If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 1 |
General revision of physics pp1 and pp2 done as end of year exams 2025 |
|||||||
| 2 | 1 |
Uniform Circular Motion
|
Introduction and Angular Displacement
|
By the end of the
lesson, the learner
should be able to:
Define uniform circular motion and give examples; Define angular displacement and its unit (radian); Convert between degrees and radians; Derive the relationship s = rθ; Solve Example 1 from textbook |
Q/A on linear motion concepts; Introduction to circular motion using real-life examples (merry-go-round, wheels, planets); Definition and demonstration of angular displacement; Mathematical relationship between arc length, radius and angle; Practical measurement of angles in radians; Solution of Example 1
|
Merry-go-round model or pictures; String and objects for circular motion; Protractors; Calculators; Charts showing degree-radian conversion; Measuring wheels
|
KLB Secondary Physics Form 4, Pages 37-39
|
|
| 2 | 2-3 |
Uniform Circular Motion
|
Angular Velocity and Linear Velocity
|
By the end of the
lesson, the learner
should be able to:
Define angular velocity (ω) and its units; Derive the relationship v = rω; Calculate period (T) and frequency (f) of circular motion; Solve Examples 2(a) and 2(b) from textbook; Relate linear and angular quantities |
Review of angular displacement through Q/A; Introduction to angular velocity concept; Mathematical derivation of v = rω relationship; Exploration of period and frequency relationships; Step-by-step solution of Examples 2(a) and 2(b); Practical demonstration using rotating objects; Group calculations involving different circular motions
|
Stopwatch; Rotating objects (turntables, wheels); String and masses; Calculators; Formula charts; Examples from textbook; Measuring equipment
|
KLB Secondary Physics Form 4, Pages 38-40
|
|
| 2 | 4 |
Uniform Circular Motion
|
Centripetal Acceleration
|
By the end of the
lesson, the learner
should be able to:
Explain why circular motion involves acceleration despite constant speed; Derive centripetal acceleration formula a = v²/r = rω²; Understand direction of centripetal acceleration; Solve Example 3 from textbook; Apply acceleration concepts to circular motion problems |
Q/A review of velocity and acceleration concepts; Explanation of acceleration in circular motion using vector analysis; Mathematical derivation of centripetal acceleration; Discussion of acceleration direction (toward center); Step-by-step solution of Example 3; Practical demonstration of centripetal acceleration effects
|
Vector diagrams; Rotating objects; Calculators; Charts showing acceleration derivation; Example 3 materials; Demonstration of circular motion with varying speeds
|
KLB Secondary Physics Form 4, Pages 40-42
|
|
| 2 | 5 |
Uniform Circular Motion
|
Centripetal Force and Factors Affecting It
|
By the end of the
lesson, the learner
should be able to:
Explain the need for centripetal force in circular motion; State factors affecting centripetal force (mass, speed, radius); Derive centripetal force formula F = mv²/r = mrω²; Perform Experiment 2.1 investigating F vs ω²; Solve Example 4 from textbook |
Review of Newton's laws and centripetal acceleration; Introduction to centripetal force concept; Experimental investigation of factors affecting centripetal force; Performance of Experiment 2.1 - relationship between F and ω²; Data collection and analysis; Solution of Example 4; Discussion of practical implications
|
Metal pegs; Turntable and motor; Variable resistor; Dry cell; Metal ball and string; Spring balance; Clock; Graph paper; Calculators
|
KLB Secondary Physics Form 4, Pages 42-47
|
|
| 3 | 1 |
Uniform Circular Motion
|
Experimental Investigation of Centripetal Force
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 2.2 investigating speed vs radius relationship; Plot graphs of F vs ω² and v² vs r; Analyze experimental results and draw conclusions; Understand the relationship F ∝ mv²/r; Apply experimental findings to solve problems |
Q/A on previous experiment results; Setup and performance of Experiment 2.2 - variation of speed with radius; Data collection for different radii; Graph plotting and analysis; Verification of theoretical relationships; Group analysis of experimental errors and improvements; Application of results to problem solving
|
