If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 3 | 1-2 |
GAS LAWS
|
Boyle's Law - Introduction and Experimental Investigation
Boyle's Law - Mathematical Expression and Graphical Representation Boyle's Law - Numerical Problems and Applications Charles's Law - Introduction and Temperature Scales |
By the end of the
lesson, the learner
should be able to:
State Boyle's law Explain Boyle's law using kinetic theory of matter Investigate the relationship between pressure and volume of a fixed mass of gas Plot graphs to illustrate Boyle's law Express Boyle's law mathematically Apply the equation PV = constant Plot and interpret pressure vs volume graphs Plot pressure vs 1/volume graphs |
Teacher demonstration: Use bicycle pump to show volume-pressure relationship. Students observe force needed to compress gas. Q/A: Review kinetic theory. Class experiment: Investigate pressure-volume relationship using syringes. Record observations in table format. Discuss observations using kinetic theory.
Q/A: Recall previous lesson observations. Teacher exposition: Derive P₁V₁ = P₂V₂ equation from experimental data. Students plot graphs of pressure vs volume and pressure vs 1/volume. Analyze graph shapes and interpret mathematical relationship. |
Bicycle pump, Syringes, Gas jars, Chart showing volume-pressure relationship
Graph papers, Scientific calculators, Chart showing mathematical expressions Scientific calculators, Worked example charts, Unit conversion tables Round-bottomed flask, Narrow glass tube, Colored water, Rubber bung, Hot and cold water baths |
KLB Secondary Chemistry Form 3, Pages 1-3
KLB Secondary Chemistry Form 3, Pages 3-4 |
|
| 3 | 3 |
GAS LAWS
|
Charles's Law - Experimental Investigation and Mathematical Expression
Charles's Law - Numerical Problems and Applications Combined Gas Law and Standard Conditions |
By the end of the
lesson, the learner
should be able to:
Investigate relationship between volume and temperature Express Charles's law mathematically Plot volume vs temperature graphs Extrapolate graphs to find absolute zero |
Class experiment: Volume-temperature relationship using flask and capillary tube. Record data at different temperatures. Plot graphs: volume vs temperature (°C) and volume vs absolute temperature (K). Extrapolate graph to find absolute zero. Derive V₁/T₁ = V₂/T₂ equation.
|
Glass apparatus, Thermometers, Graph papers, Water baths at different temperatures
Scientific calculators, Temperature conversion charts, Application examples Scientific calculators, Combined law derivation charts, Standard conditions reference table |
KLB Secondary Chemistry Form 3, Pages 8-10
|
|
| 3 | 4 |
GAS LAWS
|
Introduction to Diffusion - Experimental Investigation
Rates of Diffusion - Comparative Study |
By the end of the
lesson, the learner
should be able to:
Define diffusion process Investigate diffusion in liquids and gases Compare rates of diffusion in different media Explain diffusion using kinetic theory |
Class experiments: (a) KMnO₄ crystal in water - observe spreading over time. (b) Bromine vapor in gas jars - observe color distribution. (c) Ammonia gas in combustion tube with litmus paper. Record observations over time. Discuss particle movement and kinetic energy.
|
KMnO₄ crystals, Bromine liquid, Gas jars, Combustion tube, Litmus papers, Stopwatch
Glass tube (25cm), Cotton wool, Concentrated NH₃ and HCl, Stopwatch, Ruler, Safety equipment |
KLB Secondary Chemistry Form 3, Pages 14-16
|
|
| 3 | 5 |
GAS LAWS
|
Graham's Law of Diffusion - Theory and Mathematical Expression
Graham's Law - Numerical Applications and Problem Solving |
By the end of the
lesson, the learner
should be able to:
State Graham's law of diffusion Express Graham's law mathematically Relate diffusion rate to molecular mass and density Explain the inverse relationship between rate and √molecular mass |
Teacher exposition: Graham's law statement and mathematical derivation. Discussion: Rate ∝ 1/√density and Rate ∝ 1/√molecular mass. Derive comparative expressions for two gases. Explain relationship between density and molecular mass. Practice: Identify faster diffusing gas from molecular masses.
