Home






SCHEME OF WORK
Mathematics
Grade 6 2026
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN STRAND SUB-STRAND LESSON LEARNING OUTCOMES LEARNING EXPERIENCES KEY INQUIRY QUESTIONS LEARNING RESOURCES ASSESSMENT METHODS REFLECTION
2 1
1.0 Numbers
1.1 Whole Numbers: Place Value
By the end of the lesson, the learner should be able to:
identify place value of digits up to millions, apply this knowledge when reading large numbers, and show interest in using place value in daily life
Learners work collaboratively in pairs or groups to use place value apparatus such as abacus, place value charts and cards to identify and demonstrate the place value of digits up to millions. They manipulate concrete materials to represent different place values, discuss their observations, and create their own examples using number cards.
How do we read and write numbers in symbols and in words?
MENTOR Mathematics Grade 6 Learner's Book, page 1
Place value apparatus
Number charts
Oral questions Written exercise Observation
2 2
1.0 Numbers
1.1 Whole Numbers: Total Value
1.1 Whole Numbers: Numbers in Symbols
1.1 Whole Numbers: Reading Numbers
By the end of the lesson, the learner should be able to:
determine total value of digits up to millions, use total value in calculations, and appreciate the importance of total value in mathematics
Learners engage in hands-on activities with place value apparatus to distinguish between place value and total value. They conduct practical exercises where they determine the total value by multiplying each digit by its place value, then compare results with peers to reinforce understanding of how digit position affects its value.
What is the difference between place value and total value?
MENTOR Mathematics Grade 6 Learner's Book, page 1
Place value apparatus
Number charts
MENTOR Mathematics Grade 6 Learner's Book, page 5
Number charts/cards
MENTOR Mathematics Grade 6 Learner's Book, page 6
Oral questions Written exercise Observation
2 3
1.0 Numbers
1.1 Whole Numbers: Writing Numbers
1.1 Whole Numbers: Forming Numbers
1.1 Whole Numbers: Ordering Numbers
1.1 Whole Numbers: Rounding Off
By the end of the lesson, the learner should be able to:
write numbers up to 100,000 in words, express numerical information in written form, and appreciate proper notation in writing numbers
Learners practice converting numerals to written words using varied activities. They create their own number cards with numerals on one side and words on the other to use as study aids. In groups, they develop number puzzles where answers must be written in words, challenging their peers to solve them while reinforcing proper number writing conventions.
How do we write large numbers in words?
MENTOR Mathematics Grade 6 Learner's Book, page 8
Number charts/cards
MENTOR Mathematics Grade 6 Learner's Book, page 9
Number cards
MENTOR Mathematics Grade 6 Learner's Book, page 10
MENTOR Mathematics Grade 6 Learner's Book, page 11
Oral questions Written exercise Group work
2 4
1.0 Numbers
1.1 Whole Numbers: Squares Introduction
1.1 Whole Numbers: Squares Application
1.1 Whole Numbers: Square Roots Introduction
By the end of the lesson, the learner should be able to:
identify the concept of squaring numbers, calculate squares of whole numbers up to 100, and appreciate the pattern in square numbers
Learners engage in discovery-based activities where they multiply numbers by themselves and identify the patterns that emerge. They use grid paper to create visual representations of square numbers, exploring the geometric meaning of squares. Through guided discussion, they develop understanding of squares as repeated multiplication and begin to recognize common square numbers.
How do we square a number?
MENTOR Mathematics Grade 6 Learner's Book, page 12
Number cards
Multiplication table
Square shaped objects
MENTOR Mathematics Grade 6 Learner's Book, page 13
Square root table
Oral questions Written exercise Observation
2 5
1.0 Numbers
1.1 Whole Numbers: Square Roots Application
1.1 Whole Numbers: Assessment
1.0 Numbers: Digital Activities
By the end of the lesson, the learner should be able to:
extract square roots of perfect squares up to 10,000, use square roots to solve problems, and value the application of square roots in real-life situations
Learners investigate practical applications of square roots through problem-solving activities related to real-world contexts. They work collaboratively to identify scenarios where finding a square root provides a solution, such as determining the side length of a square garden when given its area, or calculating distances using the Pythagorean relationship. They create and solve their own application problems.
How are square roots useful in real life?
MENTOR Mathematics Grade 6 Learner's Book, page 14
Number cards
Digital devices
MENTOR Mathematics Grade 6 Learner's Book, page 15
Assessment worksheet
MENTOR Mathematics Grade 6 Learner's Book, page 16
Educational apps
Oral questions Written exercise Project work
3 1
1.0 Numbers
1.1 Whole Numbers: Real-life Application
1.2 Multiplication: 4-digit by 2-digit
1.2 Multiplication: Alternative Methods
1.2 Multiplication: Estimation by Rounding
By the end of the lesson, the learner should be able to:
identify applications of whole numbers in daily life, connect classroom learning to real-world scenarios, and value whole numbers in various contexts
Learners engage in contextual learning activities that connect mathematical concepts to everyday experiences. They collect examples of whole numbers used in real situations from newspapers, magazines, and their environment. In collaborative groups, they create presentations showcasing these examples and explaining how mathematical understanding enhances their ability to interpret and engage with the world around them.
Where do we use whole numbers in our daily lives?
MENTOR Mathematics Grade 6 Learner's Book, page 17
Real-life examples
Newspapers and magazines
MENTOR Mathematics Grade 6 Learner's Book, page 20
Multiplication chart
MENTOR Mathematics Grade 6 Learner's Book, page 21
Digital devices
MENTOR Mathematics Grade 6 Learner's Book, page 22
Number cards
Oral questions Group discussions Project work
3 2
1.0 Numbers
1.2 Multiplication: Estimation by Compatibility
1.2 Multiplication: Patterns
1.2 Multiplication: Real-life Application
By the end of the lesson, the learner should be able to:
estimate products using compatible numbers, implement compatibility strategies in calculation, and appreciate the efficiency of using compatible numbers