Same apparatus as Experiment 2.1; Graph paper; Additional measuring equipment; Data recording tables; Calculators; Analysis worksheets
|
KLB Secondary Physics Form 4, Pages 44-47
|
|
| 3 | 2-3 |
Uniform Circular Motion
|
Case Examples - Cars and Banking
|
By the end of the
lesson, the learner
should be able to:
Explain circular motion of cars on level roads; Understand role of friction in providing centripetal force; Describe banking of roads and its advantages; Derive critical speed for banked tracks; Explain aircraft banking principles |
Review of centripetal force concepts; Analysis of car motion on circular bends; Discussion of friction as centripetal force; Introduction to banked roads and critical speed; Mathematical analysis of banking angles; Explanation of aircraft banking mechanisms; Problem-solving involving banking situations
|
Model cars and tracks; Inclined plane demonstrations; Charts showing banking principles; Calculators; Friction demonstration materials; Pictures of banked roads and aircraft
|
KLB Secondary Physics Form 4, Pages 47-50
|
|
| 3 | 4 |
Uniform Circular Motion
|
Case Examples - Cyclists and Conical Pendulum
|
By the end of the
lesson, the learner
should be able to:
Analyze forces on cyclists moving in circular tracks; Explain cyclist leaning and conditions for no skidding; Describe conical pendulum motion; Derive equations for conical pendulum; Solve Example 5 from textbook |
Q/A on banking concepts; Analysis of cyclist motion on circular tracks; Force analysis and conditions for stability; Introduction to conical pendulum; Mathematical analysis of pendulum motion; Step-by-step solution of Example 5; Practical demonstration of conical pendulum
|
Model cyclists; Pendulum apparatus; String and masses; Force diagrams; Calculators; Example 5 materials; Protractors for angle measurement
|
KLB Secondary Physics Form 4, Pages 50-52
|
|
| 3 | 5 |
Uniform Circular Motion
|
Motion in Vertical Circle
|
By the end of the
lesson, the learner
should be able to:
Analyze forces in vertical circular motion; Understand variation of tension at different positions; Derive expressions for tension at top and bottom positions; Calculate minimum speed for vertical circular motion; Apply concepts to practical examples (bucket of water, loop-the-loop) |
Review of circular motion in horizontal plane; Introduction to vertical circular motion; Force analysis at different positions in vertical circle; Mathematical derivation of tension variations; Discussion of minimum speed requirements; Practical examples and safety considerations; Problem-solving involving vertical motion
|
String and masses for vertical motion; Bucket and water (demonstration); Model loop-the-loop track; Force analysis charts; Safety equipment; Calculators
|
KLB Secondary Physics Form 4, Pages 52-54
|
|
| 4 | 1 |
Uniform Circular Motion
|
Applications - Centrifuges and Satellites
|
By the end of the
lesson, the learner
should be able to:
Explain working principles of centrifuges; Describe separation of particles using centripetal force; Understand satellite motion and gravitational force; Apply Newton's law of gravitation to satellite orbits; Explain parking orbits and their applications |
Q/A on centripetal force applications; Detailed study of centrifuge operation; Analysis of particle separation mechanisms; Introduction to satellite motion; Application of universal gravitation law; Discussion of geostationary satellites; Analysis of satellite velocities and orbital periods
|
Centrifuge model or pictures; Separation demonstration materials; Satellite orbit charts; Calculators; Newton's gravitation materials; Model solar system
|
KLB Secondary Physics Form 4, Pages 54-55
|
|
| 4 | 2 |
Floating and Sinking
|
Introduction and Cause of Upthrust
|
By the end of the
lesson, the learner
should be able to:
Explain why objects feel lighter in fluids; Define upthrust and identify its effects; Perform Experiment 3.1 investigating upthrust and weight of fluid displaced; Derive mathematical expression for upthrust using pressure concepts; Verify Archimedes' principle experimentally |
Q/A on pressure in liquids; Introduction using steel ferry floating on water; Performance of Experiment 3.1 - relationship between upthrust and weight of displaced fluid; Mathematical derivation of upthrust U = ρVg; Analysis of experimental results; Discussion of pressure differences causing upthrust