|
Graham's law charts, Molecular mass tables, Mathematical derivation displays
Scientific calculators, Worked example charts, Molecular mass reference tables |
KLB Secondary Chemistry Form 3, Pages 18-20
|
|
| 4 | 1-2 |
THE MOLE
|
Relative Mass - Introduction and Experimental Investigation
Avogadro's Constant and the Mole Concept Interconversion of Mass and Moles for Elements |
By the end of the
lesson, the learner
should be able to:
Define relative mass using practical examples Compare masses of different objects using a reference standard Explain the concept of relative atomic mass Identify carbon-12 as the reference standard Define Avogadro's constant and its value Explain the concept of a mole as a counting unit Relate molar mass to relative atomic mass Calculate number of atoms in given masses of elements |
Experiment: Weighing different sized nails using beam balance. Use smallest nail as reference standard. Q/A: Discuss everyday examples of relative measurements. Teacher exposition: Introduction of carbon-12 scale and IUPAC recommendations. Calculate relative masses from experimental data.
Experiment: Determine number of nails with mass equal to relative mass in grams. Teacher exposition: Introduce Avogadro's constant (6.023 × 10²³). Discussion: Mole as counting unit like dozen. Worked examples: Calculate moles from mass and vice versa. |
Different sized nails ( 5-15cm), Beam balance, Fruits of different masses, Reference charts
Beam balance, Various sized nails, Scientific calculators, Avogadro's constant charts Scientific calculators, Periodic table, Worked example charts, Formula triangles |
KLB Secondary Chemistry Form 3, Pages 25-27
KLB Secondary Chemistry Form 3, Pages 27-30 |
|
| 4 | 3 |
THE MOLE
|
Molecules and Moles - Diatomic Elements
|
By the end of the
lesson, the learner
should be able to:
Distinguish between atoms and molecules Define relative molecular mass Calculate moles of molecules from given mass Determine number of atoms in molecular compounds |
Discussion: Elements existing as molecules (O₂, H₂, N₂, Cl₂). Teacher exposition: Difference between atomic and molecular mass. Worked examples: Calculate moles of molecular elements. Problem solving: Number of atoms in molecular compounds.
|
Molecular models, Charts showing diatomic elements, Scientific calculators
|
KLB Secondary Chemistry Form 3, Pages 29-30
|
|
| 4 | 4 |
THE MOLE
|
Empirical Formula - Experimental Determination
Empirical Formula - Reduction Method |
By the end of the
lesson, the learner
should be able to:
Define empirical formula Determine empirical formula from experimental data Calculate mole ratios from mass data Express results as simplest whole number ratios |
Experiment: Burning magnesium in air to form magnesium oxide. Measure masses before and after reaction. Calculate moles of Mg and O from mass data. Determine mole ratio and empirical formula. Safety precautions during heating.
|
Crucible and lid, Magnesium ribbon, Bunsen burner, Beam balance, Tongs, Safety equipment
Combustion tube, Porcelain boat, Copper(II) oxide, Laboratory gas, Beam balance, Bunsen burner |
KLB Secondary Chemistry Form 3, Pages 32-35
|
|
| 4 | 5 |
THE MOLE
|
Empirical Formula - Percentage Composition Method
|
By the end of the
lesson, the learner
should be able to:
Calculate empirical formula from percentage composition Convert percentages to moles Determine simplest whole number ratios Apply method to various compounds |
Worked examples: Calculate empirical formula from percentage data. Method: percentage → mass → moles → ratio. Practice problems: Various compounds with different compositions. Discussion: When to multiply ratios to get whole numbers.
|
Scientific calculators, Percentage composition charts, Worked example displays
|
KLB Secondary Chemistry Form 3, Pages 37-38
|
|
| 5 | 1-2 |
THE MOLE
|
Molecular Formula - Determination from Empirical Formula
Molecular Formula - Combustion Analysis Concentration and Molarity of Solutions |
By the end of the
lesson, the learner
should be able to:
Define molecular formula Relate molecular formula to empirical formula Calculate molecular formula using molecular mass Apply the relationship (empirical formula)ₙ = molecular formula Define concentration and molarity of solutions Calculate molarity from mass and volume data Convert between different concentration units Apply molarity calculations to various solutions |
Teacher exposition: Difference between empirical and molecular formulas. Worked examples: Calculate molecular formula from empirical formula and molecular mass. Formula: n = molecular mass/empirical formula mass. Practice problems with various organic compounds.
