If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 2 | 1 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Chemical properties of elements in the third period.
Oxides of period 3 elements. |
By the end of the
lesson, the learner
should be able to:
To compare reactions of elements in period 3 with water |
Q/A: Review reaction of sodium, Mg, chlorine, with water.
Infer that sodium is most reactive metal; non-metals do not react with water. |
The periodic table.
|
K.L.B. BOOK II PP. 80-81
|
|
| 2 | 2-3 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
SALTS |
Chlorides of period 3 elements.
Types of salts. |
By the end of the
lesson, the learner
should be able to:
To explain chemical behavior of their chlorides. To describe hydrolysis reaction. Define a salt. Describe various types of salts and give several examples in each case. |
Comparative analysis, discussion and explanation.
Descriptive approach. Teacher exposes new concepts. |
The periodic table.
text book |
K.L.B. BOOK II PP. 77-78
K.L.B. BOOK II P. 91 |
|
| 2 | 4 |
SALTS
|
Solubility of salts in water.
|
By the end of the
lesson, the learner
should be able to:
To test solubility of various salts in cold water/warm water. |
Class experiments- Dissolve salts in 5 cc of water.
Record the solubility in a table, Analyse the results. |
Sulphates, chlorides, nitrates, carbonates of various metals.
|
K.L.B. BOOK II PP. 92-93
|
|
| 2 | 5 |
SALTS
|
Solubility of bases in water.
|
By the end of the
lesson, the learner
should be able to:
To test solubility of various bases in water. To carry out litmus test on the resulting solutions. |
Class experiments- Dissolve salts in 5cc of water.
Record the solubility in a table, Carry out litmus tests. Discuss the results. |
Oxides, hydroxides, of various metals, litmus papers.
|
K.L.B. BOOK IIPP. 94-95
|
|
| 3 | 1 |
SALTS
|
Methods of preparing various salts.
|
By the end of the
lesson, the learner
should be able to:
To describe various methods of preparing some salts. |
Experimental and descriptive treatments of preparation of salts e.g. ZnSO4, CuSO4, NaCl and Pb(NO3)2.
|
CuO, H2SO4, HCl, NaOH, PbCO3, dil HNO3.
|
K.L.B. BOOK II pp96
|
|
| 3 | 2-3 |
SALTS
|
Methods of preparing various salts.
Direct synthesis of a salts. |
By the end of the
lesson, the learner
should be able to:
To describe various methods of preparing some salts. To describe direct synthesis of a salt. To write balanced equations for the reactions. |
Experimental and descriptive treatments of preparation of salts e.g. ZnSO4, CuSO4, NaCl and Pb(NO3)2.
Group experiments- preparation of iron (II) sulphide by direct synthesis. Give other examples of salts prepared by direct synthesis. Students write down corresponding balanced equations. |
CuO, H2SO4, HCl, NaOH, PbCO3, dil HNO3.
Iron, Sulphur |
K.L.B. BOOK II pp96
K.L.B. BOOK II P. 104 |
|
| 3 | 4 |
SALTS
|
Ionic equations.
|
By the end of the
lesson, the learner
should be able to:
To identify spectator ions in double decomposition reactions. To write ionic equations correctly. |
Q/A: Ions present in given reactants.
Deduce the products of double decomposition reactions. Give examples of equations. Supervised practice. |
PbNO3, MgSO4 solutions.
|
K.L.B. BOOK II
|
|
| 3 | 5 |
SALTS
|
Effects of heat on carbonates.
|
By the end of the
lesson, the learner
should be able to:
To state effects of heat on carbonates. To predict products resulting from heating metal carbonates. |
Group experiments- To investigate effects of heat on Na2CO3, K2CO3, CaCO3, ZnCO3, PbCO3, e.t.c.
Observe various colour changes before, during and after heating. Write equations for the reactions. |
Various carbonates.
|
K.L.B. BOOK II PP. 108-109
|
|
| 4 | 1 |
SALTS
|
Effects of heat on nitrates.
Effects of heat on sulphates. |
By the end of the
lesson, the learner
should be able to:
To state effects of heat on nitrates. To predict products resulting from heating metal nitrates. |
Group experiments- To investigate effects of heat on various metal nitrates.