|
Spring balance; Objects (stones); String; Eureka can; Beaker; Water; Measuring cylinder; Beam balance; Dense objects; Charts showing pressure variation
|
KLB Secondary Physics Form 4, Pages 58-63
|
|
| 4 |
Cat 1 exams |
|||||||
| 5 | 1 |
Floating and Sinking
|
Upthrust in Gases and Archimedes' Principle
|
By the end of the
lesson, the learner
should be able to:
Explain upthrust in gases with examples; State Archimedes' principle clearly; Apply Archimedes' principle to solve problems; Solve Examples 1, 2, and 3 from textbook; Calculate apparent weight and upthrust in different fluids |
Review of upthrust in liquids through Q/A; Discussion of upthrust in gases using balloon examples; Statement and explanation of Archimedes' principle; Step-by-step solution of Examples 1-3; Problem-solving involving apparent weight calculations; Group work on upthrust calculations
|
Balloons; Helium or hydrogen (if available); Objects of known density; Calculators; Examples from textbook; Different liquids for demonstration; Measuring equipment
|
KLB Secondary Physics Form 4, Pages 60-66
|
|
| 5 | 2-3 |
Floating and Sinking
|
Upthrust in Gases and Archimedes' Principle
Law of Flotation and Applications |
By the end of the
lesson, the learner
should be able to:
Explain upthrust in gases with examples; State Archimedes' principle clearly; Apply Archimedes' principle to solve problems; Solve Examples 1, 2, and 3 from textbook; Calculate apparent weight and upthrust in different fluids Perform Experiment 3.2 investigating upthrust on floating objects; State the law of flotation; Explain the relationship between weight of object and weight of displaced fluid; Solve Examples 4, 5, 6, and 7 involving floating objects; Apply law of flotation to balloons and ships |
Review of upthrust in liquids through Q/A; Discussion of upthrust in gases using balloon examples; Statement and explanation of Archimedes' principle; Step-by-step solution of Examples 1-3; Problem-solving involving apparent weight calculations; Group work on upthrust calculations
Q/A on Archimedes' principle; Performance of Experiment 3.2 - investigating floating objects; Analysis of experimental observations; Statement of law of flotation; Step-by-step solution of Examples 4-7; Discussion of applications in balloons, ships, and everyday objects |
Balloons; Helium or hydrogen (if available); Objects of known density; Calculators; Examples from textbook; Different liquids for demonstration; Measuring equipment
Test tubes; Sand; Measuring cylinder; Water; Balance; Floating objects; Examples from textbook; Calculators; Model boats; Balloon demonstrations |
KLB Secondary Physics Form 4, Pages 60-66
KLB Secondary Physics Form 4, Pages 64-69 |
|
| 5 | 4 |
Floating and Sinking
|
Relative Density Determination
|
By the end of the
lesson, the learner
should be able to:
Define relative density of solids and liquids; Use Archimedes' principle to determine relative density; Apply the formula: RD = Weight in air/(Weight in air - Weight in fluid); Solve Examples 8, 9, 10, 11, and 12 from textbook; Calculate relative density using different methods |
Review of density concepts through Q/A; Introduction to relative density using practical examples; Mathematical derivation of relative density formulae; Step-by-step solution of Examples 8-12; Practical determination of relative density for various materials; Group calculations and comparisons
|
Spring balance; Various solid objects; Different liquids; Measuring cylinders; Calculators; Examples from textbook; Objects of unknown density; Data recording sheets
|
KLB Secondary Physics Form 4, Pages 69-74
|
|
| 5 | 5 |
Floating and Sinking
|
Relative Density Determination
|
By the end of the
lesson, the learner
should be able to:
Define relative density of solids and liquids; Use Archimedes' principle to determine relative density; Apply the formula: RD = Weight in air/(Weight in air - Weight in fluid); Solve Examples 8, 9, 10, 11, and 12 from textbook; Calculate relative density using different methods |
Review of density concepts through Q/A; Introduction to relative density using practical examples; Mathematical derivation of relative density formulae; Step-by-step solution of Examples 8-12; Practical determination of relative density for various materials; Group calculations and comparisons
