If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 3 | 1 |
GAS LAWS
|
Boyle's Law - Introduction and Experimental Investigation
|
By the end of the
lesson, the learner
should be able to:
State Boyle's law Explain Boyle's law using kinetic theory of matter Investigate the relationship between pressure and volume of a fixed mass of gas Plot graphs to illustrate Boyle's law |
Teacher demonstration: Use bicycle pump to show volume-pressure relationship. Students observe force needed to compress gas. Q/A: Review kinetic theory. Class experiment: Investigate pressure-volume relationship using syringes. Record observations in table format. Discuss observations using kinetic theory.
|
Bicycle pump, Syringes, Gas jars, Chart showing volume-pressure relationship
|
KLB Secondary Chemistry Form 3, Pages 1-3
|
|
| 3 | 2-3 |
GAS LAWS
|
Boyle's Law - Mathematical Expression and Graphical Representation
Boyle's Law - Numerical Problems and Applications Charles's Law - Introduction and Temperature Scales Charles's Law - Experimental Investigation and Mathematical Expression Charles's Law - Numerical Problems and Applications Combined Gas Law and Standard Conditions Introduction to Diffusion - Experimental Investigation Rates of Diffusion - Comparative Study |
By the end of the
lesson, the learner
should be able to:
Express Boyle's law mathematically Apply the equation PV = constant Plot and interpret pressure vs volume graphs Plot pressure vs 1/volume graphs Solve numerical problems using Charles's law Apply V₁/T₁ = V₂/T₂ in calculations Predict gas behavior with temperature changes Relate Charles's law to everyday phenomena |
Q/A: Recall previous lesson observations. Teacher exposition: Derive P₁V₁ = P₂V₂ equation from experimental data. Students plot graphs of pressure vs volume and pressure vs 1/volume. Analyze graph shapes and interpret mathematical relationship.
Worked examples: Step-by-step problem solving with temperature conversions. Supervised practice: Calculate volumes at different temperatures. Discuss applications: hot air balloons, tire pressure changes, weather balloons. Assignment: Practice problems with real-life contexts. |
Graph papers, Scientific calculators, Chart showing mathematical expressions
Scientific calculators, Worked example charts, Unit conversion tables Round-bottomed flask, Narrow glass tube, Colored water, Rubber bung, Hot and cold water baths Glass apparatus, Thermometers, Graph papers, Water baths at different temperatures Scientific calculators, Temperature conversion charts, Application examples Scientific calculators, Combined law derivation charts, Standard conditions reference table KMnO₄ crystals, Bromine liquid, Gas jars, Combustion tube, Litmus papers, Stopwatch Glass tube (25cm), Cotton wool, Concentrated NH₃ and HCl, Stopwatch, Ruler, Safety equipment |
KLB Secondary Chemistry Form 3, Pages 3-4
KLB Secondary Chemistry Form 3, Pages 10-12 |
|
| 3 | 4 |
GAS LAWS
|
Graham's Law of Diffusion - Theory and Mathematical Expression
|
By the end of the
lesson, the learner
should be able to:
State Graham's law of diffusion Express Graham's law mathematically Relate diffusion rate to molecular mass and density Explain the inverse relationship between rate and √molecular mass |
Teacher exposition: Graham's law statement and mathematical derivation. Discussion: Rate ∝ 1/√density and Rate ∝ 1/√molecular mass. Derive comparative expressions for two gases. Explain relationship between density and molecular mass. Practice: Identify faster diffusing gas from molecular masses.
|
Graham's law charts, Molecular mass tables, Mathematical derivation displays
|
KLB Secondary Chemistry Form 3, Pages 18-20
|
|
| 3 | 5 |
GAS LAWS
THE MOLE |
Graham's Law - Numerical Applications and Problem Solving
Relative Mass - Introduction and Experimental Investigation |
By the end of the
lesson, the learner
should be able to:
Solve numerical problems using Graham's law Calculate relative rates of diffusion Determine molecular masses from diffusion data Compare diffusion times for equal volumes of gases |
Worked examples: Calculate relative diffusion rates using √(M₂/M₁). Problems involving time comparisons for equal volumes. Calculate unknown molecular masses from rate data. Supervised practice: Various Graham's law calculations. Real-life applications: gas separation, gas masks.