Observe various colour changes before, during and after heating. Write equations for the reactions. |
Common metal nitrates.
Common sulphates. |
K.L.B. BOOK II PP. 110-111
|
|
| 4 | 2-3 |
SALTS
|
Hygroscopy, Deliquescence and Efflorescence.
Uses of salts. |
By the end of the
lesson, the learner
should be able to:
To define hygroscopic deliquescent and efflorescent salts. To give examples of hygroscopic deliquescent and efflorescent salts. To state uses of salts |
Prepare a sample of various salts.
Expose them to the atmosphere overnight. Students classify the salts as hygroscopic, deliquescent and / or efflorescent. Teacher elucidates uses of salts. |
|
K.L.B. BOOK II P. 114
K.L.B. BOOK II P. 114 |
|
| 4 | 4 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Electrical conductivity.
Molten electrolytes. |
By the end of the
lesson, the learner
should be able to:
To test for electrical conductivities of substances. |
Group experiments- to identify conductors and non-conductors.
Explain the difference in (non) conductivities. |
Various solids, bulb, battery, & wires.
Molten candle wax Sugar Sulphur Lead oxide. |
K.L.B. BOOK II PP. 118-119
|
|
| 4 | 5 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Electrolysis.
|
By the end of the
lesson, the learner
should be able to:
To define electrolysis To describe the process of electrolysis in terms of charge movement. |
Descriptive approach punctuated with Q/A.
|
|
K.L.B. BOOK II
|
|
| 5 | 1 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Aqueous electrolytes.
Electrodes.
|
By the end of the
lesson, the learner
should be able to:
To define an electrolyte To test for electrical conductivities of electrodes. |
To investigate chemical effect of an electric current.
Classify the solutions as electrolyte or non -electrolytes. Discuss the electrical properties of the solutions. |
Graphite electrodes
Battery Various aqueous solutions switch bulb. |
K.L.B. BOOK II PP.122-123
|
|
| 5 | 2-3 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Reaction on electrodes.
Binary electrolyte. |
By the end of the
lesson, the learner
should be able to:
To describe half- equation reactions at the cathode and anode To define a binary electrolyte. To state the products of a binary electrolyte. |
To demonstrate ?Electrolysis of molten lead (II) bromide
Observe colour changes Explanation of half-equations and reactions at the electrodes. Completing a table of electrolysis of binary electrolytes. |
Graphite electrodes
Battery Various aqueous solutions switch. text book |
K.L.B. BOOK II PP.126-127
K.L.B. BOOK II P.127 |
|
| 5 | 4 |
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
|
Application of electrolysis.
Electroplating. |
By the end of the
lesson, the learner
should be able to:
To state application of electrolysis. |
Discussion and explanations.
|
text book
Silver nitrate Iron nail Complete circuit battery. |
K.L.B. BOOK II P. 128
|
|
| 5 | 5 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Allotropy.
|
By the end of the
lesson, the learner
should be able to:
Define allotropes and allotropy. Identify allotropes of carbon. Represent diamond and graphite diagrammatically. |
Teacher exposes new terms.
Review covalent bond. Discuss boding in diamond and graphite. |
text book
|
K.L.B. BOOK II PP. 131-133
|
|
| 6 | 1 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Physical and chemical properties of diamond, graphite and amorphous carbon
|
By the end of the
lesson, the learner
should be able to:
Describe physical and chemical properties of diamond, graphite and amorphous carbon. State uses of carbon allotropes. |
Discuss physical and chemical properties of diamond, graphite and amorphous carbon.
Explain the Physical and chemical properties of diamond, graphite and amorphous carbon. Discuss uses of carbon allotropes. |
Charcoal, graphite.
|
K.L.B. BOOK II pp 134
|
|
| 6 | 2-3 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Burning carbon and oxygen.
Reduction properties of carbon. Reaction of carbon with acids. Preparation of CO2. |
By the end of the
lesson, the learner
should be able to:
Describe reaction of carbon with oxygen. Describe reaction of carbon with acids. Prepare CO2 in the lab. |
Teacher demonstration- Prepare oxygen and pass dry oxygen into a tube containing carbon. Heat the carbon. Observe effects on limewater.
