Home






SCHEME OF WORK
Geography
Form 3 2026
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1 2
External Land Forming Processes
Chemical Weathering Processes - Solution and Hydrolysis
By the end of the lesson, the learner should be able to:
Define chemical weathering as actual decay involving chemical reactions
Explain solution affecting rocks with soluble minerals
Describe hydrolysis as major process in feldspar decay
Analyze chemical equations and products of hydrolysis
Exposition of chemical weathering in humid climates; Discussion of solution process and salt pan formation; Detailed analysis of hydrolysis chemical equation; Study of feldspar breakdown products: clay minerals, potassium carbonate, silica; Examples from North Eastern Kenya, Etosha Pan, Makgadikgadi
Chemical equation charts, Examples of salt pans, Rock samples containing feldspar, Areas showing hydrolysis: Wundanyi, Bunyore
Secondary Geography Form 3 Student's Book, Pages 51-53
1 3
External Land Forming Processes
Chemical Weathering Processes - Solution and Hydrolysis
By the end of the lesson, the learner should be able to:
Define chemical weathering as actual decay involving chemical reactions
Explain solution affecting rocks with soluble minerals
Describe hydrolysis as major process in feldspar decay
Analyze chemical equations and products of hydrolysis
Exposition of chemical weathering in humid climates; Discussion of solution process and salt pan formation; Detailed analysis of hydrolysis chemical equation; Study of feldspar breakdown products: clay minerals, potassium carbonate, silica; Examples from North Eastern Kenya, Etosha Pan, Makgadikgadi
Chemical equation charts, Examples of salt pans, Rock samples containing feldspar, Areas showing hydrolysis: Wundanyi, Bunyore
Secondary Geography Form 3 Student's Book, Pages 51-53
1 4
External Land Forming Processes
Chemical Weathering Processes - Solution and Hydrolysis
By the end of the lesson, the learner should be able to:
Define chemical weathering as actual decay involving chemical reactions
Explain solution affecting rocks with soluble minerals
Describe hydrolysis as major process in feldspar decay
Analyze chemical equations and products of hydrolysis
Exposition of chemical weathering in humid climates; Discussion of solution process and salt pan formation; Detailed analysis of hydrolysis chemical equation; Study of feldspar breakdown products: clay minerals, potassium carbonate, silica; Examples from North Eastern Kenya, Etosha Pan, Makgadikgadi
Chemical equation charts, Examples of salt pans, Rock samples containing feldspar, Areas showing hydrolysis: Wundanyi, Bunyore
Secondary Geography Form 3 Student's Book, Pages 51-53
1 5
External Land Forming Processes
Chemical Weathering - Oxidation, Carbonation and Hydration
By the end of the lesson, the learner should be able to:
Explain oxidation process in iron-containing rocks
Describe carbonation affecting calcium carbonate rocks
Analyze hydration as water absorption causing rock expansion
Identify areas and examples of these weathering processes
Study of oxidation chemical equation and ferric oxide formation; Analysis of carbonation process using chemical equation; Discussion of limestone dissolution and calcium bicarbonate formation; Explanation of hydration process and spheroidal weathering; Examples from coastal limestone areas: Kambe, Bamburi, Kilifi
Chemical equation demonstrations, Rock samples showing oxidation effects, Limestone samples, Examples of spheroidal weathering in basalt
Secondary Geography Form 3 Student's Book, Pages 53-56
2

CONTINUOUS ASSESSMENT 1

2 3
External Land Forming Processes
Chemical Weathering Results and Biological Weathering
By the end of the lesson, the learner should be able to:
Identify formation of tors through deep weathering processes
Explain biological weathering through plant action
Describe animal contributions to weathering
Analyze human activities causing weathering
Analysis of tor formation using Figure 3.9; Study of examples: Bunyore, Maragoli, Amukura, Taita Hills, Lukenya, Mavoloni; Detailed discussion of tree root action using Figure 3.10; Examination of plant chemical contributions: algae, mosses, lichen; Analysis of animal effects: cattle pressure, burrowing, chemical excretions
Figure 3.9 tors examples, Figure 3.10 tree root action, Examples of biological weathering in local environment, Human activity examples
Secondary Geography Form 3 Student's Book, Pages 56-58
2 4
External Land Forming Processes
Significance of Weathering and Economic Importance
By the end of the lesson, the learner should be able to:
Explain weathering importance in soil formation processes
Describe weathering role in quarrying and construction industries
Identify weathering creating tourist attractions
Analyze economic products from weathering: bauxite, kaolite, clay
Exposition of weathering as initial stage in soil formation; Discussion of quarrying importance for building and construction; Analysis of tourist attractions: Kit Mikayi, Crying Stone using Figure 3.12; Study of economic products: bauxite from hydrolysis, kaolite from granite rotting, clay for pottery and bricks