|
Scientific calculators, Worked example charts, Molecular mass reference tables
Different sized nails ( 5-15cm), Beam balance, Fruits of different masses, Reference charts |
KLB Secondary Chemistry Form 3, Pages 20-22
|
|
| 4 | 1 |
THE MOLE
|
Avogadro's Constant and the Mole Concept
Interconversion of Mass and Moles for Elements |
By the end of the
lesson, the learner
should be able to:
Define Avogadro's constant and its value Explain the concept of a mole as a counting unit Relate molar mass to relative atomic mass Calculate number of atoms in given masses of elements |
Experiment: Determine number of nails with mass equal to relative mass in grams. Teacher exposition: Introduce Avogadro's constant (6.023 × 10²³). Discussion: Mole as counting unit like dozen. Worked examples: Calculate moles from mass and vice versa.
|
Beam balance, Various sized nails, Scientific calculators, Avogadro's constant charts
Scientific calculators, Periodic table, Worked example charts, Formula triangles |
KLB Secondary Chemistry Form 3, Pages 27-30
|
|
| 4 | 2-3 |
THE MOLE
|
Molecules and Moles - Diatomic Elements
Empirical Formula - Experimental Determination Empirical Formula - Reduction Method Empirical Formula - Percentage Composition Method |
By the end of the
lesson, the learner
should be able to:
Distinguish between atoms and molecules Define relative molecular mass Calculate moles of molecules from given mass Determine number of atoms in molecular compounds Determine empirical formula using reduction reactions Calculate empirical formula from reduction data Apply reduction method to copper oxides Analyze experimental errors and sources |
Discussion: Elements existing as molecules (O₂, H₂, N₂, Cl₂). Teacher exposition: Difference between atomic and molecular mass. Worked examples: Calculate moles of molecular elements. Problem solving: Number of atoms in molecular compounds.
Experiment: Reduction of copper(II) oxide using laboratory gas. Measure masses before and after reduction. Calculate moles of copper and oxygen. Determine empirical formula from mole ratios. Discuss experimental precautions. |
Molecular models, Charts showing diatomic elements, Scientific calculators
Crucible and lid, Magnesium ribbon, Bunsen burner, Beam balance, Tongs, Safety equipment Combustion tube, Porcelain boat, Copper(II) oxide, Laboratory gas, Beam balance, Bunsen burner Scientific calculators, Percentage composition charts, Worked example displays |
KLB Secondary Chemistry Form 3, Pages 29-30
KLB Secondary Chemistry Form 3, Pages 35-37 |
|
| 4 | 4 |
THE MOLE
|
Molecular Formula - Determination from Empirical Formula
Molecular Formula - Combustion Analysis |
By the end of the
lesson, the learner
should be able to:
Define molecular formula Relate molecular formula to empirical formula Calculate molecular formula using molecular mass Apply the relationship (empirical formula)ₙ = molecular formula |
Teacher exposition: Difference between empirical and molecular formulas. Worked examples: Calculate molecular formula from empirical formula and molecular mass. Formula: n = molecular mass/empirical formula mass. Practice problems with various organic compounds.
|
Scientific calculators, Molecular mass charts, Worked example displays
Scientific calculators, Combustion analysis charts, Molecular models of hydrocarbons |
KLB Secondary Chemistry Form 3, Pages 38-40
|
|
| 4 | 5 |
THE MOLE
|
Concentration and Molarity of Solutions
|
By the end of the
lesson, the learner
should be able to:
Define concentration and molarity of solutions Calculate molarity from mass and volume data Convert between different concentration units Apply molarity calculations to various solutions |
Teacher exposition: Definition of molarity (moles/dm³). Worked examples: Calculate molarity from mass of solute and volume. Convert between g/dm³ and mol/dm³. Practice problems: Various salt solutions and their molarities.
|
Scientific calculators, Molarity charts, Various salt samples for demonstration
|
KLB Secondary Chemistry Form 3, Pages 41-43
|
|
| 5 | 1 |
THE MOLE
|
Preparation of Molar Solutions
Dilution of Solutions |
By the end of the
lesson, the learner
should be able to:
Describe procedure for preparing molar solutions Use volumetric flasks correctly Calculate masses needed for specific molarities Prepare standard solutions accurately |
Experiment: Prepare 1M, 0.5M, and 0.25M NaOH solutions in different volumes. Use volumetric flasks of 1000cm³, 500cm³, and 250cm³. Calculate required masses. Demonstrate proper dissolution and dilution techniques.