Learners discover compatibility strategies through guided exploration activities. They identify number pairs that work well together (compatible numbers) and practice adjusting given numbers to more compatible forms for easier mental calculation. In collaborative groups, they create estimation challenges using compatibility methods and discuss how this approach differs from rounding, evaluating the relative accuracy of each method.
How does using compatible numbers help in estimation?
MENTOR Mathematics Grade 6 Learner's Book, page 23
Number cards
MENTOR Mathematics Grade 6 Learner's Book, page 24
MENTOR Mathematics Grade 6 Learner's Book, page 25
Digital devices
Real-life examples
Oral questions Written exercise Observation
3 3
1.0 Numbers
1.3 Division: 4-digit by 2-digit
1.3 Division: 4-digit by 3-digit
1.3 Division: Estimation
By the end of the lesson, the learner should be able to:
divide a 4-digit number by a 2-digit number, use the relationship between multiplication and division, and develop accuracy in division calculations
Learners strengthen division skills through structured problem-solving activities. They explore the relationship between multiplication and division as inverse operations, using this connection to perform division of up to 4-digit numbers by 2-digit numbers. Through collaborative work, they develop and refine division strategies, checking answers through multiplication and discussing common challenges and misconceptions.
How is division related to multiplication?
MENTOR Mathematics Grade 6 Learner's Book, page 26
Multiplication chart
MENTOR Mathematics Grade 6 Learner's Book, page 27
MENTOR Mathematics Grade 6 Learner's Book, page 28
Number cards
Oral questions Written exercise Observation
3 4
1.0 Numbers
1.3 Division: Combined Operations
1.3 Division: Advanced Combined Operations
1.3 Division: Real-life Application
1.4 Fractions: LCM
By the end of the lesson, the learner should be able to:
solve problems with multiple operations, apply the correct order of operations, and develop systematic approaches to mixed operations problems
Learners build computational fluency through multi-step problem-solving. They explore the standard order of operations (PEMDAS/BODMAS) through guided investigation, solving problems that combine two or three operations with 2-digit numbers. In collaborative groups, they create their own multi-step problems, exchange them with classmates, and discuss different solution strategies to develop flexible approaches to complex calculations.
What is the order of operations?
MENTOR Mathematics Grade 6 Learner's Book, page 29
Number cards
MENTOR Mathematics Grade 6 Learner's Book, page 30
MENTOR Mathematics Grade 6 Learner's Book, page 31
Digital devices
Real-life examples
MENTOR Mathematics Grade 6 Learner's Book, page 33
Oral questions Written exercise Group work
3 5
1.0 Numbers
1.4 Fractions: Addition using LCM
1.4 Fractions: Subtraction using LCM
1.4 Fractions: Adding Mixed Numbers Method 1
By the end of the lesson, the learner should be able to:
add fractions with different denominators, use LCM to find common denominators, and show interest in fraction addition
Learners build skills in fraction addition through progressive activities. They identify the LCM of different denominators to create equivalent fractions with a common denominator, then add the numerators to find the sum. Through hands-on manipulatives and visual models, they develop conceptual understanding of why common denominators are necessary for fraction addition. They work collaboratively to solve increasingly complex addition problems, discussing effective strategies and common challenges.
How do we add fractions using LCM?
MENTOR Mathematics Grade 6 Learner's Book, page 34
Fraction charts
MENTOR Mathematics Grade 6 Learner's Book, page 35
MENTOR Mathematics Grade 6 Learner's Book, page 36
Oral questions Written exercise Group work
4 1
1.0 Numbers
1.4 Fractions: Adding Mixed Numbers Method 2
1.4 Fractions: Subtracting Mixed Numbers
1.4 Fractions: Reciprocals Introduction
By the end of the lesson, the learner should be able to:
add mixed numbers by separating whole numbers and fractions, compare different methods of adding mixed numbers, and appreciate efficient calculation techniques
Learners explore an alternative method for mixed number addition through comparative problem-solving. They practice adding mixed numbers by separating the whole number and fraction parts, adding them separately, and then combining the results (converting improper fractions to mixed numbers as needed). Through collaborative work, they solve the same problems using both methods (conversion to improper fractions vs. separate addition) and discuss which approach is more efficient for different problem types.
What's another way to add mixed numbers?
MENTOR Mathematics Grade 6 Learner's Book, page 37
Fraction charts
MENTOR Mathematics Grade 6 Learner's Book, page 38
MENTOR Mathematics Grade 6 Learner's Book, page 39
Number cards
Oral questions Written exercise Observation
4 2
1.0 Numbers
1.4 Fractions: Reciprocals of Fractions
1.4 Fractions: Squares of Fractions
1.4 Fractions: Fractions to Percentages
1.4 Fractions: Percentages to Fractions
By the end of the lesson, the learner should be able to:
determine reciprocals of proper fractions, interchange numerator and denominator to find reciprocals, and show interest in exploring fraction reciprocals
Learners extend their understanding of reciprocals to fractions through guided discovery. They practice finding reciprocals of proper fractions up to 2-digit denominators by interchanging the numerator and denominator. Through collaborative problem-solving, they explore the relationship between fractions and their reciprocals, noticing patterns in how the value changes (e.g., fractions less than 1 have reciprocals greater than 1). They create visual models to illustrate the concept and discuss real-world applications of reciprocals.
How do we find the reciprocal of a fraction?
MENTOR Mathematics Grade 6 Learner's Book, page 40
Fraction charts
MENTOR Mathematics Grade 6 Learner's Book, page 41
MENTOR Mathematics Grade 6 Learner's Book, page 42
Percentage charts
MENTOR Mathematics Grade 6 Learner's Book, page 43
Oral questions Written exercise Group work
4 3
1.0 Numbers
1.4 Fractions: Applications
1.5 Decimals: Place Value
1.5 Decimals: Decimal Places
By the end of the lesson, the learner should be able to:
solve real-life problems involving fractions, apply fraction operations in context, and appreciate the relevance of fractions in everyday situations
Learners connect fraction concepts to real-world scenarios through contextual problem-solving. They identify everyday situations where fractions are used (such as measurements, time, sharing resources, etc.) and develop problem-solving approaches that apply fraction operations to authentic contexts. Working collaboratively, they create and solve their own word problems involving fraction operations, discussing effective solution strategies and the practical value of fraction knowledge.
