance of alkanes |
Discussion: Uses of gaseous alkanes as fuels. Teacher exposition: Industrial applications - carbon black, methanol production, hydrogen source. Q/A: Environmental impact and cleaner fuel initiatives. Assignment: Research local uses of alkane products.
|
Industrial application charts, Product samples, Environmental impact materials
|
KLB Secondary Chemistry Form 3, Pages 98-100
|
|
| 9 | 3 |
ORGANIC CHEMISTRY I
|
Introduction to Alkenes and Functional Groups
|
By the end of the
lesson, the learner
should be able to:
Define alkenes and unsaturation Identify the C=C functional group Write general formula for alkenes (CₙH₂ₙ) Compare alkenes with alkanes |
Teacher exposition: Alkenes definition and unsaturation concept. Introduction: C=C double bond as functional group. Table study: First 6 members of alkene series. Comparison: Alkenes vs alkanes - formulas and structures.
|
Alkene series charts, Molecular models showing double bonds, Functional group posters
|
KLB Secondary Chemistry Form 3, Pages 100-101
|
|
| 9 | 4 |
ORGANIC CHEMISTRY I
|
Nomenclature of Alkenes
|
By the end of the
lesson, the learner
should be able to:
Apply IUPAC rules for naming alkenes Number carbon chains to give lowest numbers to double bonds Name branched alkenes with substituents Distinguish position isomers of alkenes |
Teacher demonstration: Step-by-step naming of alkenes. Rules application: Longest chain with double bond, numbering from end nearest double bond. Practice exercises: Name various alkene structures. Group work: Complex branched alkenes with substituents.
|
IUPAC naming charts for alkenes, Structural formula worksheets, Molecular model kits
|
KLB Secondary Chemistry Form 3, Pages 101-102
|
|
| 9 | 5 |
ORGANIC CHEMISTRY I
|
Isomerism in Alkenes - Branching and Positional
|
By the end of the
lesson, the learner
should be able to:
Draw structural isomers of alkenes Distinguish between branching and positional isomerism Identify geometric isomers in alkenes Predict isomer numbers for given molecular formulas |
Practical exercise: Draw all isomers of butene and pentene. Teacher exposition: Branching vs positional isomerism in alkenes. Model building: Use molecular models for isomer visualization. Discussion: Geometric isomerism introduction (basic level).
|
Molecular model kits, Isomerism worksheets, Geometric isomer models
|
KLB Secondary Chemistry Form 3, Pages 102
|
|
| 10 | 1 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethene
Alternative Preparation of Ethene and Physical Properties |
By the end of the
lesson, the learner
should be able to:
Prepare ethene by dehydration of ethanol Describe role of concentrated sulfuric acid Set up apparatus safely for ethene preparation Test physical and chemical properties of ethene |
Experiment: Dehydration of ethanol using concentrated H₂SO₄ at 170°C. Use sand bath for controlled heating. Pass gas through NaOH to remove impurities. Tests: Bromine water, acidified KMnO₄, combustion. Safety precautions with concentrated acid.
|
Ethanol, Concentrated H₂SO₄, Round-bottomed flask, Sand bath, Gas collection apparatus, Testing solutions
Aluminum oxide catalyst, Glass wool, Alternative apparatus setup, Physical properties charts |
KLB Secondary Chemistry Form 3, Pages 102-104
|
|
| 10 | 2 |
ORGANIC CHEMISTRY I
|
Chemical Properties of Alkenes - Addition Reactions
|
By the end of the
lesson, the learner
should be able to:
Explain addition reactions due to C=C double bond Write equations for halogenation of alkenes Describe hydrogenation and hydrohalogenation Explain addition mechanism |
Teacher exposition: Addition reactions definition and mechanism. Worked examples: Ethene + Cl₂, Br₂, HBr, H₂. Discussion: Markovnikov's rule for unsymmetrical addition. Practice: Various addition reaction equations.
|
Addition reaction charts, Mechanism diagrams, Chemical equation worksheets
|
KLB Secondary Chemistry Form 3, Pages 105-107
|
|
| 10 | 3 |
ORGANIC CHEMISTRY I
|
Oxidation Reactions of Alkenes and Polymerization
|
By the end of the
lesson, the learner
should be able to:
Describe oxidation by KMnO₄ and K₂Cr₂O₇ Explain polymerization of ethene Define monomers and polymers Write equations for polymer formation |
Demonstration: Decolorization of KMnO₄ by alkenes. Teacher exposition: Polymerization process and polymer formation. Examples: Ethene → polyethene formation. Discussion: Industrial importance of polymerization. Practice: Write polymerization equations.
|
Oxidizing agents for demonstration, Polymer samples, Polymerization charts, Monomer-polymer models
|
KLB Secondary Chemistry Form 3, Pages 107-108
|
|
| 10 | 4 |
ORGANIC CHEMISTRY I
|
Tests for Alkenes and Uses
|
By the end of the
lesson, the learner
should be able to:
Perform chemical tests to identify alkenes Use bromine water and KMnO₄ as test reagents List industrial and domestic uses of alkenes Explain importance in plastic manufacture |
Practical session: Test known alkenes with bromine water and acidified KMnO₄. Observe rapid decolorization compared to alkanes. Discussion: Uses in plastics, ethanol production, fruit ripening, detergents. Assignment: Research alkene applications.
|
Test alkenes, Bromine water, Acidified KMnO₄, Plastic samples, Uses reference charts
|
KLB Secondary Chemistry Form 3, Pages 108-109
|
|
| 10 | 5 |
ORGANIC CHEMISTRY I
|
Introduction to Alkynes and Triple Bond
Nomenclature and Isomerism in Alkynes |
By the end of the
lesson, the learner
should be able to:
Define alkynes and triple bond structure Write general formula for alkynes (CₙH₂ₙ₋₂) Identify first members of alkyne series Compare degree of unsaturation in hydrocarbons |
Teacher exposition: Alkynes definition and C≡C triple bond. Table study: First 6 members of alkyne series with structures. Discussion: Degrees of unsaturation - alkanes vs alkenes vs alkynes. Model demonstration: Triple bond representation.