Teacher demonstration- reaction of carbon with hot conc HNO3. Write balanced equations for the reaction. Review effects of heat on carbonates. Group experiments/teacher demonstration- preparation of CO2. |
Carbon, limewater, tube, limewater stand& Bunsen burner.
CuO, pounded charcoal, Bunsen burner& bottle top Conc. HNO3, limewater. |
K.L.B. BOOK II PP. 134-135
K.L.B. BOOK II P.126 |
|
| 6 | 4 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Properties of CO2.
|
By the end of the
lesson, the learner
should be able to:
Describe properties of CO2 |
Simple experiments to determine properties of CO2.
Discuss the observations. |
Lime water,
Magnesium ribbon, Universal indicator, lit candle. |
K.L.B. BOOK II PP.138-139
|
|
| 6 | 5 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Chemical equations for reactions involving CO2.
|
By the end of the
lesson, the learner
should be able to:
Write balanced CO2. |
Give examples of reactions. Write corresponding balanced chemical equations.
|
text book
|
K.L.B. BOOK II PP.139-140
|
|
| 7 | 1 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Uses of CO2.
|
By the end of the
lesson, the learner
should be able to:
State uses of CO2 |
Discuss briefly the uses of CO2.
|
text book
|
K.L.B. BOOK II PP.140-1
|
|
| 7 | 2-3 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Carbon monoxide lab preparation.
Chemical properties of carbon monoxide. Carbonates and hydrogen carbonates. |
By the end of the
lesson, the learner
should be able to:
To describe preparation of carbon monoxide in the lab To write chemical equations for reactions of carbonates and hydrogen carbonates with acids. |
Teacher demonstration: preparation of carbon monoxide in the lab.
Make observations. Discuss the observations above. Write chemical equations for the reactions. |
text book
|
K.L.B. BOOK II PP. 142-143
|
|
| 7 | 4 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Heating carbonates and hydrogen carbonates.
Extraction of sodium carbonate from trona. |
By the end of the
lesson, the learner
should be able to:
To write equations for reaction of carbonates and hydrogen carbonates on heating. |
Discuss the above observations.
Write corresponding balanced equations. |
text book
|
K.L.B. BOOK II PP.150-151
|
|
| 7 | 5 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Solvay process of preparing sodium carbonate.
|
By the end of the
lesson, the learner
should be able to:
To draw schematic diagram for extraction of sodium carbonates. |
Discuss each step of the process.
Write relevant equations. |
text book, chart
|
K.L.B. BOOK II
|
|
| 8 |
MIDTERM BREAK AND MIDTERM EXAMINATION |
|||||||
| 9 | 1 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Importance of carbon in nature.
& its
effects on the environment.
|
By the end of the
lesson, the learner
should be able to:
To discuss: - Importance of carbon in nature. & Effects of carbon on the environment. |
Discuss the carbon cycle and processes that increase/ reduce amount of CO2 in the air.
Uses of CO2 in soft drinks and fire extinguishers. |
text book
|
K.L.B. BOOK II PP.157-158
|
|
| 9 | 2-3 |
CARBON AND SOME OF ITS COMPOUNDS.
GAS LAWS |
Importance of carbon in nature.
& its
effects on the environment.
Boyle's Law - Introduction and Experimental Investigation |
By the end of the
lesson, the learner
should be able to:
To discuss: - Importance of carbon in nature. & Effects of carbon on the environment. State Boyle's law Explain Boyle's law using kinetic theory of matter Investigate the relationship between pressure and volume of a fixed mass of gas Plot graphs to illustrate Boyle's law |
Discuss the carbon cycle and processes that increase/ reduce amount of CO2 in the air.