Where do we use fractions in real life?
MENTOR Mathematics Grade 6 Learner's Book, page 43
Real-life examples
Fraction manipulatives
MENTOR Mathematics Grade 6 Learner's Book, page 44
Place value apparatus
MENTOR Mathematics Grade 6 Learner's Book, page 45
Decimal place value chart
Oral questions Written exercise Project work
4 4
1.0 Numbers
1.5 Decimals: Rounding Off
1.5 Decimals: Decimals to Fractions
1.5 Decimals: Fractions to Decimals
By the end of the lesson, the learner should be able to:
round decimals to specified decimal places, apply appropriate rounding rules, and value estimation in decimal contexts
Learners develop decimal rounding skills through progressive practice. They explore rounding rules for decimals, focusing on how to determine whether to round up or down based on the digit that follows the rounding position. Through guided examples and collaborative problem-solving, they practice rounding decimals to 1, 2, and 3 decimal places, discussing potential applications of decimal rounding in real-world contexts like measurement and finance. They create their own rounding challenges for peers, reinforcing procedural fluency through teaching others.
When do we need to round off decimals?
MENTOR Mathematics Grade 6 Learner's Book, page 46
Number cards with decimals
MENTOR Mathematics Grade 6 Learner's Book, page 47
Square/rectangular grid
MENTOR Mathematics Grade 6 Learner's Book, page 48
Oral questions Written exercise Group work
4 5
1.0 Numbers
1.5 Decimals: Decimals to Percentages
1.5 Decimals: Percentages to Decimals
1.5 Decimals: Addition
1.5 Decimals: Subtraction
By the end of the lesson, the learner should be able to:
convert decimals to percentages, multiply decimals by 100 to find percentages, and value the connections between different numerical forms
Learners strengthen mathematical conversion skills through targeted practice. They explore the relationship between decimals and percentages, discovering that multiplying a decimal by 100 converts it to an equivalent percentage. Through guided examples and collaborative problem-solving, they develop fluency with the conversion process and discuss real-world contexts where such conversions are useful. They create their own decimal-percentage conversion challenges and exchange them with peers, reinforcing understanding through teaching and explaining.
How do we convert decimals to percentages?
MENTOR Mathematics Grade 6 Learner's Book, page 49
Decimal and percentage charts
MENTOR Mathematics Grade 6 Learner's Book, page 50
Percentage and decimal charts
MENTOR Mathematics Grade 6 Learner's Book, page 51
Place value apparatus
MENTOR Mathematics Grade 6 Learner's Book, page 52
Oral questions Written exercise Group work
5 1
1.0 Numbers
1.5 Decimals: Real-life Applications
1.5 Decimals: Assessment
1.6 Inequalities: Introduction
By the end of the lesson, the learner should be able to:
identify uses of decimals in everyday contexts, solve practical problems involving decimals, and appreciate the relevance of decimals in daily life
Learners connect decimal concepts to authentic contexts through application-based activities. They explore real-world uses of decimals in areas such as measurement, money, and data representation. Through digital resources and practical examples, they develop problem-solving approaches that apply decimal operations to everyday situations. Working collaboratively, they create their own contextual problems involving decimals and discuss how decimal understanding enhances their ability to interpret and engage with quantitative information in the world around them.
Where are decimals applicable in real life?
MENTOR Mathematics Grade 6 Learner's Book, page 53
Digital devices
Real-life examples
Assessment worksheet
MENTOR Mathematics Grade 6 Learner's Book, page 54
Number cards
Inequality symbols
Oral questions Group discussions Project work
5 2
1.0 Numbers
1.6 Inequalities: Forming Inequalities
1.6 Inequalities: Simplifying
1.6 Inequalities: Solving
By the end of the lesson, the learner should be able to:
create simple inequalities with one unknown, translate verbal statements into inequality form, and show creativity in mathematical expression
Learners develop mathematical modeling skills through progressive activities. They practice converting verbal descriptions of inequality relationships into mathematical notation using appropriate symbols and variables. Through guided examples and collaborative problem-solving, they explore different operations that can be included in inequalities, creating mathematical expressions that represent various real-world constraints and conditions. They create their own word problems that can be modeled using inequalities and challenge peers to translate them into mathematical form.
How do we form inequalities?
MENTOR Mathematics Grade 6 Learner's Book, page 55
Number cards
Inequality symbols
MENTOR Mathematics Grade 6 Learner's Book, page 56
Cards with inequalities
Charts
MENTOR Mathematics Grade 6 Learner's Book, page 57
Inequality cards
Oral questions Written exercise Group work
5 3
1.0 Numbers
1.6 Inequalities: Real-life Application
1.6 Inequalities: Digital Activities
1.6 Inequalities: Assessment
By the end of the lesson, the learner should be able to:
connect inequalities to real-world situations, model practical problems using inequalities, and value the applicability of inequalities in daily life
Learners explore authentic applications of inequalities through contextual problem-solving. They identify real-world situations that can be modeled using inequalities (such as budget constraints, time limitations, or physical boundaries) and develop mathematical approaches to analyzing these scenarios. Working collaboratively, they create their own real-life problems that involve inequalities and discuss how inequality concepts provide valuable tools for describing constraints and making decisions in everyday contexts.
Where are inequalities used in real life?
MENTOR Mathematics Grade 6 Learner's Book, page 58
Real-life examples
MENTOR Mathematics Grade 6 Learner's Book, page 59
Digital devices
Educational apps
MENTOR Mathematics Grade 6 Learner's Book, page 60
Assessment worksheet
Oral questions Group discussions Project work
5 4
2.0 Measurement
2.1 Length - Millimetres as units of length (14 Lessons)
2.1 Length - Relationship between millimetres and centimetres
2.1 Length - Converting centimetres to millimetres
2.1 Length - Converting millimetres to centimetres
By the end of the lesson, the learner should be able to:

Use the millimetre (mm) as a unit of measuring length
Identify appropriate contexts for using millimetres
Develop an appreciation for precision in measurement
Learners:
Discuss and identify millimetre as a unit of measuring length using rulers
Examine objects that require measurement in millimetres
Measure small objects using rulers marked in millimetres
Compare measurements and discuss the importance of precision
Why do we need smaller units to measure length?
MENTOR Mathematics Grade 6 Learner's Book, page 98
Rulers marked in millimetres
Small objects for measurement
Rulers
Measurement conversion charts
MENTOR Mathematics Grade 6 Learner's Book, page 99
Conversion charts
Measurement worksheets
MENTOR Mathematics Grade 6 Learner's Book, page 100
Measurement materials
Conversion worksheets
Oral questions Observation Written exercise
5 5
2.0 Measurement
2.1 Length - Addition of lengths in centimetres and millimetres
By the end of the lesson, the learner should be able to:

Add measurements involving centimetres and millimetres
Regroup millimetres to centimetres when necessary
Show interest in solving addition problems involving length
Learners:
Add lengths given in cm and mm
Regroup 10 mm to 1 cm when necessary
Solve practical addition problems involving length
Create addition problems for peers to solve
How do we add lengths in centimetres and millimetres?
MENTOR Mathematics Grade 6 Learner's Book, page 101
Addition worksheets
Rulers
Written exercise Group activities Class assignment
6

Midterm

7 1
2.0 Measurement
2.1 Length - Subtraction of lengths in centimetres and millimetres
By the end of the lesson, the learner should be able to:

Subtract lengths given in centimetres and millimetres
Regroup centimetres to millimetres when necessary
Value accuracy in subtraction operations
Learners:
Subtract lengths given in cm and mm
Regroup 1 cm to 10 mm when necessary
Solve real-life problems requiring subtraction of lengths
Discuss strategies for subtraction with regrouping
How do we subtract lengths in centimetres and millimetres?
MENTOR Mathematics Grade 6 Learner's Book, page 102
Subtraction worksheets
Measuring tools
Written exercise Oral questions Observation
7 2
2.0 Measurement
2.1 Length - Subtraction of lengths in centimetres and millimetres
By the end of the lesson, the learner should be able to:

Subtract lengths given in centimetres and millimetres
Regroup centimetres to millimetres when necessary
Value accuracy in subtraction operations
Learners:
Subtract lengths given in cm and mm
Regroup 1 cm to 10 mm when necessary
Solve real-life problems requiring subtraction of lengths
Discuss strategies for subtraction with regrouping
How do we subtract lengths in centimetres and millimetres?
MENTOR Mathematics Grade 6 Learner's Book, page 102
Subtraction worksheets
Measuring tools
Written exercise Oral questions Observation
7 3
2.0 Measurement
2.1 Length - Subtraction of lengths in centimetres and millimetres
By the end of the lesson, the learner should be able to:

Subtract lengths given in centimetres and millimetres
Regroup centimetres to millimetres when necessary
Value accuracy in subtraction operations
Learners:
Subtract lengths given in cm and mm
Regroup 1 cm to 10 mm when necessary
Solve real-life problems requiring subtraction of lengths
Discuss strategies for subtraction with regrouping
How do we subtract lengths in centimetres and millimetres?
MENTOR Mathematics Grade 6 Learner's Book, page 102
Subtraction worksheets
Measuring tools
Written exercise Oral questions Observation
7 4
2.0 Measurement
2.1 Length - Subtraction of lengths in centimetres and millimetres
By the end of the lesson, the learner should be able to:

Subtract lengths given in centimetres and millimetres
Regroup centimetres to millimetres when necessary
Value accuracy in subtraction operations
Learners:
Subtract lengths given in cm and mm
Regroup 1 cm to 10 mm when necessary
Solve real-life problems requiring subtraction of lengths
Discuss strategies for subtraction with regrouping
How do we subtract lengths in centimetres and millimetres?
MENTOR Mathematics Grade 6 Learner's Book, page 102
Subtraction worksheets
Measuring tools
Written exercise Oral questions Observation
7 1-4
2.0 Measurement
2.1 Length - Subtraction of lengths in centimetres and millimetres
By the end of the lesson, the learner should be able to:

Subtract lengths given in centimetres and millimetres
Regroup centimetres to millimetres when necessary
Value accuracy in subtraction operations
Learners:
Subtract lengths given in cm and mm
Regroup 1 cm to 10 mm when necessary
Solve real-life problems requiring subtraction of lengths
Discuss strategies for subtraction with regrouping
How do we subtract lengths in centimetres and millimetres?
MENTOR Mathematics Grade 6 Learner's Book, page 102
Subtraction worksheets
Measuring tools
Written exercise Oral questions Observation
7 5
2.0 Measurement
2.1 Length - Multiplication of lengths
By the end of the lesson, the learner should be able to:

Multiply lengths in centimetres and millimetres by whole numbers
Regroup millimetres to centimetres when necessary
Apply multiplication skills to solve real-life problems
Learners:
Multiply lengths given in cm and mm by whole numbers
Regroup 10 mm to 1 cm when necessary
Solve word problems involving multiplication of lengths
Create visual representations of multiplication problems
How do we multiply lengths in centimetres and millimetres?
MENTOR Mathematics Grade 6 Learner's Book, page 103
Multiplication worksheets
Measuring tools
Written exercise Group activities Class assignment
8 1
2.0 Measurement
2.1 Length - Division of lengths
2.1 Length - Circumference of a circle
2.1 Length - Diameter and radius
By the end of the lesson, the learner should be able to:

Divide lengths in centimetres and millimetres by whole numbers
Regroup centimetres to millimetres when necessary
Show interest in solving division problems involving length
Learners:
Divide lengths given in cm and mm by whole numbers
Regroup 1 cm to 10 mm when necessary
Solve practical division problems involving length
Share division strategies
How do we divide lengths in centimetres and millimetres?
MENTOR Mathematics Grade 6 Learner's Book, page 104
Division worksheets
Measuring tools
MENTOR Mathematics Grade 6 Learner's Book, page 105
Circular objects
String
Rulers
MENTOR Mathematics Grade 6 Learner's Book, page 106
Drawing materials
Written exercise Oral questions Observation
8 2
2.0 Measurement
2.1 Length - Relationship between circumference and diameter
2.1 Length - Finding circumference using formula
2.1 Length - Real-life applications of circumference
2.1 Length - Consolidation activities
By the end of the lesson, the learner should be able to:

Establish the relationship between circumference and diameter
Identify π (pi) as the ratio of circumference to diameter
Show interest in mathematical relationships
Learners:
Measure circumference and diameter of various circular objects
Calculate the ratio of circumference to diameter
Discover that this ratio is approximately 3.14 (π)
Discuss the significance of π in mathematics
What is the relationship between circumference and diameter?
MENTOR Mathematics Grade 6 Learner's Book, page 107
Circular objects
String
Calculators
MENTOR Mathematics Grade 6 Learner's Book, page 108
Worksheet with problems
MENTOR Mathematics Grade 6 Learner's Book, page 109
Real-life circular objects
Measuring tools
MENTOR Mathematics Grade 6 Learner's Book, page 110
Review worksheets
Written exercise Practical assessment Observation
8 3
2.0 Measurement
2.2 Area - Area of triangles (6 Lessons)
2.2 Area - Finding area of triangles
2.2 Area - Area of combined shapes
By the end of the lesson, the learner should be able to:

Understand the concept of area of triangles
Relate area of triangles to area of rectangles/squares
Show interest in measuring area of triangular shapes
Learners:
Explore the relationship between triangles and rectangles/squares
Cut diagonals in rectangles/squares to form triangles
Discover that triangles formed have half the area of the original shape
Discuss findings and make connections
How is the area of a triangle related to the area of a rectangle?
MENTOR Mathematics Grade 6 Learner's Book, page 118
Rectangular/square paper
Scissors
Grid paper
MENTOR Mathematics Grade 6 Learner's Book, page 119
Triangular shapes
Rulers
Calculators
MENTOR Mathematics Grade 6 Learner's Book, page 120
Cutouts of combined shapes
Observation Practical work Oral questions
8 4
2.0 Measurement
2.2 Area - More combined shapes
2.2 Area - Estimating area of circles
2.2 Area - Applications of area
By the end of the lesson, the learner should be able to:

Calculate area of complex combined shapes
Apply appropriate strategies to find areas
Value systematic approaches to problem-solving
Learners:
Analyze more complex combined shapes
Apply appropriate strategies to calculate total area
Discuss different approaches to finding areas
Present solutions to the class
What strategies can we use to find areas of complex shapes?
MENTOR Mathematics Grade 6 Learner's Book, page 121
Worksheets with combined shapes
Grid paper
Calculators
MENTOR Mathematics Grade 6 Learner's Book, page 122
Square grid paper
Circular objects
Compasses
MENTOR Mathematics Grade 6 Learner's Book, page 123
Real-life application examples
Measuring tools
Written exercise Group presentation Peer assessment
8 5
2.0 Measurement
2.3 Capacity - Relationship between cubic centimetres, millilitres and litres (6 Lessons)
2.3 Capacity - Converting litres to millilitres
2.3 Capacity - Converting millilitres to litres
2.3 Capacity - Converting litres to cubic centimetres
By the end of the lesson, the learner should be able to:

Identify relationship among cubic centimetres, millilitres and litres
Understand volumetric measurement concepts
Appreciate connections between volume and capacity
Learners:
Experiment with 1 cm³ cube containers and water
Establish that 1 cm³ equals 1 ml
Discover that 1000 ml equals 1 litre
Discuss relationships between units
What is the relationship between cubic centimetres, millilitres, and litres?
MENTOR Mathematics Grade 6 Learner's Book, page 139
Cubic centimetre blocks
Measuring cylinders
Water
MENTOR Mathematics Grade 6 Learner's Book, page 140
Conversion charts
Measuring containers
Worksheets
MENTOR Mathematics Grade 6 Learner's Book, page 141
MENTOR Mathematics Grade 6 Learner's Book, page 142
Cubic containers
Practical assessment Observation Oral questions
9 1
2.0 Measurement
2.3 Capacity - Converting cubic centimetres to litres
2.3 Capacity - Real-life applications of capacity
2.4 Mass - The tonne as a unit of mass (14 Lessons)
By the end of the lesson, the learner should be able to:

Convert cubic centimetres to litres
Apply conversion skills to solve problems
Show interest in volume and capacity relationships
Learners:
Apply the relationship that 1000 cm³ = 1 litre
Convert various measurements from cubic centimetres to litres
Solve real-life problems involving conversions
Share conversion strategies
How do we convert cubic centimetres to litres?
MENTOR Mathematics Grade 6 Learner's Book, page 143
Conversion charts
Cubic containers
Worksheets
MENTOR Mathematics Grade 6 Learner's Book, page 144
Real-life containers
Measuring tools
MENTOR Mathematics Grade 6 Learner's Book, page 150
Pictures of heavy items
Mass measurement charts
Written exercise Group activities Project work
9 2
2.0 Measurement
2.4 Mass - Items measured in tonnes
2.4 Mass - Relationship between kilogram and tonne
2.4 Mass - Estimating mass in tonnes
By the end of the lesson, the learner should be able to:

Identify real-life items measured in tonnes
Appreciate contexts where tonnes are appropriate
Value the relevance of mass measurement
Learners:
Discuss items in the environment measured in tonnes
Categorize items by appropriate mass units
Create posters showing items measured in tonnes
Present their findings to the class
What items are typically measured in tonnes?
MENTOR Mathematics Grade 6 Learner's Book, page 151
Pictures of heavy items
Visual aids
Reference materials
MENTOR Mathematics Grade 6 Learner's Book, page 152
Mass conversion charts
MENTOR Mathematics Grade 6 Learner's Book, page 153
Group presentations Observation Project assessment
9 3
2.0 Measurement
2.4 Mass - Converting kilograms to tonnes
2.4 Mass - Converting tonnes to kilograms
2.4 Mass - Addition of mass in tonnes and kilograms
2.4 Mass - Subtraction of mass in tonnes and kilograms
By the end of the lesson, the learner should be able to:

Convert kilograms to tonnes accurately
Apply conversion skills to solve problems
Show interest in mass conversions
Learners:
Apply the relationship that 1000 kg = 1 tonne
Convert various measurements from kilograms to tonnes
Solve word problems involving conversions
Share conversion strategies
How do we convert kilograms to tonnes?
MENTOR Mathematics Grade 6 Learner's Book, page 154
Conversion charts
Worksheets
Calculators
MENTOR Mathematics Grade 6 Learner's Book, page 155
MENTOR Mathematics Grade 6 Learner's Book, page 156
Addition worksheets
MENTOR Mathematics Grade 6 Learner's Book, page 157
Subtraction worksheets
Written exercise Oral questions Class assignment
9 4
2.0 Measurement
2.4 Mass - Multiplication of mass
2.4 Mass - Division of mass
2.4 Mass - Real-life applications of mass
By the end of the lesson, the learner should be able to:

Multiply masses in tonnes and kilograms by whole numbers
Regroup kilograms to tonnes when necessary
Show interest in mass calculations
Learners:
Multiply masses given in tonnes and kilograms by whole numbers
Regroup 1000 kg to 1 tonne when necessary
Solve word problems involving multiplication of mass
Share multiplication strategies
How do we multiply masses in tonnes and kilograms?
MENTOR Mathematics Grade 6 Learner's Book, page 158
Multiplication worksheets
Calculators
MENTOR Mathematics Grade 6 Learner's Book, page 159
Division worksheets
MENTOR Mathematics Grade 6 Learner's Book, page 160
Real-life examples
Reference materials
Written exercise Oral questions Observation
9 5
2.0 Measurement
2.4 Mass - Digital mass measurement
2.4 Mass - Consolidation activities
2.5 Time - a.m. and p.m. notation (10 Lessons)
By the end of the lesson, the learner should be able to:

Use digital tools for mass measurement
Appreciate technology in measurement
Show interest in modern measurement techniques
Learners:
Explore digital weighing tools and applications
Discuss advantages of digital measurement
Compare traditional and digital measurement methods
Present findings to the class
How has technology changed mass measurement?
MENTOR Mathematics Grade 6 Learner's Book, page 161
Digital weighing devices (if available)
Pictures of digital scales
MENTOR Mathematics Grade 6 Learner's Book, page 162
Review worksheets
Calculators
MENTOR Mathematics Grade 6 Learner's Book, page 163
Analog and digital clocks
Time charts
Practical assessment Observation Group presentation
10 1
2.0 Measurement
2.5 Time - Writing time in a.m. and p.m.
2.5 Time - 24-hour clock system
2.5 Time - Converting 12-hour to 24-hour time
By the end of the lesson, the learner should be able to:

Write time correctly using a.m. and p.m. notation
Apply 12-hour clock system in daily activities
Value accuracy in time expression
Learners:
Write various times using a.m. and p.m. notation
Create daily schedules using a.m. and p.m.
Discuss conventions for writing time
Share schedules with classmates
How do we write time using a.m. and p.m. notation?
MENTOR Mathematics Grade 6 Learner's Book, page 164
Time worksheets
Clocks
MENTOR Mathematics Grade 6 Learner's Book, page 165
24-hour clock displays
Time conversion charts
MENTOR Mathematics Grade 6 Learner's Book, page 166
Conversion worksheets
Time charts
Written exercise Group activities Project work
10 2
2.0 Measurement
2.5 Time - Converting 24-hour to 12-hour time
2.5 Time - Reading travel timetables
2.5 Time - Interpreting travel timetables
2.5 Time - Creating travel schedules
By the end of the lesson, the learner should be able to:

Convert time from 24-hour to 12-hour system
Apply conversion procedures accurately
Value systematic approaches to conversion
Learners:
Convert various times from 24-hour to 12-hour notation
Apply the rule that hours after 12 subtract 12 and add p.m.
Solve problems involving time conversion
Discuss conversion strategies
How do we convert time from 24-hour to 12-hour system?
MENTOR Mathematics Grade 6 Learner's Book, page 167
Conversion worksheets
Time charts
MENTOR Mathematics Grade 6 Learner's Book, page 168
Sample timetables
Worksheets
MENTOR Mathematics Grade 6 Learner's Book, page 169
Calculators
MENTOR Mathematics Grade 6 Learner's Book, page 170
Sample schedules
Planning templates
Written exercise Oral questions Observation
10 3
2.0 Measurement
2.5 Time - Digital time tools
2.5 Time - Consolidation activities
2.6 Money - Budgeting (8 Lessons)
By the end of the lesson, the learner should be able to:

Use digital tools for time management
Appreciate technology in time measurement
Show interest in modern time-keeping
Learners:
Explore digital time tools (clocks, watches, apps)
Discuss advantages of digital time-keeping
Compare traditional and digital time tools
Present findings to the class
How has technology changed the way we measure and manage time?
MENTOR Mathematics Grade 6 Learner's Book, page 171
Digital time devices (if available)
Pictures of digital tools
MENTOR Mathematics Grade 6 Learner's Book, page 172
Review worksheets
Clocks
MENTOR Mathematics Grade 6 Learner's Book, page 173
Sample budgets
Budget templates
Practical assessment Observation Oral presentation
10 4
2.0 Measurement
2.6 Money - Preparing simple budgets
2.6 Money - Buying and selling prices
2.6 Money - Calculating profit
By the end of the lesson, the learner should be able to:

Prepare simple budgets for various scenarios
Balance income and expenses in a budget
Show interest in personal financial management
Learners:
Create simple budgets for given scenarios
Categorize items as income or expenses
Calculate totals and determine if budget is balanced
Share budgets and discuss strategies
How do we prepare a balanced budget?
MENTOR Mathematics Grade 6 Learner's Book, page 174
Budget worksheets
Calculators
MENTOR Mathematics Grade 6 Learner's Book, page 175
Price lists
Role-play materials
MENTOR Mathematics Grade 6 Learner's Book, page 176
Profit calculation worksheets
Written exercise Project work Peer assessment
10 5
2.0 Measurement
2.6 Money - Calculating loss
2.6 Money - Types of taxes
2.6 Money - Income tax
2.6 Money - Value Added Tax (VAT)
By the end of the lesson, the learner should be able to:

Understand the concept of loss
Calculate loss from buying and selling prices
Show interest in business risk management
Learners:
Discuss the meaning of loss in business
Calculate loss using the formula: Loss = Buying Price - Selling Price
Solve problems involving loss calculation
Discuss scenarios that might lead to losses
How do we calculate loss in business?
MENTOR Mathematics Grade 6 Learner's Book, page 177
Loss calculation worksheets
Calculators
MENTOR Mathematics Grade 6 Learner's Book, page 178
Tax information materials
Sample receipts with tax
MENTOR Mathematics Grade 6 Learner's Book, page 179
Income tax worksheets
MENTOR Mathematics Grade 6 Learner's Book, page 180
Sample receipts
VAT calculation worksheets
Written exercise Oral questions Observation
11 1
2.0 Measurement
Geometry
Geometry
2.6 Money - Consolidation activities
Lines - Constructing parallel lines
Lines - Constructing parallel lines
By the end of the lesson, the learner should be able to:

Apply all concepts related to money management
Solve integrated problems involving budgeting, profit/loss, and taxation
Show confidence in financial literacy
Learners:
Review key concepts of money management
Solve mixed problems involving budgeting, profit/loss, and taxes
Assess their understanding of financial concepts
Discuss areas needing further practice
How do we apply financial literacy concepts in daily life?
MENTOR Mathematics Grade 6 Learner's Book, page 181
Review worksheets
Calculators
MENTOR Mathematics Learner's Book Grade 6, page 175
Geometrical instruments
Rulers
Objects with parallel lines
Compasses
Written assessment Project work Self-assessment
11 2
Geometry
Lines - Bisecting a line
Lines - Construction of perpendicular lines
By the end of the lesson, the learner should be able to:

explain what bisecting a line means
bisect lines by construction
appreciate use of lines in daily life

Learners trace given lines
Learners measure angles at points of intersection
Learners measure line segments and compare
Why do we need to draw lines?
MENTOR Mathematics Learner's Book Grade 6, page 177
Geometrical instruments
Protractors
Rulers
MENTOR Mathematics Learner's Book Grade 6, page 178
Compasses
MENTOR Mathematics Learner's Book Grade 6, page 179
Oral questions Written exercise Practical assessment
11 3
Geometry
Lines - Construction of perpendicular lines
Angles - Angles on a straight line
Angles - Measuring angles on a straight line
Angles - Working out sum of angles on a straight line
By the end of the lesson, the learner should be able to:

follow steps to construct perpendicular lines
construct perpendicular lines through a given point
show interest in applying line constructions in real life

Learners draw lines and mark points
Learners use compasses to make arcs
Learners connect intersection points to create perpendicular lines
Learners watch video clips on lines
Why do we need to draw lines?
MENTOR Mathematics Learner's Book Grade 6, page 180
Digital devices
Geometrical instruments
Internet resources
MENTOR Mathematics Learner's Book Grade 6, page 183
Pictures showing angles
Objects with angles
MENTOR Mathematics Learner's Book Grade 6, page 184
Protractors
Angle charts
MENTOR Mathematics Learner's Book Grade 6, page 185
Angle worksheets
Oral questions Written exercise Practical assessment
11 4
Geometry
Angles - Angles in a triangle
Angles - Angles in a rectangle
By the end of the lesson, the learner should be able to:

identify angles in a triangle
trace and examine triangles
appreciate the application of angles in triangular structures