|
Alkyne series charts, Triple bond molecular models, Unsaturation comparison charts
IUPAC naming rules for alkynes, Structural formula worksheets, Molecular model kits |
KLB Secondary Chemistry Form 3, Pages 109-110
|
|
| 11 | 1 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethyne
|
By the end of the
lesson, the learner
should be able to:
Prepare ethyne from calcium carbide and water Set up gas collection apparatus safely Test physical and chemical properties of ethyne Write equation for ethyne preparation |
Experiment: Calcium carbide + water reaction. Use sand layer for heat absorption. Collect ethyne over water. Tests: Color, smell, combustion, bromine water, acidified KMnO₄. Safety: Dry apparatus, controlled water addition.
|
Calcium carbide, Sand, Flat-bottomed flask, Dropping funnel, Gas collection apparatus, Testing solutions
|
KLB Secondary Chemistry Form 3, Pages 111-112
|
|
| 11 | 2 |
ORGANIC CHEMISTRY I
|
Physical and Chemical Properties of Alkynes
|
By the end of the
lesson, the learner
should be able to:
Describe physical properties of alkynes Compare alkyne properties with alkenes and alkanes Write combustion equations for alkynes Explain addition reactions of alkynes |
Data analysis: Physical properties of alkynes table. Comparison: Alkynes vs alkenes vs alkanes properties. Worked examples: Combustion reactions of ethyne. Teacher exposition: Two-step addition reactions due to triple bond.
|
Physical properties charts, Comparison tables, Combustion equation examples
|
KLB Secondary Chemistry Form 3, Pages 112-113
|
|
| 11 | 3 |
ORGANIC CHEMISTRY I
|
Addition Reactions of Alkynes and Chemical Tests
|
By the end of the
lesson, the learner
should be able to:
Write equations for halogenation of alkynes Describe hydrogenation and hydrohalogenation Compare reaction rates: alkynes vs alkenes Perform chemical tests for alkynes |
Worked examples: Two-step addition reactions of ethyne with Br₂, Cl₂, H₂. Discussion: Faster reaction rates in alkynes compared to alkenes. Practical session: Test alkynes with oxidizing agents. Comparison: Rate of decolorization vs alkenes.
|
Addition reaction charts, Chemical equation worksheets, Test solutions, Stopwatch for rate comparison
|
KLB Secondary Chemistry Form 3, Pages 113-115
|
|
| 11 | 4 |
ORGANIC CHEMISTRY I
|
Uses of Alkynes and Industrial Applications
|
By the end of the
lesson, the learner
should be able to:
List industrial uses of alkynes Explain oxy-acetylene welding applications Describe use in synthetic fiber production Evaluate importance as chemical starting materials |
Discussion: Industrial applications of alkynes in adhesives, plastics, synthetic fibers. Teacher demonstration: Oxy-acetylene flame principles (or video). Q/A: Starting materials for chemical synthesis. Assignment: Research local industrial uses.
|
Industrial application charts, Welding equipment demonstration/video, Synthetic fiber samples
|
KLB Secondary Chemistry Form 3, Pages 115-116
|
|
| 11 | 5 |
NITROGEN AND ITS COMPOUNDS
|
Introduction to Nitrogen - Properties and Occurrence
Isolation of Nitrogen from Air - Industrial and Laboratory Methods |
By the end of the
lesson, the learner
should be able to:
Describe position of nitrogen in the periodic table State electron configuration of nitrogen Identify natural occurrence of nitrogen Explain why nitrogen exists as diatomic molecules |
Teacher exposition: Nitrogen as Group V element, atomic number 7, electron arrangement Discussion: 78% of atmosphere is nitrogen. Q/A: Combined nitrogen in compounds - nitrates, proteins. Explanation: N≡N triple bond strength.
|
Periodic table charts, Atmospheric composition diagrams, Molecular models showing N≡N triple bond
Aspirator, KOH solution, Copper turnings, Heating apparatus, Fractional distillation flow chart |
KLB Secondary Chemistry Form 3, Pages 119
|
|
| 12 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Laboratory Preparation of Nitrogen Gas
|
By the end of the
lesson, the learner
should be able to:
Prepare nitrogen gas from ammonium compounds Use sodium nitrite and ammonium chloride method Test physical and chemical properties of nitrogen Write equations for nitrogen preparation |
Experiment: Mix sodium nitrite (7g) and ammonium chloride ( 5g) with water. Heat gently and collect gas over water. Tests: Color, smell, burning splint, litmus paper, lime water, burning Mg and S. Safety precautions during heating.
|
Sodium nitrite, Ammonium chloride, Round-bottomed flask, Gas collection apparatus, Test reagents, Deflagrating spoon
|
KLB Secondary Chemistry Form 3, Pages 121-123
|
|
| 12 | 2 |
NITROGEN AND ITS COMPOUNDS
|
Properties and Uses of Nitrogen Gas
|
By the end of the
lesson, the learner
should be able to:
Describe physical properties of nitrogen Explain chemical inertness of nitrogen Describe reactions at high temperatures List industrial uses of nitrogen |
Analysis of test results: Colorless, odorless, does not burn or support combustion. Discussion: Triple bond strength and chemical inertness. High temperature reactions with metals forming nitrides. Uses: Haber process, light bulbs, refrigerant, inert atmosphere.
|
Property summary charts, Uses of nitrogen displays, Industrial application diagrams
|
KLB Secondary Chemistry Form 3, Pages 121-123
|
|
| 12 | 3 |
NITROGEN AND ITS COMPOUNDS
|
Nitrogen(I) Oxide - Preparation and Properties
|
By the end of the
lesson, the learner
should be able to:
Prepare nitrogen(I) oxide from ammonium nitrate Test physical and chemical properties Explain decomposition and oxidizing properties Describe uses of nitrogen(I) oxide |
Experiment: Heat ammonium nitrate carefully in test tube. Collect gas over warm water. Tests: Color, smell, glowing splint test, reaction with heated copper and sulfur. Safety: Stop heating while some solid remains to avoid explosion.
|
Ammonium nitrate, Test tubes, Gas collection apparatus, Copper turnings, Sulfur, Glowing splints
|
KLB Secondary Chemistry Form 3, Pages 123-125
|
|
| 12 | 4 |
NITROGEN AND ITS COMPOUNDS
|
Nitrogen(II) Oxide - Preparation and Properties
Nitrogen(IV) Oxide - Preparation and Properties |
By the end of the
lesson, the learner
should be able to:
Prepare nitrogen(II) oxide from copper and dilute nitric acid Observe colorless gas and brown fumes formation Test reactions with air and iron(II) sulfate Explain oxidation in air to NO₂ |
Experiment: Add dilute HNO₃ to copper turnings. Observe brown fumes formation then disappearance. Tests: Effect on litmus, burning splint, FeSO₄ complex formation. Discussion: NO oxidation to NO₂ in air.
