Home






SCHEME OF WORK
INTEGRATED SCIENCE
Grade 9 2026
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN STRAND SUB-STRAND LESSON LEARNING OUTCOMES LEARNING EXPERIENCES KEY INQUIRY QUESTIONS LEARNING RESOURCES ASSESSMENT METHODS REFLECTION
2 1
Mixtures, Elements and Compounds
Structure of the atom - General structure.
By the end of the lesson, the learner should be able to:

- Describe the general structure of an atom
- Identify the subatomic particles in an atom
- Show interest in exploring the structure of atoms
- Observe a diagram showing the structure of an atom
- Discuss in groups the general structure of atoms
- Identify the particles shown in the atom
How is the structure of the atom important?
- Mentor Integrated Science (pg. 1)
- Charts showing structure of an atom
- Digital resources
- Models of atoms
- Observation - Oral questions - Written assignments
2 2
Mixtures, Elements and Compounds
Structure of the atom - Meaning of an atom
Structure of the atom - Atomic number
By the end of the lesson, the learner should be able to:

- Explain the meaning of an atom
- Describe the characteristics of subatomic particles in an atom
- Appreciate the importance of understanding atomic structure
- Discuss in groups and find out the meaning of an atom
- Research on the differences between subatomic particles
- Share findings with classmates
How is the structure of the atom important?
- Mentor Integrated Science (pg. 2)
- Digital resources
- Charts showing structure of atoms
- Mentor Integrated Science (pg. 3)
- Periodic table
- Charts
- Observation - Oral questions - Written assignments
2 3-4
Mixtures, Elements and Compounds
Structure of the atom - Mass number
Structure of the atom - Representation of elements
Structure of the atom - Energy levels
Structure of the atom - Electron arrangement
By the end of the lesson, the learner should be able to:

- Define mass number of elements
- Calculate the mass number of given elements
- Show interest in determining mass numbers of elements

- Identify energy levels in atoms
- Explain how electrons are organized in energy levels
- Show interest in understanding atomic structure
- Complete a table to determine mass numbers of different elements
- Calculate mass numbers using protons and neutrons
- Work out mass numbers for various elements
- Search for information on energy levels in atoms
- Discuss how energy levels are organized in atoms
- Study diagrams showing energy levels
How is the structure of the atom important?
- Mentor Integrated Science (pg. 4)
- Periodic table
- Digital resources
- Charts showing atomic structure
- Mentor Integrated Science (pg. 5)
- Charts
- Mentor Integrated Science (pg. 6)
- Digital resources
- Charts showing energy levels
- Models
- Charts showing electron arrangements
- Observation - Oral questions - Written assignments
2 5
Mixtures, Elements and Compounds
Structure of the atom - Electron arrangements of elements
Structure of the atom - Energy level diagrams
Structure of the atom - Electron arrangement practice
By the end of the lesson, the learner should be able to:

- Write electron arrangements for different elements
- Illustrate electron arrangements using diagrams
- Appreciate the systematic arrangement of electrons in atoms
- Discuss electron arrangement in different elements
- Complete electron arrangement diagrams for various elements
- Practice writing electron arrangements
How is the structure of the atom important?
- Mentor Integrated Science (pg. 7)
- Digital resources
- Charts showing electron arrangements
- Models
- Charts showing energy level diagrams
- Mentor Integrated Science (pg. 8)
- Periodic table
- Exercise sheets
- Observation - Practical work - Written assignments
3 1
Mixtures, Elements and Compounds
Structure of the atom - Modelling structures
Structure of the atom - Metals and non-metals identification
By the end of the lesson, the learner should be able to:

- Create models of atomic structures
- Identify suitable materials for modelling atomic structures
- Show creativity in making models of atomic structures
- Observe different models of atomic structures
- Identify materials for modelling atoms
- Create models of atomic structures in groups
How is the structure of the atom important?
- Mentor Integrated Science (pg. 8)
- Locally available materials
- Digital resources
- Sample models
- Mentor Integrated Science (pg. 9)
- Periodic table
- Charts showing electron arrangements
- Observation - Project work - Peer assessment
3 2
Mixtures, Elements and Compounds
Structure of the atom - Metals and non-metals classification
Structure of the atom - Assessment
By the end of the lesson, the learner should be able to:

- Classify elements into metals and non-metals using electron arrangement
- Explain the relationship between electron arrangement and metallic properties
- Appreciate the diversity of elements
- Discuss classification of elements based on electron arrangements
- Complete tables to show metals and non-metals
- Match elements to their classifications
How is the structure of the atom important?
- Mentor Integrated Science (pg. 9)
- Digital resources
- Periodic table
- Charts showing classification of elements
- Mentor Integrated Science (pg. 10)
- Assessment items
- Models
- Observation - Written work - Oral questions
3 3-4
Mixtures, Elements and Compounds
Metals and Alloys - Identifying metals
Metals and Alloys - Classification of materials
Metals and Alloys - Physical properties (state)
Metals and Alloys - Malleability
Metals and Alloys - Ductility
By the end of the lesson, the learner should be able to:

- Identify metals and non-metals in the environment
- Classify materials as metallic or non-metallic
- Appreciate the variety of materials in the environment

- Investigate the malleability of different metals
- Explain the property of malleability in metals
- Observe safety measures when investigating metal properties
- Observe pictures of items made from different materials
- Identify and classify materials as metallic or non-metallic
- Walk around the school to identify metallic and non-metallic items
- Carry out an investigation on malleability of different metals
- Record observations when metals are hammered
- Compare the malleability of different metals
How are alloys important in day-to-day life?
- Mentor Integrated Science (pg. 15)
- Samples of metallic and non-metallic items
- Digital resources
- Pictures
- Samples of different materials
- Worksheets
- Mentor Integrated Science (pg. 16)
- Samples of different metals
- Charts
- Mentor Integrated Science (pg. 17)
- Samples of different metals
- Hammer or mallet
- Safety equipment
- Metal wires
- Pliers
- Observation - Oral questions - Written assignments
- Observation - Practical work - Written reports
3 5
Mixtures, Elements and Compounds
Metals and Alloys - Electrical conductivity
Metals and Alloys - Thermal conductivity
By the end of the lesson, the learner should be able to:

- Investigate the electrical conductivity of different metals
- Explain why metals conduct electricity
- Show interest in investigating electrical properties of metals
- Set up simple circuits to test electrical conductivity
- Record observations on how different metals conduct electricity
- Compare the electrical conductivity of different metals
How are alloys important in day-to-day life?
- Mentor Integrated Science (pg. 18)
- Simple circuit components
- Metal samples
- Digital resources
- Mentor Integrated Science (pg. 19)
- Heat source
- Candle wax or cooking fat
- Observation - Practical work - Written reports
4 1
Mixtures, Elements and Compounds
Metals and Alloys - Causes of rusting
Metals and Alloys - Effects of rusting
By the end of the lesson, the learner should be able to:

- Investigate causes of rusting in iron
- Explain conditions necessary for rusting to occur
- Appreciate the importance of understanding rusting
- Set up experiments to investigate rusting
- Record observations on rusting under different conditions
- Discuss factors that cause rusting
How are alloys important in day-to-day life?
- Mentor Integrated Science (pg. 20)
- Iron nails
- Test tubes
- Water and oil
- Digital resources
- Mentor Integrated Science (pg. 21)
- Pictures of rusted items
- Actual rusted items
- Observation - Practical work - Written reports
4 2
Mixtures, Elements and Compounds
Metals and Alloys - Control of rusting
Metals and Alloys - Investigating rusting
Metals and Alloys - Uses of metals
By the end of the lesson, the learner should be able to:

- Describe methods of preventing rusting
- Explain how different methods prevent rusting
- Appreciate the importance of preventing rusting
- Search for information on ways of preventing rusting
- Discuss different methods of preventing rusting
- Share findings on rust prevention
How are alloys important in day-to-day life?
- Mentor Integrated Science (pg. 22)
- Digital resources
- Items with rust prevention
- Pictures
- Camera (if available)
- Observation sheets
- Rusted items
- Mentor Integrated Science (pg. 23)
- Pictures showing uses of metals
- Charts
- Observation - Oral presentations - Written assignments
4 3-4
Mixtures, Elements and Compounds
Metals and Alloys - Identifying alloys
Metals and Alloys - Alloys in locality
Metals and Alloys - Composition of alloys
Metals and Alloys - Uses of alloys
By the end of the lesson, the learner should be able to:

- Identify items made from alloys in the locality
- Explain why certain items are made from alloys
- Show interest in exploring uses of alloys

- Describe the composition of common alloys
- Identify metals used to make different alloys
- Show interest in understanding alloy composition
- Observe pictures of items made from alloys
- Discuss why certain items are made from alloys
- Identify items made from alloys in the school
- Observe pictures of different alloys
- Search for information on composition of common alloys
- Present findings on alloy composition
How are alloys important in day-to-day life?
- Mentor Integrated Science (pg. 24)
- Samples of items made from alloys
- Digital resources
- Pictures
- Items made from alloys
- Camera (if available)
- Mentor Integrated Science (pg. 25)
- Digital resources
- Pictures of different alloys
- Charts
- Mentor Integrated Science (pg. 26)
- Pictures showing uses of alloys
- Observation - Oral questions - Project work
- Observation - Oral presentations - Written assignments
4 5
Mixtures, Elements and Compounds
Metals and Alloys - Observing alloy uses
Metals and Alloys - Assessment
Water hardness - Physical properties
By the end of the lesson, the learner should be able to:

- Observe uses of alloys in the locality
- Explain advantages of using alloys for specific purposes
- Show interest in applications of alloys
- Walk around the school or locality to observe uses of alloys
- Record observations on uses of alloys
- Discuss findings with classmates
How are alloys important in day-to-day life?
- Mentor Integrated Science (pg. 27)
- Observation sheets
- Items made from alloys
- Digital resources
- Mentor Integrated Science (pg. 32)
- Assessment items
- Samples of metals and alloys
- Mentor Integrated Science (pg. 33)
- Water samples from different sources
- Containers for samples
- Charts
- Observation - Field activity - Written reports
5 1
Mixtures, Elements and Compounds
Water hardness - Water sources
Water hardness - Colour and odour
By the end of the lesson, the learner should be able to:

- Identify different sources of water in the locality
- Compare characteristics of water from different sources
- Show interest in water sources in the environment
- Discuss different sources of water in the locality
- Compare characteristics of water from different sources
- Record findings in a table
Why is hard water preferred for drinking?
- Mentor Integrated Science (pg. 33)
- Water samples
- Digital resources
- Charts
- Mentor Integrated Science (pg. 34)
- Clear containers
- White paper
- Observation - Oral discussions - Written assignments
5 2
Mixtures, Elements and Compounds
Water hardness - Investigating color and odor
Water hardness - Boiling point
By the end of the lesson, the learner should be able to:

- Investigate the color and odor of different water samples
- Record observations on water characteristics
- Appreciate the importance of clean water
- Carry out experiments to test color and odor of water samples
- Record observations in a table
- Draw conclusions about water quality based on observations
Why is hard water preferred for drinking?
- Mentor Integrated Science (pg. 34)
- Water samples
- Clear containers
- White paper
- Worksheets
- Mentor Integrated Science (pg. 35)
- Thermometer
- Heat source
- Beaker
- Water
- Observation - Practical work - Written reports
5 3-4
Mixtures, Elements and Compounds
Water hardness - Hard and soft water
Water hardness - Differences
Water hardness - Advantages of soft water
Water hardness - Hard water advantages
Water hardness - Methods of softening
By the end of the lesson, the learner should be able to:

- Distinguish between hard and soft water
- Explain the difference in lathering ability
- Show interest in investigating water properties

- Identify advantages of soft water
- Debate on uses of soft water
- Appreciate the value of soft water in certain applications
- Compare lathering of soap in different water samples
- Distinguish between hard and soft water based on lathering
- Discuss differences between hard and soft water
- Debate on advantages of soft water
- Discuss benefits of using soft water for cleaning
- Research advantages of soft water
Why is hard water preferred for drinking?
- Mentor Integrated Science (pg. 36)
- Soap
- Water samples
- Beakers
- Digital resources
- Mentor Integrated Science (pg. 37)
- Charts
- Mentor Integrated Science (pg. 38)
- Digital resources
- Charts
- Debate materials
- Mentor Integrated Science (pg. 39)
- Research materials
- Mentor Integrated Science (pg. 40)
- Water samples
- Observation - Practical work - Oral questions
- Observation - Debate assessment - Written assignments
5 5
Mixtures, Elements and Compounds
Water hardness - Boiling method
Water hardness - Chemical method
By the end of the lesson, the learner should be able to:

- Demonstrate how to soften hard water by boiling
- Explain how boiling removes hardness
- Observe safety measures when using heat sources
- Carry out experiment to soften hard water by boiling
- Test lathering ability of water before and after boiling
- Explain observations from the experiment
Why is hard water preferred for drinking?
- Mentor Integrated Science (pg. 41)
- Hard water samples
- Heat source
- Beakers
- Soap
- Mentor Integrated Science (pg. 42)
- Washing soda
- Observation - Practical work - Written reports
6 1
Mixtures, Elements and Compounds
Water hardness - Distillation method
Water hardness - Applications
By the end of the lesson, the learner should be able to:

- Demonstrate how to soften hard water by distillation
- Explain how distillation removes hardness
- Observe safety measures during distillation
- Set up distillation apparatus
- Distill hard water and test the distillate
- Compare properties of hard water and distilled water
Why is hard water preferred for drinking?
- Mentor Integrated Science (pg. 44)
- Distillation apparatus
- Hard water samples
- Heat source
- Soap
- Mentor Integrated Science (pg. 45)
- Digital resources
- Charts
- Pictures of water applications
- Observation - Practical work - Written reports
6 2
Living Things and their Environment
Nutrition in plants - External structure of the leaf
Nutrition in plants - Functions of leaf parts
Nutrition in plants - Observing leaf structures
By the end of the lesson, the learner should be able to:

- Identify the external parts of a leaf
- Draw and label external parts of a leaf
- Show interest in exploring plant structures
- Observe pictures showing external structure of a leaf
- Identify external parts of the leaf from the pictures
- Discuss the functions of each external part of the leaf
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 49)
- Charts showing external structure of leaf
- Digital resources
- Fresh leaves
- Mentor Integrated Science (pg. 50)
- Hand lens
- Drawing materials
- Observation - Oral questions - Drawings
6 3-4
Living Things and their Environment
Nutrition in plants - Leaf adaptations for photosynthesis
Nutrition in plants - Internal structure of the leaf
Nutrition in plants - Leaf tissues for photosynthesis
Nutrition in plants - Internal adaptations for photosynthesis
By the end of the lesson, the learner should be able to:

- Explain how leaf structures are adapted for photosynthesis
- Relate leaf adaptations to their functions
- Show interest in understanding plant adaptations

- Explain the functions of internal leaf tissues
- Relate internal leaf structures to photosynthesis
- Appreciate the complexity of leaf tissues
- Discuss how external leaf structures are adapted for photosynthesis
- Search for information about leaf adaptations from digital devices or print resources
- Make summary notes on leaf adaptations
- Discuss the functions of different internal leaf tissues
- Relate the structure of internal leaf tissues to photosynthesis
- Share findings with classmates
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 51)
- Digital resources
- Charts showing leaf adaptations
- Reference materials
- Mentor Integrated Science (pg. 52)
- Charts showing internal structure of leaf
- Models
- Mentor Integrated Science (pg. 53)
- Charts showing internal leaf tissues
- Digital resources
- Models
- Mentor Integrated Science (pg. 54)
- Charts showing internal leaf adaptations
- Reference materials
- Observation - Written assignments - Oral presentations
6 5
Living Things and their Environment
Nutrition in plants - Structure of chloroplast
Nutrition in plants - Chloroplast adaptations
By the end of the lesson, the learner should be able to:

- Describe the structure of a chloroplast
- Identify parts of a chloroplast and their functions
- Appreciate the role of chloroplasts in photosynthesis
- Observe a diagram showing the structure of a chloroplast
- Identify the parts of a chloroplast
- Discuss the functions of different parts of a chloroplast
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 55)
- Charts showing structure of chloroplast
- Digital resources
- Models
- Mentor Integrated Science (pg. 56)
- Photomicrographs of chloroplasts
- Charts showing chloroplast structure
- Observation - Oral questions - Written assignments
7 1
Living Things and their Environment
Nutrition in plants - Process of photosynthesis
Nutrition in plants - Conditions for photosynthesis
Nutrition in plants - Stages of photosynthesis
By the end of the lesson, the learner should be able to:

- Explain the process of photosynthesis
- Identify raw materials and products of photosynthesis
- Show interest in understanding photosynthesis
- Discuss conditions and raw materials necessary for photosynthesis
- Identify products of photosynthesis
- Search for information on the process of photosynthesis
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 57)
- Charts showing photosynthesis process
- Digital resources
- Reference materials
- Mentor Integrated Science (pg. 58)
- Charts showing conditions for photosynthesis
- Mentor Integrated Science (pg. 59)
- Charts showing stages of photosynthesis
- Observation - Oral questions - Written assignments
7 2
Living Things and their Environment
Nutrition in plants - Testing for starch
Nutrition in plants - Light and photosynthesis
By the end of the lesson, the learner should be able to:

- Demonstrate the procedure for testing for starch in a leaf
- Explain why each step in the procedure is important
- Observe safety measures when carrying out experiments
- Set up an experiment to test for the presence of starch in a leaf
- Follow the correct procedure step by step
- Observe and record the results
- Explain why certain steps are necessary
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 60)
- Apparatus for testing starch in leaves
- Chemicals (iodine solution)
- Fresh leaves
- Heat source
- Mentor Integrated Science (pg. 61)
- Potted plants
- Aluminum foil/carbon paper
- Apparatus for testing starch
- Chemicals
- Observation - Practical work - Written reports
7 3-4
Living Things and their Environment
Nutrition in plants - Carbon (IV) oxide and photosynthesis
Nutrition in plants - Chlorophyll and photosynthesis
Nutrition in plants - Importance of photosynthesis
Nutrition in plants - Environmental impact of photosynthesis
By the end of the lesson, the learner should be able to:

- Investigate whether carbon (IV) oxide is necessary for photosynthesis
- Control variables in an experiment
- Practice safety measures when conducting experiments

- Explain the importance of photosynthesis in nature
- Relate photosynthesis to food production and oxygen release
- Appreciate the significance of photosynthesis
- Design an experiment to investigate the effect of carbon (IV) oxide on photosynthesis
- Set up the experiment with appropriate controls
- Record and analyze results
- Draw conclusions from the experiment
- Search for information on importance of photosynthesis
- Discuss how photosynthesis benefits plants, animals and the environment
- Make summary notes on importance of photosynthesis
What is the importance of photosynthesis in nature?
- Mentor Integrated Science (pg. 62)
- Potted plants
- Conical flasks with corks
- Potassium hydroxide solution
- Apparatus for testing starch
- Mentor Integrated Science (pg. 63)
- Variegated leaves
- Chemicals
- Heat source
- Mentor Integrated Science (pg. 64)
- Digital resources
- Charts showing importance of photosynthesis
- Reference materials
- Mentor Integrated Science (pg. 65)
- Charts showing carbon cycle
- Observation - Practical work - Written reports
- Observation - Written assignments - Oral presentations
7 5
Living Things and their Environment
Nutrition in animals - Modes of nutrition in animals
Nutrition in animals - Parasitic mode of nutrition
Nutrition in animals - Saprophytic mode of nutrition
By the end of the lesson, the learner should be able to:

- Explain the meaning of nutrition in animals
- Identify different modes of nutrition in animals
- Appreciate the diversity of feeding mechanisms in animals
- Observe pictures of animals with different feeding mechanisms
- Discuss modes of nutrition in animals
- Categorize different animals based on how they feed
- Search for information on animal nutrition using digital devices or print materials
How do different animals feed?
- Mentor Integrated Science Grade 9 (pg. 73)
- Digital devices
- Pictures of animals with different feeding habits
- Mentor Integrated Science Grade 9 (pg. 74)
- Pictures of parasitic animals
- Pictures/videos of saprophytic organisms
- Observation - Oral questions - Written assignments - Group presentations
8

Midterm

9 1
Living Things and their Environment
Nutrition in animals - Symbiotic mode of nutrition
Nutrition in animals - Holozoic mode of nutrition
By the end of the lesson, the learner should be able to:

- Explain symbiotic mode of nutrition
- Identify organisms that exhibit symbiotic relationships in feeding
- Appreciate the interdependence of organisms in nutrition
- Observe pictures of symbiotic relationships
- Discuss examples of symbiotic relationships in feeding
- Research on symbiotic relationships
- Create presentations on symbiotic relationships
How do different animals feed?
- Mentor Integrated Science Grade 9 (pg. 75)
- Digital devices
- Pictures of symbiotic relationships
- Pictures of animals with holozoic feeding
- Observation - Oral questions - Written assignments - Group presentations
9 2
Living Things and their Environment
Nutrition in animals - Types of teeth (structure)
Nutrition in animals - Types of teeth (functions)
By the end of the lesson, the learner should be able to:

- Identify different types of teeth
- Describe the structure of different types of teeth
- Appreciate the diversity in teeth structure
- Observe and draw different types of teeth
- Use models/charts to identify the structure of different types of teeth
- Discuss the structure and location of different types of teeth in the mouth
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 76)
- Dental models or charts
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 77)
- Observation - Drawing assessment - Oral questions - Written assignments
9 3-4
Living Things and their Environment
Nutrition in animals - Dentition in animals (homodont and heterodont)
Nutrition in animals - Dentition in carnivores
Nutrition in animals - Dentition in herbivores
By the end of the lesson, the learner should be able to:

- Differentiate between homodont and heterodont dentition
- Classify animals based on their dentition
- Appreciate the diversity in animal dentition

- Describe the dentition of herbivores
- Identify adaptations of herbivore teeth to their feeding habits
- Show interest in understanding herbivore dentition
- Observe pictures of different animal teeth
- Compare and contrast homodont and heterodont dentition
- Classify animals as either homodont or heterodont
- Research on examples of animals with different dentition types
- Observe pictures/models of herbivore teeth
- Discuss the adaptations of herbivore teeth to their feeding habits
- Research on examples of herbivores and their dentition
- Make presentations on herbivore dentition
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 78)
- Pictures of animal teeth
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 79)
- Pictures/models of carnivore teeth
- Mentor Integrated Science Grade 9 (pg. 80)
- Pictures/models of herbivore teeth
- Digital devices
- Observation - Oral questions - Classification exercises - Written assignments
- Observation - Oral questions - Written assignments - Presentations
9 5
Living Things and their Environment
Nutrition in animals - Dentition in omnivores
By the end of the lesson, the learner should be able to:

- Describe the dentition of omnivores
- Identify adaptations of omnivore teeth to their feeding habits
- Show interest in understanding omnivore dentition
- Observe pictures/models of omnivore teeth
- Discuss the adaptations of omnivore teeth to their feeding habits
- Research on examples of omnivores and their dentition
- Make presentations on omnivore dentition
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 81)
- Pictures/models of omnivore teeth
- Digital devices
- Observation - Oral questions - Written assignments - Presentations
10 1
Living Things and their Environment
Nutrition in animals - Process of digestion (ingestion)
By the end of the lesson, the learner should be able to:

- Explain the process of ingestion in human beings
- Describe the role of teeth and salivary glands in ingestion
- Appreciate the complexity of the digestive process
- Discuss the process of ingestion
- Using charts/models, identify structures involved in ingestion
- Demonstrate the role of teeth and saliva in ingestion
- Research on the process of ingestion
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 82)
- Charts/models of the digestive system
- Digital devices
- Observation - Oral questions - Written assignments - Demonstrations
10 2
Living Things and their Environment
Nutrition in animals - Process of digestion (digestion)
Nutrition in animals - Process of digestion (absorption)
By the end of the lesson, the learner should be able to:

- Explain the process of digestion in human beings
- Identify organs involved in digestion and their functions
- Appreciate the importance of proper digestion
- Discuss the process of digestion in different parts of the digestive system
- Using charts/models, identify organs involved in digestion
- Research on mechanical and chemical digestion
- Present findings to the class
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 83)
- Charts/models of the digestive system
- Digital devices
- Observation - Oral questions - Written assignments - Presentations
10 3-4
Living Things and their Environment
Nutrition in animals - Process of digestion (assimilation)
Nutrition in animals - Process of digestion (egestion)
By the end of the lesson, the learner should be able to:

- Explain the process of assimilation in human beings
- Describe how absorbed nutrients are utilized in the body
- Value the importance of proper nutrition for body functions