Learners trace and cut out triangles
Learners cut angles of triangles and arrange them on straight lines
Learners discover that angles in a triangle sum up to 180°
Where can you use angles in real life?
MENTOR Mathematics Learner's Book Grade 6, page 187
Triangular cut-outs
Scissors
Paper
MENTOR Mathematics Learner's Book Grade 6, page 188
Protractors
Triangular shapes
Worksheets
MENTOR Mathematics Learner's Book Grade 6, page 189
Rectangular cut-outs
Oral questions Written exercise Practical assessment
11 5
Geometry
Angles - Constructing equilateral triangles
Angles - Constructing right angled triangles
By the end of the lesson, the learner should be able to:

identify properties of equilateral triangles
measure sides and angles of equilateral triangles
appreciate equilateral triangles in designs

Learners look at given triangles
Learners measure sides and angles of triangles
Learners discover that equilateral triangles have equal sides and angles
Where can you use angles in real life?
MENTOR Mathematics Learner's Book Grade 6, page 190
Triangular shapes
Rulers
Protractors
MENTOR Mathematics Learner's Book Grade 6, page 191
Geometrical instruments
Compasses
MENTOR Mathematics Learner's Book Grade 6, page 193
Set squares
Right-angled objects
Oral questions Written exercise Observation
12 1
Geometry
Angles - Constructing right angled triangles
Angles - Constructing isosceles triangles
Angles - Constructing isosceles triangles
3-D Objects - 3-D objects in the environment
By the end of the lesson, the learner should be able to:

follow steps to construct right-angled triangles
use geometric instruments correctly
appreciate the use of right angles in construction

Learners make sketches of right-angled triangles
Learners construct right angles using compasses
Learners complete triangles and verify 90° angles
Where can you use angles in real life?
MENTOR Mathematics Learner's Book Grade 6, page 194
Geometrical instruments
Compasses
Rulers
Protractors
MENTOR Mathematics Learner's Book Grade 6, page 195
Triangular shapes
MENTOR Mathematics Learner's Book Grade 6, page 196
MENTOR Mathematics Learner's Book Grade 6, page 200
3-D objects
Pictures of 3-D shapes
Oral questions Written exercise Practical assessment
12 2
Geometry
3-D Objects - Edges, faces and vertices
3-D Objects - Edges, faces and vertices in cubes
3-D Objects - Edges, faces and vertices in cuboids
By the end of the lesson, the learner should be able to:

define edges, faces, and vertices
identify edges, faces, and vertices on charts
show interest in properties of 3-D objects

Learners study charts showing cubes and cuboids
Learners identify faces, edges, and vertices
Learners understand that edges are where faces meet and vertices are where edges meet
How do we use containers in daily life?
MENTOR Mathematics Learner's Book Grade 6, page 201
Charts of 3-D objects
Cubes
Cuboids
MENTOR Mathematics Learner's Book Grade 6, page 202
Locally available materials
Cube models
Paper
MENTOR Mathematics Learner's Book Grade 6, page 203
Cuboid models
Oral questions Written exercise Group work
12 3
Geometry
Data Handling
3-D Objects - Edges, faces and vertices in cylinders
3-D Objects - Plane figures in 3-D objects
Bar Graphs - Preparing frequency tables to represent data
By the end of the lesson, the learner should be able to:

model cylinders using local materials
identify faces and edges in cylinders
show interest in cylindrical objects

Learners use locally available materials to model cylinders
Learners count faces and edges in open and closed cylinders
Learners share findings with other groups
How do we use containers in daily life?
MENTOR Mathematics Learner's Book Grade 6, page 204
Locally available materials
Cylinder models
Paper
MENTOR Mathematics Learner's Book Grade 6, page 205
Nets of 3-D objects
Cut-outs of rectangles, squares, and circles
MENTOR Mathematics Learner's Book Grade 6, page 207
Small sticks
Color charts
Tally cards
Oral questions Written exercise Practical assessment
12 4
Data Handling
Bar Graphs - Preparing frequency tables to represent data
Bar Graphs - Representing data using pictographs
Bar Graphs - Representing data using pictographs
Bar Graphs - Representing data through piling
By the end of the lesson, the learner should be able to:

collect data from real life situations
organize data in frequency tables
value the importance of data organization

Learners observe examples of frequency tables
Learners complete frequency tables with tally marks
Learners calculate frequencies from tally marks
How can bar graphs be used in real life situations?
MENTOR Mathematics Learner's Book Grade 6, page 208
Tally cards
Data collection sheets
Worksheets
MENTOR Mathematics Learner's Book Grade 6, page 209
Picture cards
Charts
Data tables
MENTOR Mathematics Learner's Book Grade 6, page 210
MENTOR Mathematics Learner's Book Grade 6, page 211
Empty matchboxes
Flashcards
Data charts
Oral questions Written exercise Individual work
12 5
Data Handling
Bar Graphs - Representing data through piling
Bar Graphs - Representing data using bar graphs
Bar Graphs - Representing data using bar graphs
Bar Graphs - Interpreting information from bar graphs
Bar Graphs - Interpreting information from bar graphs
By the end of the lesson, the learner should be able to:

organize data into piles
compare data through pile heights
appreciate visual representation of data

Learners observe data on wild animals
Learners represent the data by piling
Learners compare different pile heights to interpret data
How can bar graphs be used in real life situations?
MENTOR Mathematics Learner's Book Grade 6, page 212
Blocks or cubes
Data cards
Charts
MENTOR Mathematics Learner's Book Grade 6, page 213
Colored blocks
Graph paper
Rulers
MENTOR Mathematics Learner's Book Grade 6, page 215
Pencils
Data tables
MENTOR Mathematics Learner's Book Grade 6, page 217
Bar graphs
Chart paper
Worksheets
MENTOR Mathematics Learner's Book Grade 6, page 220
Oral questions Written exercise Group work

Your Name Comes Here


Download

Feedback