Uses of CO2 in soft drinks and fire extinguishers. Teacher demonstration: Use bicycle pump to show volume-pressure relationship. Students observe force needed to compress gas. Q/A: Review kinetic theory. Class experiment: Investigate pressure-volume relationship using syringes. Record observations in table format. Discuss observations using kinetic theory. |
text book
Bicycle pump, Syringes, Gas jars, Chart showing volume-pressure relationship |
K.L.B. BOOK II PP.157-158
KLB Secondary Chemistry Form 3, Pages 1-3 |
|
| 9 | 4 |
GAS LAWS
|
Boyle's Law - Mathematical Expression and Graphical Representation
|
By the end of the
lesson, the learner
should be able to:
Express Boyle's law mathematically Apply the equation PV = constant Plot and interpret pressure vs volume graphs Plot pressure vs 1/volume graphs |
Q/A: Recall previous lesson observations. Teacher exposition: Derive P₁V₁ = P₂V₂ equation from experimental data. Students plot graphs of pressure vs volume and pressure vs 1/volume. Analyze graph shapes and interpret mathematical relationship.
|
Graph papers, Scientific calculators, Chart showing mathematical expressions
|
KLB Secondary Chemistry Form 3, Pages 3-4
|
|
| 9 | 5 |
GAS LAWS
|
Boyle's Law - Mathematical Expression and Graphical Representation
|
By the end of the
lesson, the learner
should be able to:
Express Boyle's law mathematically Apply the equation PV = constant Plot and interpret pressure vs volume graphs Plot pressure vs 1/volume graphs |
Q/A: Recall previous lesson observations. Teacher exposition: Derive P₁V₁ = P₂V₂ equation from experimental data. Students plot graphs of pressure vs volume and pressure vs 1/volume. Analyze graph shapes and interpret mathematical relationship.
|
Graph papers, Scientific calculators, Chart showing mathematical expressions
|
KLB Secondary Chemistry Form 3, Pages 3-4
|
|
| 10 | 1 |
GAS LAWS
|
Boyle's Law - Numerical Problems and Applications
|
By the end of the
lesson, the learner
should be able to:
Solve numerical problems involving Boyle's law Convert between different pressure units Apply Boyle's law to real-life situations Calculate volumes and pressures using P₁V₁ = P₂V₂ |
Worked examples: Demonstrate step-by-step problem solving. Supervised practice: Students solve problems involving pressure and volume calculations. Convert units (mmHg, atm, Pa). Discuss applications in tire inflation, aerosol cans. Assignment: Additional practice problems.
|
Scientific calculators, Worked example charts, Unit conversion tables
|
KLB Secondary Chemistry Form 3, Pages 4-5
|
|
| 10 | 2-3 |
GAS LAWS
|
Boyle's Law - Numerical Problems and Applications
Charles's Law - Introduction and Temperature Scales |
By the end of the
lesson, the learner
should be able to:
Solve numerical problems involving Boyle's law Convert between different pressure units Apply Boyle's law to real-life situations Calculate volumes and pressures using P₁V₁ = P₂V₂ State Charles's law Convert temperatures between Celsius and Kelvin scales Define absolute zero temperature Explain the concept of absolute temperature |
Worked examples: Demonstrate step-by-step problem solving. Supervised practice: Students solve problems involving pressure and volume calculations. Convert units (mmHg, atm, Pa). Discuss applications in tire inflation, aerosol cans. Assignment: Additional practice problems.
Teacher demonstration: Flask with colored water column experiment. Q/A: Observe volume changes with temperature. Exposition: Introduce Kelvin scale and absolute zero concept. Practice: Temperature conversions between °C and K. Discuss absolute zero and ideal gas concept. |
Scientific calculators, Worked example charts, Unit conversion tables
Round-bottomed flask, Narrow glass tube, Colored water, Rubber bung, Hot and cold water baths |
KLB Secondary Chemistry Form 3, Pages 4-5
KLB Secondary Chemistry Form 3, Pages 6-8 |
|
| 10 | 4 |
GAS LAWS
|
Charles's Law - Experimental Investigation and Mathematical Expression
|
By the end of the
lesson, the learner
should be able to:
Investigate relationship between volume and temperature Express Charles's law mathematically Plot volume vs temperature graphs Extrapolate graphs to find absolute zero |
Class experiment: Volume-temperature relationship using flask and capillary tube. Record data at different temperatures. Plot graphs: volume vs temperature (°C) and volume vs absolute temperature (K). Extrapolate graph to find absolute zero. Derive V₁/T₁ = V₂/T₂ equation.