|
Copper turnings, Dilute nitric acid, Gas collection apparatus, Iron(II) sulfate solution, Test reagents
Copper turnings, Concentrated nitric acid, Lead(II) nitrate, Gas collection apparatus, U-tube with ice, Testing materials |
KLB Secondary Chemistry Form 3, Pages 125-127
|
|
| 12 | 5 |
NITROGEN AND ITS COMPOUNDS
|
Comparison of Nitrogen Oxides and Environmental Effects
|
By the end of the
lesson, the learner
should be able to:
Compare preparation methods of nitrogen oxides Distinguish between different nitrogen oxides Explain formation in vehicle engines Describe environmental pollution effects |
Comparative study: Properties table of N₂O, NO, NO₂. Discussion: Formation in internal combustion engines. Environmental effects: Acid rain formation, smog, health problems. Worked examples: Distinguishing tests for each oxide.
|
Comparison charts, Environmental impact diagrams, Vehicle emission illustrations
|
KLB Secondary Chemistry Form 3, Pages 123-131
|
|
| 13 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Laboratory Preparation of Ammonia
|
By the end of the
lesson, the learner
should be able to:
Prepare ammonia from ammonium salts and alkalis Set up apparatus with proper gas collection Test characteristic properties of ammonia Explain displacement reaction principle |
Experiment: Heat mixture of calcium hydroxide and ammonium chloride. Collect gas by upward delivery using calcium oxide as drying agent. Tests: Color, smell, combustion, HCl fumes test, litmus paper. Safety: Slanted flask position.
|
Calcium hydroxide, Ammonium chloride, Round-bottomed flask, Calcium oxide, HCl solution, Glass rod, Litmus paper
|
KLB Secondary Chemistry Form 3, Pages 131-134
|
|
| 13 | 2 |
NITROGEN AND ITS COMPOUNDS
|
Preparation of Aqueous Ammonia and Solubility
|
By the end of the
lesson, the learner
should be able to:
Prepare aqueous ammonia solution Demonstrate high solubility using fountain experiment Explain alkaline properties of aqueous ammonia Write equations for ammonia in water |
Experiment: Dissolve ammonia in water using inverted funnel method. Fountain experiment: Show partial vacuum formation due to high solubility. Tests: Effect on universal indicator, pH measurement. Theory: NH₃ + H₂O equilibrium.
|
Ammonia generation apparatus, Funnel, Universal indicator, Fountain apparatus, pH meter/paper
|
KLB Secondary Chemistry Form 3, Pages 134-136
|
|
| 13 | 3 |
NITROGEN AND ITS COMPOUNDS
|
Reactions of Aqueous Ammonia with Metal Ions
Chemical Properties of Ammonia - Reactions with Acids and Combustion |
By the end of the
lesson, the learner
should be able to:
Test reactions of aqueous ammonia with various metal ions Observe precipitate formation and dissolution Explain complex ion formation Use reactions for metal ion identification |
Experiment: Add aqueous ammonia dropwise to solutions of Ca²⁺, Mg²⁺, Al³⁺, Zn²⁺, Fe²⁺, Fe³⁺, Pb²⁺, Cu²⁺. Record observations with few drops vs excess ammonia. Identify complex ion formation with Zn²⁺ and Cu²⁺.
|
Various metal salt solutions, Aqueous ammonia, Test tubes, Droppers, Observation recording tables
Various dilute acids, Methyl orange, Oxygen supply, Platinum wire, Copper(II) oxide, Combustion apparatus, U-tube for collection |
KLB Secondary Chemistry Form 3, Pages 136-138
|
|
| 13 | 4 |
NITROGEN AND ITS COMPOUNDS
|
Industrial Manufacture of Ammonia - The Haber Process
|
By the end of the
lesson, the learner
should be able to:
Describe raw materials and their sources Explain optimum conditions for ammonia synthesis Draw flow diagram of Haber process Explain economic considerations and catalyst use |
Teacher exposition: N₂ from air, H₂ from natural gas/cracking. Process conditions: 500°C, 200 atm, iron catalyst. Flow diagram study: Purification, compression, catalytic chamber, separation, recycling. Economic factors: Compromise between yield and rate.
|
Haber process flow charts, Industrial diagrams, Catalyst samples, Economic analysis sheets
|
KLB Secondary Chemistry Form 3, Pages 140-141
|
|
| 13 | 5 |
NITROGEN AND ITS COMPOUNDS
|
Uses of Ammonia and Introduction to Nitrogenous Fertilizers
|
By the end of the
lesson, the learner
should be able to:
List major uses of ammonia Explain importance as fertilizer Calculate nitrogen percentages in fertilizers Compare different nitrogenous fertilizers |
Discussion: Uses - fertilizer, refrigerant, cleaning agent, hydrazine production. Introduction to fertilizers: Ammonium sulfate, ammonium nitrate, ammonium phosphate, urea, CAN. Calculations: Percentage nitrogen content in each fertilizer type.
|
Fertilizer samples, Percentage calculation worksheets, Use application charts, Calculator
|
KLB Secondary Chemistry Form 3, Pages 141-144
|
|
| 14 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Nitrogenous Fertilizers - Types and Calculations
|
By the end of the
lesson, the learner
should be able to:
Calculate percentage nitrogen in various fertilizers Compare fertilizer effectiveness Prepare simple nitrogenous fertilizers Discuss environmental considerations |
Worked examples: Calculate % N in (NH₄)₂SO₄, NH₄NO₃, (NH₄)₃PO₄, CO(NH₂)₂, CAN. Comparison: Urea has highest nitrogen content. Practical: Prepare ammonium sulfate from ammonia and sulfuric acid. Environmental impact discussion.
|
Various fertilizer formulas, Scientific calculators, Laboratory preparation materials, Environmental impact data
|
KLB Secondary Chemistry Form 3, Pages 141-144
|
|
| 14 | 2 |
NITROGEN AND ITS COMPOUNDS
|
Laboratory Preparation of Nitric(V) Acid
|
By the end of the
lesson, the learner
should be able to:
Prepare nitric acid from nitrate and concentrated sulfuric acid Set up all-glass apparatus safely Explain brown fumes and yellow color Purify nitric acid by air bubbling |
Experiment: Heat mixture of KNO₃ and concentrated H₂SO₄ in all-glass apparatus. Collect yellow nitric acid. Explain brown fumes (NO₂) and yellow color. Bubble air through to remove dissolved NO₂. Safety: Gentle heating, fume cupboard.