Teacher exposition: Definition of molarity (moles/dm³). Worked examples: Calculate molarity from mass of solute and volume. Convert between g/dm³ and mol/dm³. Practice problems: Various salt solutions and their molarities. |
Scientific calculators, Molecular mass charts, Worked example displays
Scientific calculators, Combustion analysis charts, Molecular models of hydrocarbons Scientific calculators, Molarity charts, Various salt samples for demonstration |
KLB Secondary Chemistry Form 3, Pages 38-40
KLB Secondary Chemistry Form 3, Pages 41-43 |
|
| 5 | 3 |
THE MOLE
|
Preparation of Molar Solutions
Dilution of Solutions |
By the end of the
lesson, the learner
should be able to:
Describe procedure for preparing molar solutions Use volumetric flasks correctly Calculate masses needed for specific molarities Prepare standard solutions accurately |
Experiment: Prepare 1M, 0.5M, and 0.25M NaOH solutions in different volumes. Use volumetric flasks of 1000cm³, 500cm³, and 250cm³. Calculate required masses. Demonstrate proper dissolution and dilution techniques.
|
Volumetric flasks (250, 500, 1000cm³), Sodium hydroxide pellets, Beam balance, Wash bottles, Beakers
Volumetric flasks, Hydrochloric acid (2M), Measuring cylinders, Pipettes, Safety equipment |
KLB Secondary Chemistry Form 3, Pages 43-46
|
|
| 5 | 4 |
THE MOLE
|
Stoichiometry - Experimental Determination of Equations
|
By the end of the
lesson, the learner
should be able to:
Determine chemical equations from experimental data Calculate mole ratios from mass measurements Write balanced chemical equations Apply stoichiometry to displacement reactions |
Experiment: Iron displacement of copper from CuSO₄ solution. Measure masses of iron used and copper displaced. Calculate mole ratios. Derive balanced chemical equation. Discuss spectator ions.
|
Iron filings, Copper(II) sulphate solution, Beam balance, Beakers, Filter equipment
|
KLB Secondary Chemistry Form 3, Pages 50-53
|
|
| 5 | 5 |
THE MOLE
|
Stoichiometry - Precipitation Reactions
Stoichiometry - Gas Evolution Reactions |
By the end of the
lesson, the learner
should be able to:
Investigate stoichiometry of precipitation reactions Determine mole ratios from volume measurements Write ionic equations for precipitation Analyze limiting and excess reagents |
Experiment: Pb(NO₃)₂ + KI precipitation reaction. Use different volumes to determine stoichiometry. Measure precipitate heights. Plot graphs to find reaction ratios. Identify limiting reagents.
|
Test tubes, Lead(II) nitrate solution, Potassium iodide solution, Burettes, Ethanol, Rulers
Conical flask, Thistle funnel, Plastic bags, Rubber bands, Sodium carbonate, HCl solution |
KLB Secondary Chemistry Form 3, Pages 53-56
|
|
| 6 | 1-2 |
THE MOLE
|
Volumetric Analysis - Introduction and Apparatus
Titration - Acid-Base Neutralization Titration - Diprotic Acids |
By the end of the
lesson, the learner
should be able to:
Define volumetric analysis and titration Identify and use titration apparatus correctly Explain functions of pipettes and burettes Demonstrate proper reading techniques Perform acid-base titrations accurately Use indicators to determine end points Record titration data properly Calculate average titres from multiple readings |
Practical session: Familiarization with pipettes and burettes. Practice filling and reading burettes accurately. Learn proper meniscus reading. Use pipette fillers safely. Rinse apparatus with appropriate solutions.