|
Glass apparatus, Thermometers, Graph papers, Water baths at different temperatures
|
KLB Secondary Chemistry Form 3, Pages 8-10
|
|
| 10 | 5 |
GAS LAWS
|
Charles's Law - Experimental Investigation and Mathematical Expression
|
By the end of the
lesson, the learner
should be able to:
Investigate relationship between volume and temperature Express Charles's law mathematically Plot volume vs temperature graphs Extrapolate graphs to find absolute zero |
Class experiment: Volume-temperature relationship using flask and capillary tube. Record data at different temperatures. Plot graphs: volume vs temperature (°C) and volume vs absolute temperature (K). Extrapolate graph to find absolute zero. Derive V₁/T₁ = V₂/T₂ equation.
|
Glass apparatus, Thermometers, Graph papers, Water baths at different temperatures
|
KLB Secondary Chemistry Form 3, Pages 8-10
|
|
| 11 | 1 |
GAS LAWS
|
Charles's Law - Numerical Problems and Applications
|
By the end of the
lesson, the learner
should be able to:
Solve numerical problems using Charles's law Apply V₁/T₁ = V₂/T₂ in calculations Predict gas behavior with temperature changes Relate Charles's law to everyday phenomena |
Worked examples: Step-by-step problem solving with temperature conversions. Supervised practice: Calculate volumes at different temperatures. Discuss applications: hot air balloons, tire pressure changes, weather balloons. Assignment: Practice problems with real-life contexts.
|
Scientific calculators, Temperature conversion charts, Application examples
|
KLB Secondary Chemistry Form 3, Pages 10-12
|
|
| 11 | 2-3 |
GAS LAWS
|
Charles's Law - Numerical Problems and Applications
Combined Gas Law and Standard Conditions |
By the end of the
lesson, the learner
should be able to:
Solve numerical problems using Charles's law Apply V₁/T₁ = V₂/T₂ in calculations Predict gas behavior with temperature changes Relate Charles's law to everyday phenomena Derive the combined gas law equation Apply PV/T = constant in problem solving Define standard temperature and pressure (s.t.p) Define room temperature and pressure (r.t.p) |
Worked examples: Step-by-step problem solving with temperature conversions. Supervised practice: Calculate volumes at different temperatures. Discuss applications: hot air balloons, tire pressure changes, weather balloons. Assignment: Practice problems with real-life contexts.
Q/A: Combine Boyle's and Charles's laws. Teacher exposition: Derive P₁V₁/T₁ = P₂V₂/T₂. Define s.t.p (273K, 760mmHg) and r.t.p (298K, 760mmHg). Worked examples: Problems involving changes in all three variables. Supervised practice: Complex gas law calculations. |
Scientific calculators, Temperature conversion charts, Application examples
Scientific calculators, Combined law derivation charts, Standard conditions reference table |
KLB Secondary Chemistry Form 3, Pages 10-12
KLB Secondary Chemistry Form 3, Pages 12-14 |
|
| 11 | 4 |
GAS LAWS
|
Introduction to Diffusion - Experimental Investigation
|
By the end of the
lesson, the learner
should be able to:
Define diffusion process Investigate diffusion in liquids and gases Compare rates of diffusion in different media Explain diffusion using kinetic theory |
Class experiments: (a) KMnO₄ crystal in water - observe spreading over time. (b) Bromine vapor in gas jars - observe color distribution. (c) Ammonia gas in combustion tube with litmus paper. Record observations over time. Discuss particle movement and kinetic energy.
|
KMnO₄ crystals, Bromine liquid, Gas jars, Combustion tube, Litmus papers, Stopwatch
|
KLB Secondary Chemistry Form 3, Pages 14-16
|
|
| 11 | 5 |
GAS LAWS
|
Introduction to Diffusion - Experimental Investigation
|
By the end of the
lesson, the learner
should be able to:
Define diffusion process Investigate diffusion in liquids and gases Compare rates of diffusion in different media Explain diffusion using kinetic theory |
Class experiments: (a) KMnO₄ crystal in water - observe spreading over time. (b) Bromine vapor in gas jars - observe color distribution. (c) Ammonia gas in combustion tube with litmus paper. Record observations over time. Discuss particle movement and kinetic energy.