|
Spring balance; Various solid objects; Different liquids; Measuring cylinders; Calculators; Examples from textbook; Objects of unknown density; Data recording sheets
|
KLB Secondary Physics Form 4, Pages 69-74
|
|
| 6 | 1 |
Floating and Sinking
|
Archimedes' Principle and Moments
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 3.3 determining relative density using moments; Understand the principle of moments in relative density determination; Plot graphs of d₁ against d₂ and determine slopes; Apply moments method to determine relative density of liquids; Explain advantages of moments method over direct weighing |
Q/A on relative density calculations; Setup and performance of Experiment 3.3 - relative density using moments; Data collection and graph plotting; Analysis of graph slopes and their significance; Application to liquids determination; Discussion of method advantages and accuracy
|
Metre rule; Clamps and stands; Solid objects; Metal blocks; Water and other liquids; Graph paper; Calculators; Data recording tables; Balance setup materials
|
KLB Secondary Physics Form 4, Pages 71-74
|
|
| 6 | 2-3 |
Floating and Sinking
|
Applications - Hydrometer and Practical Instruments
Applications - Ships, Submarines, and Balloons |
By the end of the
lesson, the learner
should be able to:
Explain the working principle of hydrometers; Describe structure and features of practical hydrometers; Solve Examples 12 and 13 involving hydrometer calculations; Understand applications in measuring density of milk, battery acid, and beer; Calculate hydrometer dimensions and floating positions Explain how steel ships float on water; Describe working principle of submarines; Understand how balloons achieve lift and control altitude; Analyze the role of displaced fluid in each application; Apply principles to solve practical problems involving floating vessels |
Review of law of flotation through Q/A; Detailed study of hydrometer structure and operation; Analysis of hydrometer sensitivity and design features; Step-by-step solution of Examples 12-13; Discussion of specialized hydrometers (lactometer, battery acid hydrometer); Practical calculations involving hydrometer floating
Q/A on hydrometer applications; Analysis of ship design and floating principles; Detailed study of submarine operation and ballast tanks; Exploration of balloon physics and gas density effects; Discussion of load limits and stability; Problem-solving involving practical floating applications |
Hydrometer (if available); Different density liquids; Measuring cylinders; Calculators; Examples from textbook; Charts showing hydrometer types; Battery acid hydrometer demonstration
Model ships and submarines; Balloon demonstrations; Charts showing ship cross-sections; Submarine ballast tank models; Different density materials; Calculators; Application examples |
KLB Secondary Physics Form 4, Pages 74-77
KLB Secondary Physics Form 4, Pages 77 |
|
| 6 | 4 |
Electromagnetic Spectrum
|
Introduction and Properties of Electromagnetic Waves
|
By the end of the
lesson, the learner
should be able to:
Define electromagnetic waves and identify their nature; State properties common to all electromagnetic waves; Arrange electromagnetic radiations in order of wavelength and frequency; Calculate wave properties using c = fλ; Solve Examples 1 and 2 from textbook |
Q/A on wave concepts from previous studies; Introduction to electromagnetic waves using everyday examples; Study of electromagnetic spectrum chart; Discussion of wave properties (speed, frequency, wavelength); Mathematical relationship between wave parameters; Solution of Examples 1 and 2 involving calculations
|
Electromagnetic spectrum charts; Wave demonstration materials; Calculators; Radio; Mobile phone; Examples from textbook; Charts showing wave properties
|
KLB Secondary Physics Form 4, Pages 79-81
|
|
| 6 | 5 |
Electromagnetic Spectrum
|
Introduction and Properties of Electromagnetic Waves
|
By the end of the
lesson, the learner
should be able to:
Define electromagnetic waves and identify their nature; State properties common to all electromagnetic waves; Arrange electromagnetic radiations in order of wavelength and frequency; Calculate wave properties using c = fλ; Solve Examples 1 and 2 from textbook |