Experiment: Titrate 25cm³ of 0.1M NaOH with 0.1M HCl using phenolphthalein. Repeat three times for consistency. Record data in tabular form. Calculate average titre. Discuss accuracy and precision. |
Pipettes (10, 20, 25cm³), Burettes (50cm³), Pipette fillers, Conical flasks, Various solutions
Burettes, Pipettes, 0.1M NaOH, 0.1M HCl, Phenolphthalein indicator, Conical flasks Burettes, Pipettes, 0.1M H₂SO₄, 0.1M NaOH, Phenolphthalein, Basicity reference chart |
KLB Secondary Chemistry Form 3, Pages 58-59
KLB Secondary Chemistry Form 3, Pages 59-62 |
|
| 6 | 3 |
THE MOLE
|
Standardization of Solutions
|
By the end of the
lesson, the learner
should be able to:
Define standardization process Standardize HCl using Na₂CO₃ as primary standard Calculate accurate concentrations from titration data Understand importance of primary standards |
Experiment: Prepare approximately 0.1M HCl and standardize using accurately weighed Na₂CO₃. Use methyl orange indicator. Calculate exact molarity from titration results. Discuss primary standard requirements.
|
Anhydrous Na₂CO₃, Approximately 0.1M HCl, Methyl orange, Volumetric flasks, Analytical balance
|
KLB Secondary Chemistry Form 3, Pages 65-67
|
|
| 6 | 4 |
THE MOLE
|
Back Titration Method
Redox Titrations - Principles |
By the end of the
lesson, the learner
should be able to:
Understand principle of back titration Apply back titration to determine composition Calculate concentrations using back titration data Determine atomic masses from back titration |
Experiment: Determine atomic mass of divalent metal in MCO₃. Add excess HCl to carbonate, then titrate excess with NaOH. Calculate moles of acid that reacted with carbonate. Determine metal's atomic mass.
|
Metal carbonate sample, 0.5M HCl, 0M NaOH, Phenolphthalein, Conical flasks
Potassium manganate(VII), Potassium dichromate(VI), Iron(II) solutions, Color change charts |
KLB Secondary Chemistry Form 3, Pages 67-70
|
|
| 6 | 5 |
THE MOLE
|
Redox Titrations - KMnO₄ Standardization
|
By the end of the
lesson, the learner
should be able to:
Standardize KMnO₄ solution using iron(II) salt Calculate molarity from redox titration data Apply 1:5 mole ratio in calculations Prepare solutions for redox titrations |
Experiment: Standardize KMnO₄ using FeSO₄(NH₄)₂SO₄·6H₂O. Dissolve iron salt in boiled, cooled water. Titrate with KMnO₄ until persistent pink color. Calculate molarity using 5:1 mole ratio.
|
Iron(II) ammonium sulfate, KMnO₄ solution, Dilute H₂SO₄, Pipettes, Burettes
|
KLB Secondary Chemistry Form 3, Pages 70-72
|
|
| 7 | 1-2 |
THE MOLE
|
Water of Crystallization Determination
Atomicity and Molar Gas Volume Combining Volumes of Gases - Experimental Investigation |
By the end of the
lesson, the learner
should be able to:
Determine water of crystallization in hydrated salts Use redox titration to find formula of hydrated salt Calculate value of 'n' in crystallization formulas Apply analytical data to determine complete formulas Investigate Gay-Lussac's law experimentally Measure combining volumes of reacting gases Determine simple whole number ratios Write equations from volume relationships |
Experiment: Determine 'n' in FeSO₄(NH₄)₂SO₄·nH₂O. Dissolve known mass in acid, titrate with standardized KMnO₄. Calculate moles of iron(II), hence complete formula. Compare theoretical and experimental values.
Experiment: React NH₃ and HCl gases in measured volumes. Observe formation of NH₄Cl solid. Measure residual gas volumes. Determine combining ratios. Apply to other gas reactions. |
Hydrated iron(II) salt, Standardized KMnO₄, Dilute H₂SO₄, Analytical balance
Gas syringes (50cm³), Various gases, Analytical balance, Gas supply apparatus Gas syringes, Dry NH₃ generator, Dry HCl generator, Glass connecting tubes, Clips |
KLB Secondary Chemistry Form 3, Pages 72-73
KLB Secondary Chemistry Form 3, Pages 75-77 |
|
| 7 | 3 |
THE MOLE
ORGANIC CHEMISTRY I |
Gas Laws and Chemical Equations
Introduction to Organic Chemistry and Hydrocarbons |
By the end of the
lesson, the learner
should be able to:
Apply Avogadro's law to chemical reactions Use volume ratios to determine chemical equations Calculate product volumes from reactant volumes Solve problems involving gas stoichiometry |
Worked examples: Use Gay-Lussac's law to determine equations. Calculate volumes of products from given reactant volumes. Apply Avogadro's law to find number of molecules. Practice: Complex gas stoichiometry problems.