|
Potassium nitrate, Concentrated sulfuric acid, All-glass apparatus, Condenser, Retort stand, Safety equipment
|
KLB Secondary Chemistry Form 3, Pages 144-145
|
|
| 14 | 3 |
NITROGEN AND ITS COMPOUNDS
|
Industrial Manufacture of Nitric(V) Acid
Reactions of Dilute Nitric(V) Acid with Metals |
By the end of the
lesson, the learner
should be able to:
Describe catalytic oxidation process Explain raw materials and conditions Draw flow diagram of industrial process Calculate theoretical yields and efficiency |
Teacher exposition: Ostwald process - NH₃ oxidation with Pt-Rh catalyst at 900°C. Flow diagram: Oxidation chamber, cooling, absorption tower. Equations: NH₃ → NO → NO₂ → HNO₃. Economic factors: Catalyst cost, heat recovery.
|
Industrial process flow charts, Catalyst samples, Process condition charts, Efficiency calculation sheets
Various metals (Mg, Zn, Cu), Dilute nitric acid, Test tubes, Gas testing apparatus, Burning splints |
KLB Secondary Chemistry Form 3, Pages 145-147
|
|
| 14 | 4 |
NITROGEN AND ITS COMPOUNDS
|
Reactions of Dilute Nitric(V) Acid with Carbonates and Hydroxides
|
By the end of the
lesson, the learner
should be able to:
Test reactions with carbonates and hydrogen carbonates Test neutralization with metal hydroxides and oxides Identify products formed Write balanced chemical equations |
Experiments: (a) Add dilute HNO₃ to Na₂CO₃, CaCO₃, ZnCO₃, CuCO₃, NaHCO₃. Test gas evolved with lime water. (b) Neutralize NaOH, CaO, CuO, PbO with dilute HNO₃. Record color changes and write equations.
|
Various carbonates and hydroxides, Dilute nitric acid, Lime water, Universal indicator, Test tubes
|
KLB Secondary Chemistry Form 3, Pages 147-150
|
|
| 14 | 5 |
NITROGEN AND ITS COMPOUNDS
|
Reactions of Concentrated Nitric(V) Acid - Oxidizing Properties
|
By the end of the
lesson, the learner
should be able to:
Demonstrate strong oxidizing properties Test reactions with FeSO₄, sulfur, and copper Observe formation of nitrogen dioxide Explain electron transfer in oxidation |
Experiments: (a) Add concentrated HNO₃ to acidified FeSO₄ - observe color change. (b) Add to sulfur - observe reaction. (c) Add to copper turnings - observe vigorous reaction and brown fumes. Explain oxidizing power and reduction to NO₂.
|
Concentrated nitric acid, Iron(II) sulfate, Sulfur powder, Copper turnings, Test tubes, Fume cupboard access
|
KLB Secondary Chemistry Form 3, Pages 150-151
|
|
| 15 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Uses of Nitric(V) Acid and Introduction to Nitrates
|
By the end of the
lesson, the learner
should be able to:
List major industrial uses of nitric acid Explain importance in fertilizer manufacture Describe use in explosives and dyes Introduce nitrate salts and their preparation |
Discussion: Uses - fertilizer production (NH₄NO₃), explosives (TNT), dyes, drugs, metal purification, etching. Introduction to nitrates as salts of nitric acid. Methods of preparation: acid + base, acid + carbonate, acid + metal. Examples of common nitrates.
|
Industrial use charts, Nitrate salt samples, Preparation method diagrams, Safety data sheets
|
KLB Secondary Chemistry Form 3, Pages 151
|
|
| 15 | 2 |
NITROGEN AND ITS COMPOUNDS
|
Action of Heat on Nitrates - Decomposition Patterns
Test for Nitrates - Brown Ring Test |
By the end of the
lesson, the learner
should be able to:
Test thermal decomposition of different nitrates Classify decomposition patterns based on metal reactivity Identify products formed on heating Write equations for decomposition reactions |
Experiment: Heat KNO₃, NaNO₃, Zn(NO₃)₂, Cu(NO₃)₂, NH₄NO₃ separately. Test gases with glowing splint. Observe residues. Classification: Group I nitrates → nitrite + O₂; Group II → oxide + NO₂ + O₂; NH₄NO₃ → N₂O + H₂O.
|
Various nitrate salts, Test tubes, Bunsen burner, Gas collection apparatus, Glowing splints, Observation recording sheets
Sodium nitrate, Fresh FeSO₄ solution, Concentrated H₂SO₄, Copper turnings, Test tubes, Unknown nitrate samples |
KLB Secondary Chemistry Form 3, Pages 151-153
|
|
| 15 | 3 |
NITROGEN AND ITS COMPOUNDS
|
Environmental Pollution by Nitrogen Compounds
|
By the end of the
lesson, the learner
should be able to:
Explain sources of nitrogen pollution Describe formation of acid rain Discuss effects on environment and health Evaluate pollution control measures |
Teacher exposition: NOₓ from vehicles, HNO₃ formation in atmosphere, acid rain effects. Discussion: Chlorosis in plants, building corrosion, soil leaching, smog formation, health effects. Control measures: Catalytic converters, emission controls, proper fertilizer use.
|
Environmental pollution charts, Acid rain effect photos, Vehicle emission diagrams, Control measure illustrations
|
KLB Secondary Chemistry Form 3, Pages 154-157
|
|
| 15 | 4 |
NITROGEN AND ITS COMPOUNDS
|
Pollution Control and Environmental Solutions
|
By the end of the
lesson, the learner
should be able to:
Analyze methods to reduce nitrogen pollution Design pollution control strategies Evaluate effectiveness of current measures Propose new solutions for environmental protection |
Discussion and analysis: Catalytic converters in vehicles, sewage treatment, lime addition to soils/lakes, proper fertilizer application, industrial gas recycling. Group activity: Design pollution control strategy for local area. Evaluation of current measures.