Q/A on wave concepts from previous studies; Introduction to electromagnetic waves using everyday examples; Study of electromagnetic spectrum chart; Discussion of wave properties (speed, frequency, wavelength); Mathematical relationship between wave parameters; Solution of Examples 1 and 2 involving calculations
|
Electromagnetic spectrum charts; Wave demonstration materials; Calculators; Radio; Mobile phone; Examples from textbook; Charts showing wave properties
|
KLB Secondary Physics Form 4, Pages 79-81
|
|
| 7 | 1 |
Electromagnetic Spectrum
|
Production and Detection of Electromagnetic Waves
|
By the end of the
lesson, the learner
should be able to:
Explain production of gamma rays, X-rays, and ultraviolet radiation; Describe detection methods for high-energy radiations; Understand energy transitions in atoms and nuclei; Relate wave energy to frequency using E = hf; Solve Example 3 involving X-ray calculations |
Review of electromagnetic properties through Q/A; Study of high-energy radiation production mechanisms; Analysis of detection methods (photographic plates, G-M tubes, fluorescent materials); Discussion of atomic and nuclear energy changes; Step-by-step solution of Example 3; Safety considerations for high-energy radiations
|
Charts showing radiation production; Photographic film; Fluorescent materials; UV lamp (if available); Geiger counter (if available); Example 3 materials; Safety equipment demonstrations
|
KLB Secondary Physics Form 4, Pages 81-82
|
|
| 7 | 2-3 |
Electromagnetic Spectrum
|
Production and Detection of Electromagnetic Waves
Applications of Electromagnetic Waves |
By the end of the
lesson, the learner
should be able to:
Explain production of visible light, infrared, microwaves, and radio waves; Describe detection methods for each radiation type; Understand role of oscillating circuits in radio wave production; Compare detection mechanisms across the spectrum; Demonstrate detection of some radiations Describe medical applications of gamma rays and X-rays; Explain industrial uses of high-energy radiations; Understand applications in sterilization and cancer therapy; Discuss X-ray photography and crystallography; Analyze benefits and limitations of high-energy radiation applications |
Q/A on high-energy radiations; Study of lower-energy radiation production (thermal, electronic oscillations); Analysis of detection methods (eyes, thermopiles, crystal detectors, radio receivers); Practical demonstrations of infrared detection; Discussion of antenna and oscillating circuit principles; Group identification of sources and detectors
Review of radiation properties and production; Detailed study of gamma ray applications (sterilization, cancer treatment, flaw detection); Analysis of X-ray applications (medical photography, security, crystallography); Discussion of controlled radiation exposure; Examination of X-ray photographs and medical applications |
Infrared sources (heaters); Thermometer with blackened bulb; Radio receivers; Microwave oven (demonstration); Oscillating circuit models; Various electromagnetic sources
X-ray photographs; Medical imaging examples; Industrial radiography charts; Cancer treatment information; Sterilization process diagrams; Safety protocol charts |
KLB Secondary Physics Form 4, Pages 81-82
KLB Secondary Physics Form 4, Pages 82-84 |
|
| 7 | 4 |
Electromagnetic Spectrum
|
Applications of Electromagnetic Waves
|
By the end of the
lesson, the learner
should be able to:
Explain applications of ultraviolet radiation; Describe uses of visible light in technology; Understand infrared applications in heating and imaging; Analyze microwave applications in cooking and radar; Discuss radio wave applications in communication |
Q/A on high-energy radiation applications; Study of UV applications (fluorescence, sterilization, vitamin D, forgery detection); Analysis of visible light uses (photography, optical fibers, lasers); Exploration of infrared applications (heating, night vision, remote controls); Discussion of microwave and radio wave technologies
|
UV lamp demonstrations; Optical fiber samples; Infrared thermometer; Microwave oven (demonstration); Radio equipment; Remote controls; Radar images; Communication devices
|
KLB Secondary Physics Form 4, Pages 82-85
|
|
| 7 | 5 |
Electromagnetic Spectrum
|
Applications of Electromagnetic Waves
|
By the end of the
lesson, the learner
should be able to:
Explain applications of ultraviolet radiation; Describe uses of visible light in technology; Understand infrared applications in heating and imaging; Analyze microwave applications in cooking and radar; Discuss radio wave applications in communication |
Q/A on high-energy radiation applications; Study of UV applications (fluorescence, sterilization, vitamin D, forgery detection); Analysis of visible light uses (photography, optical fibers, lasers); Exploration of infrared applications (heating, night vision, remote controls); Discussion of microwave and radio wave technologies
|
UV lamp demonstrations; Optical fiber samples; Infrared thermometer; Microwave oven (demonstration); Radio equipment; Remote controls; Radar images; Communication devices
|
KLB Secondary Physics Form 4, Pages 82-85
|
|
| 8 | 1 |
Electromagnetic Spectrum
|
Specific Applications - Radar and Microwave Cooking
|
By the end of the
lesson, the learner
should be able to:
Explain principles of radar (radio detection and ranging); Describe microwave oven operation and safety features; Understand reflection and detection in radar systems; Explain how microwaves heat food molecules; Apply wave principles to practical technologies |
Review of microwave and radio wave properties; Detailed analysis of radar operation and applications; Study of microwave oven components (magnetron, stirrer, safety features); Discussion of wave reflection and detection principles; Analysis of molecular heating mechanisms; Safety considerations and precautions
|
Radar system diagrams; Microwave oven cross-section charts; Wave reflection demonstrations; Safety instruction materials; Magnetron information; Aircraft/ship tracking examples
|
KLB Secondary Physics Form 4, Pages 84-85
|
|
| 8 | 2-3 |
Electromagnetic Spectrum
Cathode Rays and Cathode Ray Tube |
Hazards and Safety Considerations
Thermionic Emission |
By the end of the
lesson, the learner
should be able to:
Identify hazards of high-energy electromagnetic radiations; Explain biological effects of UV, X-rays, and gamma rays; Describe safety measures for radiation protection; Understand delayed effects like cancer and genetic damage; Apply safety principles in radiation use Define thermionic emission Explain the process of electron emission from heated metals Describe a simple experiment to demonstrate thermionic emission State factors affecting thermionic emission |
Q/A on electromagnetic applications; Study of radiation hazards and biological effects; Analysis of skin damage, cell destruction, and genetic effects; Discussion of Chernobyl disaster and radiation accidents; Exploration of safety measures (shielding, distance, time limits); Application of ALARA principle (As Low As Reasonably Achievable)
Q&A on electron structure and energy Demonstration of thermionic emission using simple circuit Discussion on work function of different metals Explanation of electron emission process Identification of materials used in cathodes |
Radiation hazard charts; Safety equipment demonstrations; Chernobyl disaster information; Biological effect diagrams; Safety protocol materials; Radiation protection examples
Simple thermionic emission apparatus Low voltage power supply (6V) Milliammeter Evacuated glass bulb Heated filament Charts showing electron emission |
KLB Secondary Physics Form 4, Pages 85
KLB Secondary Physics Form 4, Pages 131-132 |
|
| 8 | 4 |
Cathode Rays and Cathode Ray Tube
|
Production and Properties of Cathode Rays
Structure of Cathode Ray Oscilloscope |
By the end of the
lesson, the learner
should be able to:
Describe how cathode rays are produced State the properties of cathode rays Explain evidence that cathode rays are streams of electrons Demonstrate properties using simple experiments |
Review of thermionic emission
Description of cathode ray tube construction Demonstration of cathode ray properties Experiments showing straight line travel and shadow formation Discussion on deflection by electric and magnetic fields |
Cathode ray tube (simple)
High voltage supply (EHT) Fluorescent screen Maltese cross or opaque object Bar magnets Charged plates CRO (demonstration model) Charts showing CRO structure Diagrams of electron gun Models of deflection plates High voltage power supply |
KLB Secondary Physics Form 4, Pages 131-133
|
|
| 8 | 5 |
Cathode Rays and Cathode Ray Tube
|
CRO Controls and Operation