|
Scientific calculators, Gas law charts, Volume ratio examples
Carbon models, Hydrocarbon structure charts, Molecular model kits |
KLB Secondary Chemistry Form 3, Pages 77-79
|
|
| 7 | 4 |
ORGANIC CHEMISTRY I
|
Sources of Alkanes - Natural Gas, Biogas, and Crude Oil
|
By the end of the
lesson, the learner
should be able to:
Identify natural sources of alkanes Describe composition of natural gas and biogas Explain crude oil as major source of alkanes Describe biogas digester and its operation |
Discussion: Natural gas composition (80% methane). Explanation: Biogas formation from organic waste decomposition. Teacher demonstration: Biogas digester model/diagram. Q/A: Environmental benefits of biogas production.
|
Biogas digester model/diagram, Natural gas composition charts, Organic waste samples
|
KLB Secondary Chemistry Form 3, Pages 86-87
|
|
| 7 | 5 |
ORGANIC CHEMISTRY I
|
Fractional Distillation of Crude Oil
Cracking of Alkanes - Thermal and Catalytic Methods |
By the end of the
lesson, the learner
should be able to:
Explain fractional distillation process Perform fractional distillation of crude oil Identify different fractions and their uses Relate boiling points to molecular size |
Experiment: Fractional distillation of crude oil using improvised column. Collect fractions at different temperatures (120°C intervals up to 350°C). Test fractions for appearance, flammability, and viscosity. Record observations and relate to molecular size.
|
Crude oil sample, Boiling tubes, High-temperature thermometer, Sand/porcelain chips, Bunsen burner, Test tubes
Cracking process diagrams, Chemical equation charts, Catalyst samples for demonstration |
KLB Secondary Chemistry Form 3, Pages 87-89
|
|
| 8 | 1-2 |
ORGANIC CHEMISTRY I
|
Alkane Series and Homologous Series Concept
Nomenclature of Alkanes - Straight Chain and Branched Isomerism in Alkanes - Structural Isomers |
By the end of the
lesson, the learner
should be able to:
Define homologous series using alkanes Write molecular formulas for first 10 alkanes Identify characteristics of homologous series Apply general formula CₙH₂ₙ₊₂ for alkanes Name straight-chain alkanes using IUPAC rules Identify parent chains in branched alkanes Name branched alkanes with substituent groups Apply systematic naming rules correctly |
Teacher exposition: Homologous series definition and characteristics. Table completion: Names, molecular formulas, and structures of first 10 alkanes. Discussion: General formula application. Pattern recognition: Gradual change in physical properties.
Teacher demonstration: Step-by-step naming of branched alkanes. Rules application: Longest chain identification, numbering from nearest branch, substituent naming. Practice exercises: Various branched alkane structures. Group work: Name complex branched alkanes. |
Alkane series chart, Molecular formula worksheets, Periodic table
Structural formula charts, IUPAC naming rules poster, Molecular model kits Molecular model kits, Isomerism charts, Structural formula worksheets |
KLB Secondary Chemistry Form 3, Pages 90-92
|
|
| 8 | 3 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Methane
|
By the end of the
lesson, the learner
should be able to:
Describe laboratory preparation of methane Perform methane preparation experiment safely Test physical and chemical properties of methane Write equation for methane preparation |
Experiment: Heat mixture of sodium ethanoate and soda lime. Collect methane gas over water. Tests: Color, smell, combustion, reaction with bromine in dark. Record observations in table format. Safety precautions during gas collection.
|
Sodium ethanoate, Soda lime, Round-bottomed flask, Gas collection apparatus, Bromine water, Wooden splints
|
KLB Secondary Chemistry Form 3, Pages 94-96
|
|
| 8 | 4 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethane
Physical Properties of Alkanes |
By the end of the
lesson, the learner
should be able to:
Prepare ethane using sodium propanoate and soda lime Compare preparation methods of methane and ethane Test properties of ethane gas Write general equation for alkane preparation |
Experiment: Prepare ethane from sodium propanoate and soda lime. Compare with methane preparation method. Carry out similar tests as for methane. Discussion: General pattern for alkane preparation from sodium alkanoates.