|
Case studies, Pollution control technology information, Group activity worksheets, Local environmental data
|
KLB Secondary Chemistry Form 3, Pages 154-157
|
|
| 15 | 5 |
NITROGEN AND ITS COMPOUNDS
|
Comprehensive Problem Solving - Nitrogen Chemistry
|
By the end of the
lesson, the learner
should be able to:
Solve complex problems involving nitrogen compounds Apply knowledge to industrial processes Calculate yields and percentages in reactions Analyze experimental data and results |
Problem-solving session: Mixed calculations involving nitrogen preparation, ammonia synthesis, nitric acid concentration, fertilizer analysis. Industrial application problems. Data analysis from experiments. Integration of all nitrogen chemistry concepts.
|
Scientific calculators, Comprehensive problem sets, Industrial data sheets, Experimental result tables
|
KLB Secondary Chemistry Form 3, Pages 119-157
|
|
| 16 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Laboratory Practical Assessment - Nitrogen Compounds
|
By the end of the
lesson, the learner
should be able to:
Demonstrate practical skills in nitrogen chemistry Perform qualitative analysis of nitrogen compounds Apply safety procedures correctly Interpret experimental observations accurately |
Practical examination: Identify unknown nitrogen compounds using chemical tests. Prepare specified nitrogen compounds. Demonstrate proper laboratory techniques. Safety assessment. Written report on observations and conclusions.
|
Unknown nitrogen compounds, All laboratory chemicals and apparatus used in chapter, Safety equipment, Assessment rubrics
|
KLB Secondary Chemistry Form 3, Pages 119-157
|
|
| 16 | 2 |
NITROGEN AND ITS COMPOUNDS
|
Industrial Applications and Economic Importance
Chapter Review and Integration |
By the end of the
lesson, the learner
should be able to:
Evaluate economic importance of nitrogen industry Analyze industrial production costs and benefits Compare different manufacturing processes Assess impact on agricultural productivity |
Case study analysis: Haber process economics, fertilizer industry impact, nitric acid production costs. Agricultural benefits: Crop yield improvements, food security. Economic calculations: Production costs, profit margins, environmental costs. Global nitrogen cycle importance.
|
Economic data sheets, Industry case studies, Agricultural statistics, Cost-benefit analysis templates
Concept mapping materials, Comparison charts, Flow diagram templates, Integration worksheets |
KLB Secondary Chemistry Form 3, Pages 119-157
|
|
| 16 | 3 |
SULPHUR AND ITS COMPOUNDS
|
Extraction of Sulphur
Allotropes of Sulphur |
By the end of the
lesson, the learner
should be able to:
Define sulphur and state its position in the periodic table. Describe the occurrence of sulphur in nature. Explain the Frasch process for extraction of sulphur. Evaluate the effectiveness of the Frasch process. |
Q/A: Review group VI elements and electron configuration of sulphur. Teacher demonstration: Using diagrams to explain the Frasch process setup. Discussion: Why ordinary mining is impossible for sulphur deposits. Group work: Students draw and label the Frasch process diagram.
|
Charts showing periodic table, Diagram of Frasch process, Samples of sulphur compounds (pyrites, gypsum)
Powdered sulphur, Carbon(IV) sulphide, Evaporating dish, Glass rod, Hand lens, Boiling tubes, Filter paper, Beakers |
KLB Secondary Chemistry Form 4, Pages 160-161
|
|
| 16 | 4 |
SULPHUR AND ITS COMPOUNDS
|
Physical Properties of Sulphur - Solubility
Physical Properties of Sulphur - Effect of Heat Chemical Properties of Sulphur - Reactions with Elements |
By the end of the
lesson, the learner
should be able to:
Investigate the solubility of sulphur in different solvents. Explain the molecular structure of sulphur. Compare solubility in polar and non-polar solvents. State the physical properties of sulphur. |
Practical work: Experiment 2(a) - Testing solubility of sulphur in water, benzene, methylbenzene, and carbon(IV) sulphide. Observation and recording in Table Discussion: Explain why sulphur dissolves in organic solvents but not water. Drawing: Puckered ring structure of S8 molecule.
|
Powdered sulphur, Water, Benzene, Methylbenzene, Carbon(IV) sulphide, Test tubes, Charts showing molecular structure
Powdered sulphur, Test tubes, Bunsen burner, Cold surface for condensation, Thermometer, Safety equipment Sulphur, Iron powder, Copper powder, Oxygen gas jar, Deflagrating spoon, Moist litmus papers, Test tubes, Bunsen burner |
KLB Secondary Chemistry Form 4, Pages 163-164
|
|
| 16 | 5 |
SULPHUR AND ITS COMPOUNDS
|
Chemical Properties of Sulphur - Reactions with Acids
Uses of Sulphur and Introduction to Oxides |
By the end of the
lesson, the learner
should be able to:
Investigate the reaction of sulphur with concentrated acids. Identify the products formed in these reactions. Write balanced equations for oxidation reactions. Test for sulphate ions using barium chloride. |
Practical work: Experiment 3(b) - Reactions with concentrated nitric(V) acid, sulphuric(VI) acid, and hydrochloric acid. Testing with barium chloride solution. Observation: Formation of sulphate ions, brown fumes, no reaction with HCl. Discussion: Sulphur as a reducing agent, acids as oxidizing agents.
|
Sulphur powder, Concentrated HNO3, Concentrated H2SO4, Concentrated HCl, Barium chloride solution, Test tubes, Fume cupboard access
Charts showing uses of sulphur, Samples of vulcanized rubber, Fungicides, Industrial photographs, Textbook diagrams |
KLB Secondary Chemistry Form 4, Pages 167-168
|
|
| 17 | 1 |
SULPHUR AND ITS COMPOUNDS
|
Preparation of Sulphur(IV) Oxide
Physical and Chemical Properties of Sulphur(IV) Oxide |
By the end of the
lesson, the learner
should be able to:
Describe laboratory preparation of sulphur(IV) oxide. Set up apparatus for gas preparation and collection. Write balanced equations for the preparation reactions. Explain the drying and collection methods used. |
Practical work: Experiment 4 - Preparation of SO2 using sodium sulphite and dilute HCl. Apparatus setup: Round-bottomed flask, delivery tube, gas jars. Collection: Downward delivery method. Testing: Using acidified potassium chromate(VI) paper. Alternative method: Copper + concentrated H2SO
|
Sodium sulphite, Dilute HCl, Round-bottomed flask, Delivery tubes, Gas jars, Concentrated H2SO4 for drying, Acidified potassium chromate(VI) paper
SO2 gas from previous preparation, Litmus papers, Universal indicator, 0.1M NaOH solution, Water, Test tubes, Safety equipment |
KLB Secondary Chemistry Form 4, Pages 170-171
|
|
| 17 | 2 |
SULPHUR AND ITS COMPOUNDS
|
Bleaching Action of Sulphur(IV) Oxide
|
By the end of the
lesson, the learner
should be able to:
Investigate the bleaching properties of SO Compare SO2 bleaching with chlorine bleaching. Explain the mechanism of SO2 bleaching. Relate bleaching to paper manufacturing. |
Practical work: Experiment 6 - Placing colored flower petals in SO2 gas. Observation: Temporary bleaching effect. Discussion: SO2 + H2O → H2SO3, reduction of organic dyes. Comparison: Permanent vs temporary bleaching. Application: Paper industry bleaching processes.