|
Volumetric flasks (250, 500, 1000cm³), Sodium hydroxide pellets, Beam balance, Wash bottles, Beakers
Volumetric flasks, Hydrochloric acid (2M), Measuring cylinders, Pipettes, Safety equipment |
KLB Secondary Chemistry Form 3, Pages 43-46
|
|
| 5 | 2-3 |
THE MOLE
|
Stoichiometry - Experimental Determination of Equations
Stoichiometry - Precipitation Reactions Stoichiometry - Gas Evolution Reactions Volumetric Analysis - Introduction and Apparatus |
By the end of the
lesson, the learner
should be able to:
Determine chemical equations from experimental data Calculate mole ratios from mass measurements Write balanced chemical equations Apply stoichiometry to displacement reactions Determine stoichiometry of gas-producing reactions Collect and measure gas volumes Calculate mole ratios involving gases Write equations for acid-carbonate reactions |
Experiment: Iron displacement of copper from CuSO₄ solution. Measure masses of iron used and copper displaced. Calculate mole ratios. Derive balanced chemical equation. Discuss spectator ions.
Experiment: HCl + Na₂CO₃ reaction. Collect CO₂ gas in plastic bag. Measure gas mass and calculate moles. Determine mole ratios of reactants and products. Write balanced equation. |
Iron filings, Copper(II) sulphate solution, Beam balance, Beakers, Filter equipment
Test tubes, Lead(II) nitrate solution, Potassium iodide solution, Burettes, Ethanol, Rulers Conical flask, Thistle funnel, Plastic bags, Rubber bands, Sodium carbonate, HCl solution Pipettes (10, 20, 25cm³), Burettes (50cm³), Pipette fillers, Conical flasks, Various solutions |
KLB Secondary Chemistry Form 3, Pages 50-53
KLB Secondary Chemistry Form 3, Pages 56-58 |
|
| 5 | 4 |
THE MOLE
|
Titration - Acid-Base Neutralization
Titration - Diprotic Acids |
By the end of the
lesson, the learner
should be able to:
Perform acid-base titrations accurately Use indicators to determine end points Record titration data properly Calculate average titres from multiple readings |
Experiment: Titrate 25cm³ of 0.1M NaOH with 0.1M HCl using phenolphthalein. Repeat three times for consistency. Record data in tabular form. Calculate average titre. Discuss accuracy and precision.
|
Burettes, Pipettes, 0.1M NaOH, 0.1M HCl, Phenolphthalein indicator, Conical flasks
Burettes, Pipettes, 0.1M H₂SO₄, 0.1M NaOH, Phenolphthalein, Basicity reference chart |
KLB Secondary Chemistry Form 3, Pages 59-62
|
|
| 5 | 5 |
THE MOLE
|
Standardization of Solutions
Back Titration Method |
By the end of the
lesson, the learner
should be able to:
Define standardization process Standardize HCl using Na₂CO₃ as primary standard Calculate accurate concentrations from titration data Understand importance of primary standards |
Experiment: Prepare approximately 0.1M HCl and standardize using accurately weighed Na₂CO₃. Use methyl orange indicator. Calculate exact molarity from titration results. Discuss primary standard requirements.
|
Anhydrous Na₂CO₃, Approximately 0.1M HCl, Methyl orange, Volumetric flasks, Analytical balance
Metal carbonate sample, 0.5M HCl, 0M NaOH, Phenolphthalein, Conical flasks |
KLB Secondary Chemistry Form 3, Pages 65-67
|
|
| 6 | 1 |
THE MOLE
|
Redox Titrations - Principles
|
By the end of the
lesson, the learner
should be able to:
Explain principles of redox titrations Identify color changes in redox reactions Understand self-indicating nature of some redox reactions Write ionic equations for redox processes |
Teacher exposition: Redox titration principles. Demonstrate color changes: MnO₄⁻ (purple) → Mn²⁺ (colorless), Cr₂O₇²⁻ (orange) → Cr³⁺ (green). Discussion: Self-indicating reactions. Write half-equations and overall ionic equations.