|
Sodium propanoate, Soda lime, Gas collection apparatus, Testing materials
Physical properties data tables, Graph paper, Calculators, Solubility demonstration materials |
KLB Secondary Chemistry Form 3, Pages 94-96
|
|
| 8 | 5 |
ORGANIC CHEMISTRY I
|
Chemical Properties of Alkanes - Combustion and Substitution
|
By the end of the
lesson, the learner
should be able to:
Write equations for complete and incomplete combustion Explain substitution reactions with halogens Describe conditions for halogenation reactions Name halogenated alkane products |
Worked examples: Combustion equations for various alkanes. Teacher demonstration: Methane + bromine in sunlight (or simulation). Discussion: Free radical mechanism in substitution. Practice: Write equations for chlorination of methane.
|
Molecular models, Halogenation reaction charts, Chemical equation worksheets
|
KLB Secondary Chemistry Form 3, Pages 97-98
|
|
| 9 | 1 |
ORGANIC CHEMISTRY I
|
Uses of Alkanes in Industry and Daily Life
Introduction to Alkenes and Functional Groups |
By the end of the
lesson, the learner
should be able to:
List major uses of different alkanes Explain industrial applications of alkanes Describe environmental considerations Evaluate economic importance of alkanes |
Discussion: Uses of gaseous alkanes as fuels. Teacher exposition: Industrial applications - carbon black, methanol production, hydrogen source. Q/A: Environmental impact and cleaner fuel initiatives. Assignment: Research local uses of alkane products.
|
Industrial application charts, Product samples, Environmental impact materials
Alkene series charts, Molecular models showing double bonds, Functional group posters |
KLB Secondary Chemistry Form 3, Pages 98-100
|
|
| 9-10 |
MID-TERM |
|||||||
| 10 | 3 |
ORGANIC CHEMISTRY I
|
Nomenclature of Alkenes
|
By the end of the
lesson, the learner
should be able to:
Apply IUPAC rules for naming alkenes Number carbon chains to give lowest numbers to double bonds Name branched alkenes with substituents Distinguish position isomers of alkenes |
Teacher demonstration: Step-by-step naming of alkenes. Rules application: Longest chain with double bond, numbering from end nearest double bond. Practice exercises: Name various alkene structures. Group work: Complex branched alkenes with substituents.
|
IUPAC naming charts for alkenes, Structural formula worksheets, Molecular model kits
|
KLB Secondary Chemistry Form 3, Pages 101-102
|
|
| 10 | 4 |
ORGANIC CHEMISTRY I
|
Isomerism in Alkenes - Branching and Positional
Laboratory Preparation of Ethene |
By the end of the
lesson, the learner
should be able to:
Draw structural isomers of alkenes Distinguish between branching and positional isomerism Identify geometric isomers in alkenes Predict isomer numbers for given molecular formulas |
Practical exercise: Draw all isomers of butene and pentene. Teacher exposition: Branching vs positional isomerism in alkenes. Model building: Use molecular models for isomer visualization. Discussion: Geometric isomerism introduction (basic level).
|
Molecular model kits, Isomerism worksheets, Geometric isomer models
Ethanol, Concentrated H₂SO₄, Round-bottomed flask, Sand bath, Gas collection apparatus, Testing solutions |
KLB Secondary Chemistry Form 3, Pages 102
|
|
| 10 | 5 |
ORGANIC CHEMISTRY I
|
Alternative Preparation of Ethene and Physical Properties
|
By the end of the
lesson, the learner
should be able to:
Describe catalytic dehydration using aluminum oxide Compare different preparation methods List physical properties of ethene Explain trends in alkene physical properties |
Demonstration: Alternative method using Al₂O₃ catalyst. Comparison: Acid vs catalytic dehydration methods. Data analysis: Physical properties of alkenes table. Discussion: Property trends with increasing molecular size.
|
Aluminum oxide catalyst, Glass wool, Alternative apparatus setup, Physical properties charts
|
KLB Secondary Chemistry Form 3, Pages 102-104
|
|
| 11 | 1-2 |
ORGANIC CHEMISTRY I
|
Chemical Properties of Alkenes - Addition Reactions
Oxidation Reactions of Alkenes and Polymerization Tests for Alkenes and Uses |
By the end of the
lesson, the learner
should be able to:
Explain addition reactions due to C=C double bond Write equations for halogenation of alkenes Describe hydrogenation and hydrohalogenation Explain addition mechanism Perform chemical tests to identify alkenes Use bromine water and KMnO₄ as test reagents List industrial and domestic uses of alkenes Explain importance in plastic manufacture |
Teacher exposition: Addition reactions definition and mechanism. Worked examples: Ethene + Cl₂, Br₂, HBr, H₂. Discussion: Markovnikov's rule for unsymmetrical addition. Practice: Various addition reaction equations.