CRO as a Voltmeter |
By the end of the
lesson, the learner
should be able to:
Explain the function of brightness and focus controls Describe vertical and horizontal deflection systems Explain the time base operation Demonstrate basic CRO operation |
Review of CRO structure
Demonstration of CRO controls Explanation of time base voltage Practice with focus and brightness adjustment Observation of spot movement across screen |
Working CRO
Signal generator Connecting leads Various input signals Time base control charts Oscilloscope manual DC power supplies AC signal sources Digital voltmeter Graph paper Calculators |
KLB Secondary Physics Form 4, Pages 135-137
|
|
| 9 |
Mid term exams and half term break |
|||||||
| 10 | 1 |
Cathode Rays and Cathode Ray Tube
|
Frequency Measurement using CRO
|
By the end of the
lesson, the learner
should be able to:
Measure frequency of AC signals using CRO Calculate period and frequency from CRO traces Apply the relationship f = 1/T Determine peak voltage of AC signals |
Review of voltage measurement with CRO
Demonstration of AC signal display on CRO Measurement of wavelength and period Calculation of frequency from time base setting Practice problems on frequency determination |
Working CRO with time base
Audio frequency generator Connecting leads Graph paper for measurements Calculators Stop watch |
KLB Secondary Physics Form 4, Pages 139-141
|
|
| 10 | 2-3 |
Cathode Rays and Cathode Ray Tube
X-Rays |
The Television Tube
Problem Solving and Applications Production of X-Rays |
By the end of the
lesson, the learner
should be able to:
Describe the structure of a TV tube Explain differences between CRO and TV tube Describe magnetic deflection in TV tubes Explain image formation in television Describe the structure of an X-ray tube Explain how X-rays are produced State the conditions necessary for X-ray production Identify the components of an X-ray tube and their functions |
Q&A on CRO applications
Comparison of TV tube with CRO Explanation of magnetic deflection coils Description of signal processing in TV Discussion on color TV operation Q&A on cathode rays and electron beams Drawing and labeling X-ray tube structure Explanation of electron acceleration and collision process Description of anode and cathode materials Discussion on cooling systems in X-ray tubes |
TV tube (demonstration model)
Deflection coils TV receiver (old CRT type) Charts comparing TV and CRO Color TV tube diagram Calculators Problem-solving worksheets Sample CRO traces Past examination questions Graph paper Reference materials Charts showing X-ray tube structure Diagram of X-ray production process Models of rotating anode Pictures of medical X-ray equipment Video clips of X-ray tube operation |
KLB Secondary Physics Form 4, Pages 141-142
KLB Secondary Physics Form 4, Pages 144-145 |
|
| 10 | 4 |
X-Rays
|
Properties of X-Rays and Energy Concepts
Hard and Soft X-Rays |
By the end of the
lesson, the learner
should be able to:
State the properties of X-rays Explain X-rays as electromagnetic radiation Calculate the energy of X-rays using E = hf Relate X-ray energy to accelerating voltage |
Review of X-ray production
Demonstration of X-ray properties using simulations Calculation of X-ray energy and frequency Problem-solving on energy-voltage relationships Comparison with other electromagnetic radiations |
Calculators
Electromagnetic spectrum chart Energy calculation worksheets Constants and formulae charts Sample X-ray images Comparison charts of hard vs soft X-rays Penetration demonstration materials Voltage control diagrams Medical X-ray examples Industrial X-ray applications |
KLB Secondary Physics Form 4, Pages 145-147
|
|
| 10 | 5 |
X-Rays
|
Uses of X-Rays in Medicine and Industry
|
By the end of the
lesson, the learner
should be able to:
Describe medical uses of X-rays (radiography and radiotherapy) Explain industrial applications of X-rays Describe use in crystallography and security Analyze the importance of point source X-rays |
Review of hard and soft X-rays
Discussion on medical imaging techniques Explanation of CT scans and their advantages Description of industrial flaw detection Analysis of airport security applications |
Medical X-ray images
CT scan pictures Industrial radiography examples Crystal diffraction patterns Airport security equipment photos Charts of various X-ray applications |