|
Colored flower petals (red/blue), SO2 gas jars, Hand lens for observation, Charts comparing bleaching agents
|
KLB Secondary Chemistry Form 4, Pages 173
|
|
| 17 | 3 |
SULPHUR AND ITS COMPOUNDS
|
Reducing Action of Sulphur(IV) Oxide
Oxidising Action of Sulphur(IV) Oxide |
By the end of the
lesson, the learner
should be able to:
Investigate SO2 as a reducing agent. Test reactions with various oxidizing agents. Write ionic equations for redox reactions. Identify color changes in redox reactions. |
Practical work: Experiment 7 - Testing SO2 with acidified potassium dichromate(VI), potassium manganate(VII), bromine water, iron(III) chloride. Recording observations in Table 6. Color changes: Orange to green, purple to colorless, brown to colorless, yellow to pale green. Writing half-equations and overall equations.
|
SO2 gas, Acidified K2Cr2O7, Acidified KMnO4, Bromine water, Iron(III) chloride solution, Concentrated HNO3, Test tubes
SO2 gas jars, Magnesium ribbon, Deflagrating spoon, Hydrogen sulphide gas, Water droppers, Safety equipment |
KLB Secondary Chemistry Form 4, Pages 173-176
|
|
| 17 | 4 |
SULPHUR AND ITS COMPOUNDS
|
Test for Sulphate and Sulphite Ions & Uses of SO2
|
By the end of the
lesson, the learner
should be able to:
Carry out confirmatory tests for sulphate and sulphite ions. Distinguish between sulphate and sulphite using chemical tests. List the uses of sulphur(IV) oxide. Explain the applications in industry. |
Practical work: Experiment 9 - Testing sodium sulphate and sodium sulphite with barium chloride. Adding dilute HCl to precipitates. Recording observations in Table 8. Discussion: BaSO4 insoluble in acid, BaSO3 dissolves. Uses: Raw material for H2SO4, bleaching wood pulp, fumigant, preservative.
|
Sodium sulphate solution, Sodium sulphite solution, Barium chloride solution, Dilute HCl, Test tubes, Charts showing industrial uses
|
KLB Secondary Chemistry Form 4, Pages 178-179
|
|
| 17 | 5 |
SULPHUR AND ITS COMPOUNDS
|
Large-scale Manufacture of Sulphuric(VI) Acid - Contact Process
|
By the end of the
lesson, the learner
should be able to:
Describe the contact process for manufacturing H2SO Identify raw materials and conditions used. Explain the role of catalyst in the process. Draw flow diagrams of the contact process. |
Study of flow diagram: Figure 12 - Contact process. Discussion: Raw materials (sulphur, air), burning sulphur to SO Purification: Electrostatic precipitation, drying with H2SO Catalytic chamber: V2O5 catalyst at 450°C, 2-3 atmospheres. Formation of oleum: H2S2O7. Safety and environmental considerations.
|
Flow chart diagrams, Charts showing industrial plant, Samples of catalyst (V2O5), Photographs of Thika chemical plant, Calculator for percentage calculations
|
KLB Secondary Chemistry Form 4, Pages 179-181
|
|
| 18 | 1 |
SULPHUR AND ITS COMPOUNDS
|
Properties of Concentrated Sulphuric(VI) Acid - Dehydrating Properties
|
By the end of the
lesson, the learner
should be able to:
Investigate the dehydrating properties of concentrated H2SO Demonstrate removal of water from hydrated salts. Show dehydration of organic compounds. Explain the hygroscopic nature of the acid. |
Practical work: Experiment 10 - Adding concentrated H2SO4 to copper(II) sulphate crystals, sucrose crystals, ethanol. Observations: Blue to white crystals, charring of sugar, formation of ethene. Safety: Proper dilution technique - acid to water. Testing evolved gases. Discussion: Chemical vs physical dehydration.
|
Concentrated H2SO4, Copper(II) sulphate crystals, Sucrose, Ethanol, KMnO4 solution, Test tubes, Beakers, Safety equipment, Fume cupboard
|
KLB Secondary Chemistry Form 4, Pages 181-183
|
|
| 18 | 2 |
SULPHUR AND ITS COMPOUNDS
|
Properties of Concentrated Sulphuric(VI) Acid - Oxidizing Properties
|
By the end of the
lesson, the learner
should be able to:
Investigate the oxidizing properties of concentrated H2SO Test reactions with metals and non-metals. Identify the products of oxidation reactions. Write balanced equations for redox reactions. |
Practical work: Experiment 10 (continued) - Reactions with copper foil, zinc granules, charcoal. Testing evolved gases with acidified K2Cr2O7 paper, lime water. Observations: SO2 evolution, color changes. Discussion: H2SO4 → SO2 + H2O + [O]. Writing half-equations and overall equations.
|
Copper foil, Zinc granules, Charcoal powder, Concentrated H2SO4, Acidified K2Cr2O7 paper, Lime water, Test tubes, Bunsen burner
|
KLB Secondary Chemistry Form 4, Pages 183-184
|
|
| 18 | 3 |
SULPHUR AND ITS COMPOUNDS
|
Properties of Concentrated Sulphuric(VI) Acid - Displacement Reactions
Reactions of Dilute Sulphuric(VI) Acid - With Metals |
By the end of the
lesson, the learner
should be able to:
Investigate acid displacement reactions. Demonstrate formation of volatile acids. Test the evolved gases for identification. Write equations for displacement reactions. |
Practical work: Experiment 10 (continued) - Reactions with potassium nitrate and sodium chloride. Testing evolved gases with moist blue litmus, concentrated ammonia. Observations: Brown fumes (NO2), white fumes (HCl). Discussion: Less volatile acid displacing more volatile acids. Industrial applications.