|
Potassium manganate(VII), Potassium dichromate(VI), Iron(II) solutions, Color change charts
|
KLB Secondary Chemistry Form 3, Pages 68-70
|
|
| 6 | 2-3 |
THE MOLE
|
Redox Titrations - KMnO₄ Standardization
Water of Crystallization Determination Atomicity and Molar Gas Volume Combining Volumes of Gases - Experimental Investigation |
By the end of the
lesson, the learner
should be able to:
Standardize KMnO₄ solution using iron(II) salt Calculate molarity from redox titration data Apply 1:5 mole ratio in calculations Prepare solutions for redox titrations Define atomicity of gaseous elements Classify gases as monoatomic, diatomic, or triatomic Determine molar gas volume experimentally Calculate gas densities and molar masses |
Experiment: Standardize KMnO₄ using FeSO₄(NH₄)₂SO₄·6H₂O. Dissolve iron salt in boiled, cooled water. Titrate with KMnO₄ until persistent pink color. Calculate molarity using 5:1 mole ratio.
Experiment: Measure volumes and masses of different gases (O₂, CO₂, Cl₂). Calculate densities and molar masses. Determine volume occupied by one mole. Compare values at different conditions. |
Iron(II) ammonium sulfate, KMnO₄ solution, Dilute H₂SO₄, Pipettes, Burettes
Hydrated iron(II) salt, Standardized KMnO₄, Dilute H₂SO₄, Analytical balance Gas syringes (50cm³), Various gases, Analytical balance, Gas supply apparatus Gas syringes, Dry NH₃ generator, Dry HCl generator, Glass connecting tubes, Clips |
KLB Secondary Chemistry Form 3, Pages 70-72
KLB Secondary Chemistry Form 3, Pages 73-75 |
|
| 6 | 4 |
THE MOLE
ORGANIC CHEMISTRY I |
Gas Laws and Chemical Equations
Introduction to Organic Chemistry and Hydrocarbons |
By the end of the
lesson, the learner
should be able to:
Apply Avogadro's law to chemical reactions Use volume ratios to determine chemical equations Calculate product volumes from reactant volumes Solve problems involving gas stoichiometry |
Worked examples: Use Gay-Lussac's law to determine equations. Calculate volumes of products from given reactant volumes. Apply Avogadro's law to find number of molecules. Practice: Complex gas stoichiometry problems.
|
Scientific calculators, Gas law charts, Volume ratio examples
Carbon models, Hydrocarbon structure charts, Molecular model kits |
KLB Secondary Chemistry Form 3, Pages 77-79
|
|
| 6 | 5 |
ORGANIC CHEMISTRY I
|
Sources of Alkanes - Natural Gas, Biogas, and Crude Oil
Fractional Distillation of Crude Oil |
By the end of the
lesson, the learner
should be able to:
Identify natural sources of alkanes Describe composition of natural gas and biogas Explain crude oil as major source of alkanes Describe biogas digester and its operation |
Discussion: Natural gas composition (80% methane). Explanation: Biogas formation from organic waste decomposition. Teacher demonstration: Biogas digester model/diagram. Q/A: Environmental benefits of biogas production.
|
Biogas digester model/diagram, Natural gas composition charts, Organic waste samples
Crude oil sample, Boiling tubes, High-temperature thermometer, Sand/porcelain chips, Bunsen burner, Test tubes |
KLB Secondary Chemistry Form 3, Pages 86-87
|
|
| 7 | 1 |
ORGANIC CHEMISTRY I
|
Cracking of Alkanes - Thermal and Catalytic Methods
|
By the end of the
lesson, the learner
should be able to:
Define cracking of alkanes Distinguish between thermal and catalytic cracking Write equations for cracking reactions Explain industrial importance of cracking |
Teacher exposition: Definition and purpose of cracking. Discussion: Thermal vs catalytic cracking conditions. Worked examples: Cracking equations producing smaller alkanes, alkenes, and hydrogen. Q/A: Industrial applications and hydrogen production.
|
Cracking process diagrams, Chemical equation charts, Catalyst samples for demonstration
|
KLB Secondary Chemistry Form 3, Pages 89-90
|
|
| 7 | 2-3 |
ORGANIC CHEMISTRY I
|
Alkane Series and Homologous Series Concept
Nomenclature of Alkanes - Straight Chain and Branched Isomerism in Alkanes - Structural Isomers Laboratory Preparation of Methane |
By the end of the
lesson, the learner
should be able to:
Define homologous series using alkanes Write molecular formulas for first 10 alkanes Identify characteristics of homologous series Apply general formula CₙH₂ₙ₊₂ for alkanes Define isomerism in alkanes Draw structural isomers of butane and pentane Distinguish between chain and positional isomerism Predict number of isomers for given alkanes |
Teacher exposition: Homologous series definition and characteristics. Table completion: Names, molecular formulas, and structures of first 10 alkanes. Discussion: General formula application. Pattern recognition: Gradual change in physical properties.