KLB Secondary Physics Form 4, Pages 148-149
|
|
| 11 | 1 |
X-Rays
|
Dangers of X-Rays and Safety Precautions
Problem Solving and Applications Review |
By the end of the
lesson, the learner
should be able to:
Explain the dangers of X-ray exposure Describe cumulative effects of radiation State safety precautions for X-ray workers Explain protective measures in X-ray facilities |
Q&A on X-ray applications
Discussion on biological effects of X-rays Explanation of radiation protection principles Description of lead shielding and protective equipment Analysis of safety protocols in medical facilities |
Safety equipment samples (lead aprons)
Radiation warning signs Pictures of X-ray protection facilities Dosimeter badges Charts showing radiation effects Safety protocol posters Calculators Problem-solving worksheets Past examination questions Real X-ray case studies Modern X-ray technology articles Assessment materials |
KLB Secondary Physics Form 4, Pages 149
|
|
| 11 | 2-3 |
Photoelectric Effect
|
Demonstration and Introduction to Photoelectric Effect
Light Energy and Quantum Theory Einstein's Photoelectric Equation and Work Function |
By the end of the
lesson, the learner
should be able to:
Define photoelectric effect Describe experiments to demonstrate photoelectric effect Explain observations from photoelectric experiments Identify conditions necessary for photoelectric emission State Einstein's photoelectric equation Define work function and threshold frequency Explain the relationship between photon energy and kinetic energy Calculate work function and threshold frequency for different metals |
Q&A on electromagnetic radiation and light
Demonstration using zinc plate and UV lamp Experiment with charged electroscope and UV radiation Observation and explanation of leaf divergence changes Discussion on electron emission from metal surfaces Q&A on quantum theory and photon energy Derivation of Einstein's photoelectric equation Explanation of work function concept Worked examples using Einstein's equation Analysis of work function table for various metals |
UV lamp (mercury vapor)
Zinc plate Gold leaf electroscope Glass barrier Metal plates Galvanometer Connecting wires Calculators Electromagnetic spectrum chart Planck's constant reference Worked example sheets Wave equation materials Color filters Work function data table Einstein's equation reference Calculators Metal samples (theoretical) Energy level diagrams Problem-solving worksheets |
KLB Secondary Physics Form 4, Pages 151-153
KLB Secondary Physics Form 4, Pages 153-156 |
|
| 11 | 4 |
Photoelectric Effect
|
Factors Affecting Photoelectric Effect
Applications of Photoelectric Effect |
By the end of the
lesson, the learner
should be able to:
Explain how intensity affects photoelectric emission Describe the relationship between frequency and kinetic energy Analyze the effect of different metal types Interpret graphs of stopping potential vs frequency |
Review of Einstein's equation applications
Experimental analysis of intensity effects Investigation of frequency-energy relationships Interpretation of stopping potential graphs Calculation of Planck's constant from experimental data |
Experimental setup diagrams
Graph paper Stopping potential data Frequency vs energy graphs Different metal characteristics Calculators Photoemissive cell samples Light-dependent resistor (LDR) Solar panel demonstration Application circuit diagrams Conveyor belt counting model Burglar alarm circuit |
KLB Secondary Physics Form 4, Pages 156-160
|
|
| 11 | 5 |
Photoelectric Effect
|
Problem Solving and Applications Review
|
By the end of the
lesson, the learner
should be able to:
Solve complex problems involving photoelectric equations Calculate threshold wavelength and frequency Determine stopping potential and kinetic energy Apply photoelectric principles to real-world scenarios |
Review of all photoelectric effect concepts
Comprehensive problem-solving sessions Analysis of examination-type questions Discussion on modern photoelectric applications Assessment and evaluation exercises |
Calculators
Comprehensive problem sets Past examination questions Constants and formulae sheets Graph paper Assessment materials |
KLB Secondary Physics Form 4, Pages 151-163
|
|
| 12-13 |
End term exams and report processing |
|||||||
Your Name Comes Here