|
Potassium nitrate crystals, Sodium chloride crystals, Concentrated H2SO4, Moist blue litmus paper, Concentrated ammonia, Test tubes, Bunsen burner
Magnesium ribbon, Zinc granules, Copper turnings, Dilute H2SO4, Test tubes, Burning splints, Reactivity series chart |
KLB Secondary Chemistry Form 4, Pages 184
|
|
| 18 | 4 |
SULPHUR AND ITS COMPOUNDS
|
Reactions of Dilute Sulphuric(VI) Acid - With Carbonates
|
By the end of the
lesson, the learner
should be able to:
Investigate reactions of dilute H2SO4 with carbonates. Test for carbon dioxide evolution. Explain why some reactions stop prematurely. Compare reactions of different metal carbonates. |
Practical work: Experiment 12 - Reactions with sodium carbonate, zinc carbonate, calcium carbonate, copper(II) carbonate. Testing evolved gas with lime water. Recording observations in Table 1 Discussion: Formation of insoluble calcium sulphate coating. Effervescence and CO2 identification.
|
Sodium carbonate, Zinc carbonate, Calcium carbonate, Copper(II) carbonate, Dilute H2SO4, Lime water, Test tubes
|
KLB Secondary Chemistry Form 4, Pages 185-186
|
|
| 18 | 5 |
SULPHUR AND ITS COMPOUNDS
|
Reactions of Dilute Sulphuric(VI) Acid - With Oxides and Hydroxides
|
By the end of the
lesson, the learner
should be able to:
Investigate reactions of dilute H2SO4 with metal oxides and hydroxides. Identify neutralization reactions. Explain formation of insoluble sulphates. Write equations for acid-base reactions. |
Practical work: Experiment 13 - Reactions with magnesium oxide, zinc oxide, copper(II) oxide, lead(II) oxide, sodium hydroxide. Recording observations in Table 1 Discussion: Salt and water formation, immediate stopping with lead(II) oxide due to insoluble PbSO Acid-base neutralization concept.
|
Metal oxides (MgO, ZnO, CuO, PbO), NaOH solution, 2M H2SO4, Test tubes, Bunsen burner for warming
|
KLB Secondary Chemistry Form 4, Pages 186-187
|
|
| 19 | 1 |
SULPHUR AND ITS COMPOUNDS
|
Hydrogen Sulphide - Preparation and Physical Properties
|
By the end of the
lesson, the learner
should be able to:
Describe laboratory preparation of hydrogen sulphide. Set up apparatus for H2S preparation. State the physical properties of H2S. Explain the toxicity and safety precautions. |
Demonstration: Figure 13 apparatus setup for H2S preparation. Reaction: FeS + 2HCl → FeCl2 + H2S. Collection over warm water due to solubility. Drying: Using anhydrous CaCl2 (not H2SO4). Properties: Colorless, rotten egg smell, poisonous, denser than air. Safety precautions in handling.
|
Iron(II) sulphide, Dilute HCl, Apparatus for gas generation, Anhydrous CaCl2, Gas jars, Safety equipment, Fume cupboard
|
KLB Secondary Chemistry Form 4, Pages 187-188
|
|
| 19 | 2 |
SULPHUR AND ITS COMPOUNDS
|
Chemical Properties of Hydrogen Sulphide
Pollution Effects and Summary |
By the end of the
lesson, the learner
should be able to:
Investigate H2S as a reducing agent. Test reactions with oxidizing agents. Demonstrate precipitation of metal sulphides. Write ionic equations for redox reactions. |
Practical demonstrations: H2S with bromine water, iron(III) chloride, acidified KMnO4, K2Cr2O7. Precipitation tests: H2S with copper(II) sulphate, lead(II) nitrate, zinc sulphate. Color changes: Brown to colorless, yellow to green, purple to colorless. Formation of black, yellow, and white precipitates.
|
H2S gas, Bromine water, Iron(III) chloride, KMnO4, K2Cr2O7, Metal salt solutions, Test tubes, Droppers
Charts showing pollution effects, Photographs of acid rain damage, Environmental data, Summary charts of reactions, Industrial pollution control diagrams |
KLB Secondary Chemistry Form 4, Pages 188-190
|
|
| 19 | 3 |
CHLORINE AND ITS COMPOUNDS
|
Introduction and Preparation of Chlorine
Physical Properties of Chlorine |
By the end of the
lesson, the learner
should be able to:
Define chlorine and state its position in the periodic table. Describe the occurrence of chlorine in nature. Describe laboratory preparation of chlorine gas. Write balanced equations for chlorine preparation. |
Q/A: Review Group VII elements and electron configuration of chlorine ( 8.7). Discussion: Occurrence as sodium chloride in sea water and rock salt. Practical work: Experiment 6.1 - Preparation using MnO2 + concentrated HCl. Setup apparatus as in Figure 6. Safety precautions for handling chlorine gas.
|
Manganese(IV) oxide, Concentrated HCl, Gas collection apparatus, Water, Concentrated H2SO4, Blue litmus paper, Gas jars
Preserved chlorine gas, Water trough, Gas jars, Observation tables, Safety equipment |
KLB Secondary Chemistry Form 4, Pages 195-196
|
|
| 19 | 4 |
CHLORINE AND ITS COMPOUNDS
|
Chemical Properties of Chlorine - Reaction with Water
Chemical Properties of Chlorine - Reaction with Metals Chemical Properties of Chlorine - Reaction with Non-metals |
By the end of the
lesson, the learner
should be able to:
Investigate the reaction of chlorine with water. Explain the formation of chlorine water. Test the acidic nature of chlorine water. Demonstrate the bleaching action of chlorine. |
Practical work: Experiment 6.3 - Bubbling chlorine through water. Testing with litmus papers (dry vs moist). Testing with colored flower petals. Formation of green-yellow chlorine water. Writing equations: Cl2 + H2O → HCl + HOCl. Discussion: Formation of hypochlorous acid and hydrochloric acid.