Practical session: Test known alkenes with bromine water and acidified KMnO₄. Observe rapid decolorization compared to alkanes. Discussion: Uses in plastics, ethanol production, fruit ripening, detergents. Assignment: Research alkene applications. |
Addition reaction charts, Mechanism diagrams, Chemical equation worksheets
Oxidizing agents for demonstration, Polymer samples, Polymerization charts, Monomer-polymer models Test alkenes, Bromine water, Acidified KMnO₄, Plastic samples, Uses reference charts |
KLB Secondary Chemistry Form 3, Pages 105-107
KLB Secondary Chemistry Form 3, Pages 108-109 |
|
| 11 | 3 |
ORGANIC CHEMISTRY I
|
Introduction to Alkynes and Triple Bond
Nomenclature and Isomerism in Alkynes |
By the end of the
lesson, the learner
should be able to:
Define alkynes and triple bond structure Write general formula for alkynes (CₙH₂ₙ₋₂) Identify first members of alkyne series Compare degree of unsaturation in hydrocarbons |
Teacher exposition: Alkynes definition and C≡C triple bond. Table study: First 6 members of alkyne series with structures. Discussion: Degrees of unsaturation - alkanes vs alkenes vs alkynes. Model demonstration: Triple bond representation.
|
Alkyne series charts, Triple bond molecular models, Unsaturation comparison charts
IUPAC naming rules for alkynes, Structural formula worksheets, Molecular model kits |
KLB Secondary Chemistry Form 3, Pages 109-110
|
|
| 11 | 4 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethyne
|
By the end of the
lesson, the learner
should be able to:
Prepare ethyne from calcium carbide and water Set up gas collection apparatus safely Test physical and chemical properties of ethyne Write equation for ethyne preparation |
Experiment: Calcium carbide + water reaction. Use sand layer for heat absorption. Collect ethyne over water. Tests: Color, smell, combustion, bromine water, acidified KMnO₄. Safety: Dry apparatus, controlled water addition.
|
Calcium carbide, Sand, Flat-bottomed flask, Dropping funnel, Gas collection apparatus, Testing solutions
|
KLB Secondary Chemistry Form 3, Pages 111-112
|
|
| 11 | 5 |
ORGANIC CHEMISTRY I
|
Physical and Chemical Properties of Alkynes
Addition Reactions of Alkynes and Chemical Tests |
By the end of the
lesson, the learner
should be able to:
Describe physical properties of alkynes Compare alkyne properties with alkenes and alkanes Write combustion equations for alkynes Explain addition reactions of alkynes |
Data analysis: Physical properties of alkynes table. Comparison: Alkynes vs alkenes vs alkanes properties. Worked examples: Combustion reactions of ethyne. Teacher exposition: Two-step addition reactions due to triple bond.
|
Physical properties charts, Comparison tables, Combustion equation examples
Addition reaction charts, Chemical equation worksheets, Test solutions, Stopwatch for rate comparison |
KLB Secondary Chemistry Form 3, Pages 112-113
|
|
| 12 |
EXAMS |
|||||||
| 13 | 1 |
ORGANIC CHEMISTRY I
|
Uses of Alkynes and Industrial Applications
|
By the end of the
lesson, the learner
should be able to:
List industrial uses of alkynes Explain oxy-acetylene welding applications Describe use in synthetic fiber production Evaluate importance as chemical starting materials |
Discussion: Industrial applications of alkynes in adhesives, plastics, synthetic fibers. Teacher demonstration: Oxy-acetylene flame principles (or video). Q/A: Starting materials for chemical synthesis. Assignment: Research local industrial uses.
|
Industrial application charts, Welding equipment demonstration/video, Synthetic fiber samples
|
KLB Secondary Chemistry Form 3, Pages 115-116
|
|
Your Name Comes Here