Teacher exposition: Isomerism definition and types. Practical exercise: Draw all isomers of butane and pentane. Discussion: Physical property differences between isomers. Model building: Use molecular models to show isomeric structures. |
Alkane series chart, Molecular formula worksheets, Periodic table
Structural formula charts, IUPAC naming rules poster, Molecular model kits Molecular model kits, Isomerism charts, Structural formula worksheets Sodium ethanoate, Soda lime, Round-bottomed flask, Gas collection apparatus, Bromine water, Wooden splints |
KLB Secondary Chemistry Form 3, Pages 90-92
KLB Secondary Chemistry Form 3, Pages 92-94 |
|
| 7 | 4 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethane
Physical Properties of Alkanes |
By the end of the
lesson, the learner
should be able to:
Prepare ethane using sodium propanoate and soda lime Compare preparation methods of methane and ethane Test properties of ethane gas Write general equation for alkane preparation |
Experiment: Prepare ethane from sodium propanoate and soda lime. Compare with methane preparation method. Carry out similar tests as for methane. Discussion: General pattern for alkane preparation from sodium alkanoates.
|
Sodium propanoate, Soda lime, Gas collection apparatus, Testing materials
Physical properties data tables, Graph paper, Calculators, Solubility demonstration materials |
KLB Secondary Chemistry Form 3, Pages 94-96
|
|
| 7 | 5 |
ORGANIC CHEMISTRY I
|
Chemical Properties of Alkanes - Combustion and Substitution
Uses of Alkanes in Industry and Daily Life |
By the end of the
lesson, the learner
should be able to:
Write equations for complete and incomplete combustion Explain substitution reactions with halogens Describe conditions for halogenation reactions Name halogenated alkane products |
Worked examples: Combustion equations for various alkanes. Teacher demonstration: Methane + bromine in sunlight (or simulation). Discussion: Free radical mechanism in substitution. Practice: Write equations for chlorination of methane.
|
Molecular models, Halogenation reaction charts, Chemical equation worksheets
Industrial application charts, Product samples, Environmental impact materials |
KLB Secondary Chemistry Form 3, Pages 97-98
|
|
| 8-9 |
Mid Term Break |
|||||||
| 9 | 4 |
ORGANIC CHEMISTRY I
|
Introduction to Alkenes and Functional Groups
Nomenclature of Alkenes |
By the end of the
lesson, the learner
should be able to:
Define alkenes and unsaturation Identify the C=C functional group Write general formula for alkenes (CₙH₂ₙ) Compare alkenes with alkanes |
Teacher exposition: Alkenes definition and unsaturation concept. Introduction: C=C double bond as functional group. Table study: First 6 members of alkene series. Comparison: Alkenes vs alkanes - formulas and structures.
|
Alkene series charts, Molecular models showing double bonds, Functional group posters
IUPAC naming charts for alkenes, Structural formula worksheets, Molecular model kits |
KLB Secondary Chemistry Form 3, Pages 100-101
|
|
| 9 | 5 |
ORGANIC CHEMISTRY I
|
Isomerism in Alkenes - Branching and Positional
|
By the end of the
lesson, the learner
should be able to:
Draw structural isomers of alkenes Distinguish between branching and positional isomerism Identify geometric isomers in alkenes Predict isomer numbers for given molecular formulas |
Practical exercise: Draw all isomers of butene and pentene. Teacher exposition: Branching vs positional isomerism in alkenes. Model building: Use molecular models for isomer visualization. Discussion: Geometric isomerism introduction (basic level).