|
Chlorine gas, Distilled water, Blue and red litmus papers, Colored flower petals, Gas jars, Boiling tubes
Magnesium ribbon, Iron wire, Chlorine gas, Deflagrating spoon, Combustion tube, Anhydrous CaCl2, Gas jars Red phosphorus, Hydrogen gas, Chlorine gas, Deflagrating spoon, Gas jars, Bunsen burner, Safety equipment |
KLB Secondary Chemistry Form 4, Pages 197-199
|
|
| 19 | 5 |
CHLORINE AND ITS COMPOUNDS
|
Oxidising Properties of Chlorine
Reaction of Chlorine with Alkali Solutions |
By the end of the
lesson, the learner
should be able to:
Investigate chlorine as an oxidizing agent. Test reactions with reducing agents. Write ionic equations for redox reactions. Identify color changes in oxidation reactions. |
Practical work: Experiment 6.6 - Bubbling chlorine through sodium sulphite solution, testing with barium nitrate and lead nitrate. Reactions with hydrogen sulphide and ammonia. Recording observations in Table 6. Color changes and precipitate formation. Writing ionic equations: SO3²⁻ + Cl2 + H2O → SO4²⁻ + 2Cl⁻ + 2H⁺.
|
Sodium sulphite solution, Barium nitrate, Lead nitrate, Hydrogen sulphide gas, Aqueous ammonia, Chlorine gas, Test tubes
Sodium hydroxide solutions (dilute cold, concentrated hot), Chlorine gas, Beakers, Bunsen burner, Thermometer |
KLB Secondary Chemistry Form 4, Pages 201-202
|
|
| 20 | 1 |
CHLORINE AND ITS COMPOUNDS
|
Oxidising Properties - Displacement Reactions
Test for Chloride Ions |
By the end of the
lesson, the learner
should be able to:
Investigate displacement reactions of chlorine with halides. Test reactions with bromides and iodides. Write ionic equations for displacement reactions. Explain the order of reactivity of halogens. |
Practical work: Experiment 6.8 - Bubbling chlorine through potassium bromide and potassium iodide solutions. Observations: Colorless to orange (Br2), colorless to brown (I2). Writing ionic equations: Cl2 + 2Br⁻ → 2Cl⁻ + Br2, Cl2 + 2I⁻ → 2Cl⁻ + I Discussion: Displacement as evidence of relative reactivity.
|
Potassium bromide solution, Potassium iodide solution, Chlorine gas, Test tubes, Observation charts
Sodium chloride, Concentrated H2SO4, Lead(II) nitrate solution, Aqueous ammonia, Glass rod, Test tubes, Bunsen burner |
KLB Secondary Chemistry Form 4, Pages 203-204
|
|
| 20 | 2 |
CHLORINE AND ITS COMPOUNDS
|
Uses of Chlorine and its Compounds
|
By the end of the
lesson, the learner
should be able to:
List the industrial uses of chlorine. Explain the use of chlorine in water treatment. Describe manufacture of chlorine compounds. Relate properties to uses of chlorine. |
Discussion: Industrial applications - HCl manufacture, bleaching agents for cotton and paper industries, water treatment and sewage plants. Study Figure 6.3(a) - bleaching chemicals. Applications: Chloroform (anaesthetic), solvents (trichloroethane), CFCs, PVC plastics, pesticides (DDT), germicides and fungicides. Q/A: Relating chemical properties to practical applications.
|
Charts showing industrial uses, Samples of bleaching agents, PVC materials, Photographs of water treatment plants, Industrial application diagrams
|
KLB Secondary Chemistry Form 4, Pages 205-207
|
|
| 20 | 3 |
CHLORINE AND ITS COMPOUNDS
|
Hydrogen Chloride - Laboratory Preparation
|
By the end of the
lesson, the learner
should be able to:
Describe laboratory preparation of hydrogen chloride gas. Set up apparatus for HCl preparation. Investigate physical properties of HCl gas. Explain the method of collection used. |
Practical work: Experiment 6.10 - Preparation using rock salt (NaCl) + concentrated H2SO Setup apparatus as in Figure 6.3(b). Testing physical properties and recording in Table 6.6. Tests: Solubility (fountain experiment), reaction with ammonia, effect on litmus. Collection by downward delivery due to density. Writing equation: NaCl + H2SO4 → NaHSO4 + HCl.
|
Rock salt (NaCl), Concentrated H2SO4, Gas collection apparatus, Ammonia solution, Litmus papers, Water trough, Gas jars
|
KLB Secondary Chemistry Form 4, Pages 207-208
|
|
| 20 | 4 |
CHLORINE AND ITS COMPOUNDS
|
Chemical Properties of Hydrogen Chloride
Large-scale Manufacture of Hydrochloric Acid |
By the end of the
lesson, the learner
should be able to:
Prepare aqueous hydrogen chloride (hydrochloric acid). Investigate acid properties of HCl solution. Test reactions with metals, bases, and carbonates. Compare HCl in water vs organic solvents. |
Practical work: Experiment 6.11 - Preparation of aqueous HCl using apparatus in Figure 6. Testing with metals (Zn, Fe, Mg, Cu), NaOH, carbonates, lead nitrate. Recording observations in Table 6.7. Testing HCl in methylbenzene - no acid properties. Discussion: Ionization in water vs molecular existence in organic solvents. Writing equations for acid reactions.
|
Distilled water, Filter funnel, Metals (Zn, Fe, Mg, Cu), NaOH solution, Carbonates, Lead nitrate, Methylbenzene, Indicators
Flow diagrams, Industrial photographs, Glass beads samples, Charts showing electrolysis processes, Safety equipment models |
KLB Secondary Chemistry Form 4, Pages 208-211
|
|
| 20 | 5 |
CHLORINE AND ITS COMPOUNDS
|
Uses of Hydrochloric Acid
Environmental Pollution by Chlorine Compounds and Summary |
By the end of the
lesson, the learner
should be able to:
List the industrial uses of hydrochloric acid. Explain applications in metal treatment. Describe use in water treatment and manufacturing. Relate acid properties to industrial applications. |
Discussion: Applications - rust removal and descaling, galvanizing preparation, electroplating preparation, water treatment (chlorination), sewage treatment. Manufacturing uses: dyes, drugs, photographic materials (AgCl), pH control in industries. Q/A: How acid properties make HCl suitable for these uses. Case studies: Metal cleaning processes, water purification systems.
|
Samples of rusted and cleaned metals, Photographic materials, pH control charts, Industrial application videos, Water treatment diagrams
Environmental pollution charts, Ozone layer diagrams, DDT restriction documents, PVC waste samples, NEMA guidelines, Summary charts of reactions |
KLB Secondary Chemistry Form 4, Pages 212-213
|
Your Name Comes Here