Figure 3.12 Crying Stone of Kakamega, Examples of weathering tourist sites, Economic product samples, Engineering consideration examples
Secondary Geography Form 3 Student's Book, Pages 60-61
2 5
External Land Forming Processes
Significance of Weathering and Economic Importance
By the end of the lesson, the learner should be able to:
Explain weathering importance in soil formation processes
Describe weathering role in quarrying and construction industries
Identify weathering creating tourist attractions
Analyze economic products from weathering: bauxite, kaolite, clay
Exposition of weathering as initial stage in soil formation; Discussion of quarrying importance for building and construction; Analysis of tourist attractions: Kit Mikayi, Crying Stone using Figure 3.12; Study of economic products: bauxite from hydrolysis, kaolite from granite rotting, clay for pottery and bricks
Figure 3.12 Crying Stone of Kakamega, Examples of weathering tourist sites, Economic product samples, Engineering consideration examples
Secondary Geography Form 3 Student's Book, Pages 60-61
3 1
Mass Wasting
Introduction, Definition and Factors Influencing Mass Wasting
By the end of the lesson, the learner should be able to:
Define mass wasting as downward movement of weathered material under gravity
Distinguish between mass wasting and mass movement
Explain factors influencing mass wasting: slope, material nature, climate, vegetation
Analyze crustal forces and human activities effects
Q/A session reviewing weathering from previous chapter; Exposition of mass wasting concept and gravity influence; Discussion of water's role in overcoming resistance; Brain storming on factors affecting movement: slope angle, rock types, climate effects, vegetation role, human activities
Charts showing gravity effects, Slope demonstrations, Rock samples, Climate charts, Examples of human activities
Secondary Geography Form 3 Student's Book, Pages 53-54
3 2
Mass Wasting
Introduction, Definition and Factors Influencing Mass Wasting
By the end of the lesson, the learner should be able to:
Define mass wasting as downward movement of weathered material under gravity
Distinguish between mass wasting and mass movement
Explain factors influencing mass wasting: slope, material nature, climate, vegetation
Analyze crustal forces and human activities effects
Q/A session reviewing weathering from previous chapter; Exposition of mass wasting concept and gravity influence; Discussion of water's role in overcoming resistance; Brain storming on factors affecting movement: slope angle, rock types, climate effects, vegetation role, human activities
Charts showing gravity effects, Slope demonstrations, Rock samples, Climate charts, Examples of human activities
Secondary Geography Form 3 Student's Book, Pages 53-54
3 3
Mass Wasting
Introduction, Definition and Factors Influencing Mass Wasting
By the end of the lesson, the learner should be able to:
Define mass wasting as downward movement of weathered material under gravity
Distinguish between mass wasting and mass movement
Explain factors influencing mass wasting: slope, material nature, climate, vegetation
Analyze crustal forces and human activities effects
Q/A session reviewing weathering from previous chapter; Exposition of mass wasting concept and gravity influence; Discussion of water's role in overcoming resistance; Brain storming on factors affecting movement: slope angle, rock types, climate effects, vegetation role, human activities
Charts showing gravity effects, Slope demonstrations, Rock samples, Climate charts, Examples of human activities
Secondary Geography Form 3 Student's Book, Pages 53-54
3 4
Mass Wasting
Introduction, Definition and Factors Influencing Mass Wasting
By the end of the lesson, the learner should be able to:
Define mass wasting as downward movement of weathered material under gravity
Distinguish between mass wasting and mass movement
Explain factors influencing mass wasting: slope, material nature, climate, vegetation
Analyze crustal forces and human activities effects
Q/A session reviewing weathering from previous chapter; Exposition of mass wasting concept and gravity influence; Discussion of water's role in overcoming resistance; Brain storming on factors affecting movement: slope angle, rock types, climate effects, vegetation role, human activities
Charts showing gravity effects, Slope demonstrations, Rock samples, Climate charts, Examples of human activities
Secondary Geography Form 3 Student's Book, Pages 53-54
3 5
Mass Wasting
Slow Mass Wasting Processes
By the end of the lesson, the learner should be able to:
Define soil creep as slow movement involving fine soil particles
Describe scree (talus) creep as angular waste rock movement on mountains
Explain solifluction as gravitational flow of water-saturated materials
Identify triggers, evidence and effects of slow mass wasting processes