|
Molecular model kits, Isomerism worksheets, Geometric isomer models
|
KLB Secondary Chemistry Form 3, Pages 102
|
|
| 10 | 1 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethene
Alternative Preparation of Ethene and Physical Properties |
By the end of the
lesson, the learner
should be able to:
Prepare ethene by dehydration of ethanol Describe role of concentrated sulfuric acid Set up apparatus safely for ethene preparation Test physical and chemical properties of ethene |
Experiment: Dehydration of ethanol using concentrated H₂SO₄ at 170°C. Use sand bath for controlled heating. Pass gas through NaOH to remove impurities. Tests: Bromine water, acidified KMnO₄, combustion. Safety precautions with concentrated acid.
|
Ethanol, Concentrated H₂SO₄, Round-bottomed flask, Sand bath, Gas collection apparatus, Testing solutions
Aluminum oxide catalyst, Glass wool, Alternative apparatus setup, Physical properties charts |
KLB Secondary Chemistry Form 3, Pages 102-104
|
|
| 10 | 2-3 |
ORGANIC CHEMISTRY I
|
Chemical Properties of Alkenes - Addition Reactions
Oxidation Reactions of Alkenes and Polymerization Tests for Alkenes and Uses Introduction to Alkynes and Triple Bond |
By the end of the
lesson, the learner
should be able to:
Explain addition reactions due to C=C double bond Write equations for halogenation of alkenes Describe hydrogenation and hydrohalogenation Explain addition mechanism Perform chemical tests to identify alkenes Use bromine water and KMnO₄ as test reagents List industrial and domestic uses of alkenes Explain importance in plastic manufacture |
Teacher exposition: Addition reactions definition and mechanism. Worked examples: Ethene + Cl₂, Br₂, HBr, H₂. Discussion: Markovnikov's rule for unsymmetrical addition. Practice: Various addition reaction equations.
Practical session: Test known alkenes with bromine water and acidified KMnO₄. Observe rapid decolorization compared to alkanes. Discussion: Uses in plastics, ethanol production, fruit ripening, detergents. Assignment: Research alkene applications. |
Addition reaction charts, Mechanism diagrams, Chemical equation worksheets
Oxidizing agents for demonstration, Polymer samples, Polymerization charts, Monomer-polymer models Test alkenes, Bromine water, Acidified KMnO₄, Plastic samples, Uses reference charts Alkyne series charts, Triple bond molecular models, Unsaturation comparison charts |
KLB Secondary Chemistry Form 3, Pages 105-107
KLB Secondary Chemistry Form 3, Pages 108-109 |
|
| 10 | 4 |
ORGANIC CHEMISTRY I
|
Nomenclature and Isomerism in Alkynes
Laboratory Preparation of Ethyne |
By the end of the
lesson, the learner
should be able to:
Apply IUPAC naming rules for alkynes Name branched alkynes with substituents Draw structural isomers of alkynes Identify branching and positional isomerism |
Teacher demonstration: Systematic naming of alkynes using -yne suffix. Practice exercises: Name various alkyne structures. Drawing exercise: Isomers of pentyne and hexyne. Group work: Complex branched alkynes with multiple substituents.
|
IUPAC naming rules for alkynes, Structural formula worksheets, Molecular model kits
Calcium carbide, Sand, Flat-bottomed flask, Dropping funnel, Gas collection apparatus, Testing solutions |
KLB Secondary Chemistry Form 3, Pages 110-111
|
|
| 10 | 5 |
ORGANIC CHEMISTRY I
|
Physical and Chemical Properties of Alkynes
Addition Reactions of Alkynes and Chemical Tests Uses of Alkynes and Industrial Applications |
By the end of the
lesson, the learner
should be able to:
Describe physical properties of alkynes Compare alkyne properties with alkenes and alkanes Write combustion equations for alkynes Explain addition reactions of alkynes |
Data analysis: Physical properties of alkynes table. Comparison: Alkynes vs alkenes vs alkanes properties. Worked examples: Combustion reactions of ethyne. Teacher exposition: Two-step addition reactions due to triple bond.
|
Physical properties charts, Comparison tables, Combustion equation examples
Addition reaction charts, Chemical equation worksheets, Test solutions, Stopwatch for rate comparison Industrial application charts, Welding equipment demonstration/video, Synthetic fiber samples |
KLB Secondary Chemistry Form 3, Pages 112-113
|
|
Your Name Comes Here