- Explain the process of egestion in human beings
- Identify structures involved in egestion and their functions
- Appreciate the importance of proper waste elimination
- Discuss the process of assimilation
- Research on how different nutrients are used in the body
- Create presentations on the process of assimilation
- Discuss the importance of proper nutrition
- Discuss the process of egestion
- Using charts/models, identify structures involved in egestion
- Research on the importance of fiber in egestion
- Present findings to the class
How is food digested in the human body?
- Mentor Integrated Science Grade 9 (pg. 84)
- Charts of the circulatory system
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 84)
- Charts/models of the large intestine
- Digital devices
- Observation - Oral questions - Written assignments - Presentations
10 5
Living Things and their Environment
Reproduction in plants - Parts of a flower
Reproduction in plants - Functions of parts of a flower
Reproduction in plants - Meaning of pollination
By the end of the lesson, the learner should be able to:

- Identify external parts of a flower
- Draw and label parts of a flower
- Appreciate the complexity of flower structure
- Collect and observe flowers from the school compound
- Identify and name the parts of the flowers
- Draw and label the parts of a flower
- Discuss the functions of the parts of a flower
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 86)
- Fresh flowers
- Hand lens
- Drawing materials
- Mentor Integrated Science Grade 9 (pg. 87)
- Flower models or charts
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 88)
- Videos on pollination
- Charts showing pollination
- Observation - Drawing assessment - Oral questions - Written assignments
11 1
Living Things and their Environment
Reproduction in plants - Types of pollination (self-pollination)
Reproduction in plants - Types of pollination (cross-pollination)
By the end of the lesson, the learner should be able to:

- Explain self-pollination
- Identify plants that undergo self-pollination
- Value the diversity in plant reproduction strategies
- Discuss self-pollination
- Use diagrams/charts to illustrate self-pollination
- Research on examples of plants that undergo self-pollination
- Create presentations on self-pollination
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 89)
- Charts showing self-pollination
- Digital devices
- Charts showing cross-pollination
- Observation - Oral questions - Written assignments - Group presentations
11 2
Living Things and their Environment
Reproduction in plants - Agents of pollination (insects)
Reproduction in plants - Agents of pollination (birds, other animals)
By the end of the lesson, the learner should be able to:

- Identify insects as agents of pollination
- Explain how insects aid in pollination
- Appreciate the role of insects in plant reproduction
- Observe pictures/videos of insects as pollinators
- Discuss how insects aid in pollination
- Take a field excursion to observe insects pollinating flowers
- Record observations and present to class
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 90)
- Pictures/videos of insect pollinators
- Digital devices
- Pictures/videos of bird and animal pollinators
- Observation - Field notes assessment - Oral questions - Written assignments
11 3-4
Living Things and their Environment
Reproduction in plants - Agents of pollination (wind, water)
Reproduction in plants - Adaptations of flowers to insect pollination
Reproduction in plants - Adaptations of flowers to wind pollination
By the end of the lesson, the learner should be able to:

- Identify wind and water as agents of pollination
- Explain how wind and water aid in pollination
- Show interest in various pollination mechanisms

- Identify adaptations of flowers to wind pollination
- Explain how these adaptations facilitate wind pollination
- Value the diversity in plant adaptations
- Observe pictures/videos of wind and water pollination
- Discuss how wind and water aid in pollination
- Research on examples of flowers pollinated by wind and water
- Present findings to class
- Observe wind-pollinated flowers
- Identify and discuss adaptations to wind pollination
- Compare insect-pollinated and wind-pollinated flowers
- Create presentations on adaptations to wind pollination
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 91)
- Pictures/videos of wind and water pollination
- Digital devices
- Mentor Integrated Science Grade 9 (pg. 92)
- Fresh insect-pollinated flowers
- Pictures of insect-pollinated flowers
- Hand lens
- Mentor Integrated Science Grade 9 (pg. 93)
- Fresh wind-pollinated flowers
- Pictures of wind-pollinated flowers
- Hand lens
- Observation - Oral questions - Written assignments - Group presentations
11 5
Living Things and their Environment
Reproduction in plants - Effects of agrochemicals on pollinating agents
By the end of the lesson, the learner should be able to:

- Explain the effects of agrochemicals on pollinating agents
- Describe how these effects impact plant reproduction
- Show concern for the impact of human activities on pollinators
- Research on the effects of agrochemicals on pollinating agents
- Discuss how these effects impact plant reproduction
- Debate on the use of agrochemicals and their effects on pollination
- Present findings to class
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 94)
- Digital devices
- Articles on effects of agrochemicals on pollinators
- Observation - Oral questions - Written assignments - Debate assessment
12 1
Living Things and their Environment
Reproduction in plants - Fertilization in flowering plants
By the end of the lesson, the learner should be able to:

- Explain the process of fertilization in flowering plants
- Describe the journey of pollen tube to the ovule
- Appreciate the complexity of plant reproduction
- Watch videos on fertilization in flowering plants
- Use diagrams/charts to illustrate the fertilization process
- Discuss the journey of the pollen tube to the ovule
- Create presentations on fertilization in flowering plants
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 95)
- Videos on fertilization in plants
- Charts showing fertilization process
- Digital devices
- Observation - Oral questions - Written assignments - Group presentations
12 2
Living Things and their Environment
Reproduction in plants - Seed formation in flowering plants
Reproduction in plants - Fruit formation in flowering plants
By the end of the lesson, the learner should be able to:

- Explain the process of seed formation in flowering plants
- Identify the changes that occur during seed formation
- Value the importance of seeds in plant reproduction
- Watch videos on seed formation
- Use diagrams/charts to illustrate seed formation
- Observe different stages of seed development if available
- Discuss the changes that occur during seed formation
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 96)
- Videos on seed formation
- Charts showing seed formation
- Samples of seeds at different developmental stages
- Mentor Integrated Science Grade 9 (pg. 97)
- Videos on fruit formation
- Charts showing fruit formation
- Samples of fruits at different developmental stages
- Observation - Oral questions - Written assignments - Drawing assessment
12 3-4
Living Things and their Environment
Reproduction in plants - Fruit and seed dispersal (meaning and importance)
Reproduction in plants - Modes of fruit and seed dispersal (animals)
By the end of the lesson, the learner should be able to:

- Explain the meaning of fruit and seed dispersal
- Describe the importance of fruit and seed dispersal
- Value the role of dispersal in plant reproduction

- Explain animal dispersal of fruits and seeds
- Identify fruits and seeds dispersed by animals
- Appreciate the role of animals in plant reproduction
- Discuss the meaning of fruit and seed dispersal
- Research on the importance of fruit and seed dispersal
- Debate on what would happen if seeds were not dispersed
- Present findings to class
- Collect and observe fruits and seeds dispersed by animals
- Discuss the adaptations of these fruits and seeds for animal dispersal
- Research on examples of animal-dispersed fruits and seeds
- Create presentations on animal dispersal
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 98)
- Digital devices
- Charts showing seed dispersal
- Mentor Integrated Science Grade 9 (pg. 99)
- Samples of animal-dispersed fruits and seeds
- Digital devices
- Pictures of animal dispersal
- Observation - Oral questions - Written assignments - Debate assessment
- Observation - Oral questions - Written assignments - Collection assessment
12 5
Living Things and their Environment
Reproduction in plants - Modes of fruit and seed dispersal (wind, water)
Reproduction in plants - Modes of fruit and seed dispersal (self-dispersal mechanisms)
By the end of the lesson, the learner should be able to:

- Explain wind and water dispersal of fruits and seeds
- Identify fruits and seeds dispersed by wind and water
- Show interest in different dispersal mechanisms
- Collect and observe fruits and seeds dispersed by wind and water
- Discuss the adaptations of these fruits and seeds for wind and water dispersal
- Research on examples of wind and water dispersed fruits and seeds
- Create presentations on wind and water dispersal
How does reproduction in plants occur?
- Mentor Integrated Science Grade 9 (pg. 100)
- Samples of wind and water-dispersed fruits and seeds
- Digital devices
- Pictures of wind and water dispersal
- Mentor Integrated Science Grade 9 (pg. 101)
- Samples of self-dispersed fruits and seeds
- Pictures of self-dispersal mechanisms
- Observation - Oral questions - Written assignments - Collection assessment

Your Name Comes Here


Download

Feedback