Exposition of soil creep using Figure 4.1 showing effects and evidence; Discussion of triggering factors and infrastructure impacts; Study of scree creep using Figure 4.2 from mountain examples; Analysis of solifluction using Figure 4.3 in cold climates; Examples from Mount Kenya, Kilimanjaro, and local areas
Figures 4.1, 4.2, 4.3, Examples from mountains, Soil movement demonstrations, Cold climate examples
Secondary Geography Form 3 Student's Book, Pages 54-56
4 1
Mass Wasting
Rapid Mass Wasting - Earthflows, Mudflows and Avalanches
By the end of the lesson, the learner should be able to:
Describe earthflows in humid areas with shallow scars and terminal points
Explain mudflows as super-saturated material with high water content
Define avalanches as gravitational fall of ice and rock material
Analyze factors influencing rapid movements and compare characteristics
Study of earthflows using Figure 4.4; Analysis of mudflow formation, factors and examples from North Eastern Kenya; Discussion of avalanche characteristics in temperate regions; Comparison of movement speeds, water content and locations; Examples from volcanic slopes and arctic regions
Figure 4.4 earthflows, Mudflow examples, Avalanche examples from temperate regions, Factor comparison charts
Secondary Geography Form 3 Student's Book, Pages 56-57
4 2
Mass Wasting
Landslides - Types and Characteristics
By the end of the lesson, the learner should be able to:
Explain landslides as sudden movement with small water content
Describe slump as intermittent movement with backward rotation
Distinguish debris slide, debris fall, rock fall and rock slide characteristics
Analyze examples from Kenya and East Africa: Fort Portal, Limuru-Longonot, road cuttings
Introduction to landslide causes and triggering factors; Study of slump development using Figures 4.5 and 4.6; Analysis of debris movements and rock movements; Examination of Kenyan examples: Kabarnet-Iten, Mwatate-Wundanyi, Kaseve roads; Discussion of infrastructure impacts and geological plane movements
Figures 4.5, 4.6 slump examples, Road cutting examples, Rock samples, Examples from Uganda and Kenya
Secondary Geography Form 3 Student's Book, Pages 57-60
4 3
Mass Wasting
Landslides - Types and Characteristics
By the end of the lesson, the learner should be able to:
Explain landslides as sudden movement with small water content
Describe slump as intermittent movement with backward rotation
Distinguish debris slide, debris fall, rock fall and rock slide characteristics
Analyze examples from Kenya and East Africa: Fort Portal, Limuru-Longonot, road cuttings
Introduction to landslide causes and triggering factors; Study of slump development using Figures 4.5 and 4.6; Analysis of debris movements and rock movements; Examination of Kenyan examples: Kabarnet-Iten, Mwatate-Wundanyi, Kaseve roads; Discussion of infrastructure impacts and geological plane movements
Figures 4.5, 4.6 slump examples, Road cutting examples, Rock samples, Examples from Uganda and Kenya
Secondary Geography Form 3 Student's Book, Pages 57-60
4 4
Mass Wasting
Landslides - Types and Characteristics
By the end of the lesson, the learner should be able to:
Explain landslides as sudden movement with small water content
Describe slump as intermittent movement with backward rotation
Distinguish debris slide, debris fall, rock fall and rock slide characteristics
Analyze examples from Kenya and East Africa: Fort Portal, Limuru-Longonot, road cuttings
Introduction to landslide causes and triggering factors; Study of slump development using Figures 4.5 and 4.6; Analysis of debris movements and rock movements; Examination of Kenyan examples: Kabarnet-Iten, Mwatate-Wundanyi, Kaseve roads; Discussion of infrastructure impacts and geological plane movements
Figures 4.5, 4.6 slump examples, Road cutting examples, Rock samples, Examples from Uganda and Kenya
Secondary Geography Form 3 Student's Book, Pages 57-60
4 5
Mass Wasting
Effects of Mass Wasting on Physical and Human Environment
By the end of the lesson, the learner should be able to:
Explain positive effects: soil fertility enhancement, tourist attractions, lake creation
Analyze negative effects: property damage, loss of life, soil erosion, permanent scars
Identify research centers and environmental awareness benefits
Study specific disaster examples and environmental conservation strategies
Comprehensive analysis using Figure 4.9 summary of mass wasting types; Discussion of positive effects: Miwa, Chemelil-Muhoroni soil fertility from Nandi Hills; Study of negative effects using Figure 4.10 Murang'a landslide; Analysis of major disasters: Kiina College 1968, Nyeri 1985, Murang'a 2000-2018; Environmental conservation strategies and research opportunities
Figures 4.9, 4.10, Soil fertility examples, Disaster case studies, Environmental conservation examples
Secondary Geography Form 3 Student's Book, Pages 60-61
5

CONTINUOUS ASSESSMENT 2

5 3
The Hydrological Cycle
Introduction and Definition
By the end of the lesson, the learner should be able to:
Define hydrological cycle as endless circulation of water from oceans to atmosphere to land
Explain role of sun as energy source driving the cycle
Identify components: inputs, outputs, transfers and storages