|
KMnO₄ crystals, Bromine liquid, Gas jars, Combustion tube, Litmus papers, Stopwatch
|
KLB Secondary Chemistry Form 3, Pages 14-16
|
|
| 12 | 1 |
GAS LAWS
|
Rates of Diffusion - Comparative Study
|
By the end of the
lesson, the learner
should be able to:
Compare diffusion rates of different gases Investigate factors affecting diffusion rates Measure relative distances covered by diffusing gases Calculate rates of diffusion using distance and time data |
Class experiment: Ammonia and HCl diffusion in glass tube. Insert cotton wool soaked in concentrated NH₃ and HCl at opposite ends. Time the formation of white NH₄Cl ring. Measure distances covered by each gas. Calculate rates: distance/time. Compare molecular masses of NH₃ and HCl.
|
Glass tube (25cm), Cotton wool, Concentrated NH₃ and HCl, Stopwatch, Ruler, Safety equipment
|
KLB Secondary Chemistry Form 3, Pages 16-18
|
|
| 12 | 2-3 |
GAS LAWS
|
Rates of Diffusion - Comparative Study
Graham's Law of Diffusion - Theory and Mathematical Expression |
By the end of the
lesson, the learner
should be able to:
Compare diffusion rates of different gases Investigate factors affecting diffusion rates Measure relative distances covered by diffusing gases Calculate rates of diffusion using distance and time data State Graham's law of diffusion Express Graham's law mathematically Relate diffusion rate to molecular mass and density Explain the inverse relationship between rate and √molecular mass |
Class experiment: Ammonia and HCl diffusion in glass tube. Insert cotton wool soaked in concentrated NH₃ and HCl at opposite ends. Time the formation of white NH₄Cl ring. Measure distances covered by each gas. Calculate rates: distance/time. Compare molecular masses of NH₃ and HCl.
Teacher exposition: Graham's law statement and mathematical derivation. Discussion: Rate ∝ 1/√density and Rate ∝ 1/√molecular mass. Derive comparative expressions for two gases. Explain relationship between density and molecular mass. Practice: Identify faster diffusing gas from molecular masses. |
Glass tube (25cm), Cotton wool, Concentrated NH₃ and HCl, Stopwatch, Ruler, Safety equipment
Graham's law charts, Molecular mass tables, Mathematical derivation displays |
KLB Secondary Chemistry Form 3, Pages 16-18
KLB Secondary Chemistry Form 3, Pages 18-20 |
|
| 12 | 4 |
GAS LAWS
|
Graham's Law - Numerical Applications and Problem Solving
|
By the end of the
lesson, the learner
should be able to:
Solve numerical problems using Graham's law Calculate relative rates of diffusion Determine molecular masses from diffusion data Compare diffusion times for equal volumes of gases |
Worked examples: Calculate relative diffusion rates using √(M₂/M₁). Problems involving time comparisons for equal volumes. Calculate unknown molecular masses from rate data. Supervised practice: Various Graham's law calculations. Real-life applications: gas separation, gas masks.
|
Scientific calculators, Worked example charts, Molecular mass reference tables
|
KLB Secondary Chemistry Form 3, Pages 20-22
|
|
| 12 | 5 |
GAS LAWS
|
Graham's Law - Numerical Applications and Problem Solving
|
By the end of the
lesson, the learner
should be able to:
Solve numerical problems using Graham's law Calculate relative rates of diffusion Determine molecular masses from diffusion data Compare diffusion times for equal volumes of gases |
Worked examples: Calculate relative diffusion rates using √(M₂/M₁). Problems involving time comparisons for equal volumes. Calculate unknown molecular masses from rate data. Supervised practice: Various Graham's law calculations. Real-life applications: gas separation, gas masks.
|
Scientific calculators, Worked example charts, Molecular mass reference tables
|
KLB Secondary Chemistry Form 3, Pages 20-22
|
|
Your Name Comes Here