Describe hydrological cycle as complete balanced system
Q/A session using questions about water disappearance and return; Discussion of water circulation from sky to land to ocean; Exposition of hydrological cycle definition; Analysis of Figure 5.1 showing complete cycle; Study of system components and energy source
Figure 5.1 hydrological cycle diagram, Water circulation demonstrations, System component charts
Secondary Geography Form 3 Student's Book, Pages 63
5 4
The Hydrological Cycle
Introduction and Definition
By the end of the lesson, the learner should be able to:
Define hydrological cycle as endless circulation of water from oceans to atmosphere to land
Explain role of sun as energy source driving the cycle
Identify components: inputs, outputs, transfers and storages
Describe hydrological cycle as complete balanced system
Q/A session using questions about water disappearance and return; Discussion of water circulation from sky to land to ocean; Exposition of hydrological cycle definition; Analysis of Figure 5.1 showing complete cycle; Study of system components and energy source
Figure 5.1 hydrological cycle diagram, Water circulation demonstrations, System component charts
Secondary Geography Form 3 Student's Book, Pages 63
5 5
The Hydrological Cycle
Introduction and Definition
By the end of the lesson, the learner should be able to:
Define hydrological cycle as endless circulation of water from oceans to atmosphere to land
Explain role of sun as energy source driving the cycle
Identify components: inputs, outputs, transfers and storages
Describe hydrological cycle as complete balanced system
Q/A session using questions about water disappearance and return; Discussion of water circulation from sky to land to ocean; Exposition of hydrological cycle definition; Analysis of Figure 5.1 showing complete cycle; Study of system components and energy source
Figure 5.1 hydrological cycle diagram, Water circulation demonstrations, System component charts
Secondary Geography Form 3 Student's Book, Pages 63
6 1
The Hydrological Cycle
Input and Output Processes
By the end of the lesson, the learner should be able to:
Identify precipitation as main input in various forms: dew, rainfall, mist, snow, fog
Explain evaporation as physical process of moisture loss to atmosphere
Describe transpiration as biological process of water loss from plants
Analyze factors affecting evaporation and transpiration rates
Exposition of precipitation forms and conditions for occurrence; Detailed discussion of evaporation process and factors: humidity, temperature, wind, sunshine hours, water characteristics; Analysis of transpiration through stomata and lenticles; Study of evapotranspiration as combined process
Precipitation examples, Evaporation demonstration materials, Plant samples showing stomata, Factor analysis charts
Secondary Geography Form 3 Student's Book, Pages 63-65
6 2
The Hydrological Cycle
Input and Output Processes
By the end of the lesson, the learner should be able to:
Identify precipitation as main input in various forms: dew, rainfall, mist, snow, fog
Explain evaporation as physical process of moisture loss to atmosphere
Describe transpiration as biological process of water loss from plants
Analyze factors affecting evaporation and transpiration rates
Exposition of precipitation forms and conditions for occurrence; Detailed discussion of evaporation process and factors: humidity, temperature, wind, sunshine hours, water characteristics; Analysis of transpiration through stomata and lenticles; Study of evapotranspiration as combined process
Precipitation examples, Evaporation demonstration materials, Plant samples showing stomata, Factor analysis charts
Secondary Geography Form 3 Student's Book, Pages 63-65
6 3
The Hydrological Cycle
Input and Output Processes
By the end of the lesson, the learner should be able to:
Identify precipitation as main input in various forms: dew, rainfall, mist, snow, fog
Explain evaporation as physical process of moisture loss to atmosphere
Describe transpiration as biological process of water loss from plants
Analyze factors affecting evaporation and transpiration rates
Exposition of precipitation forms and conditions for occurrence; Detailed discussion of evaporation process and factors: humidity, temperature, wind, sunshine hours, water characteristics; Analysis of transpiration through stomata and lenticles; Study of evapotranspiration as combined process
Precipitation examples, Evaporation demonstration materials, Plant samples showing stomata, Factor analysis charts
Secondary Geography Form 3 Student's Book, Pages 63-65
6 4
The Hydrological Cycle
Input and Output Processes
By the end of the lesson, the learner should be able to:
Identify precipitation as main input in various forms: dew, rainfall, mist, snow, fog
Explain evaporation as physical process of moisture loss to atmosphere
Describe transpiration as biological process of water loss from plants
Analyze factors affecting evaporation and transpiration rates
Exposition of precipitation forms and conditions for occurrence; Detailed discussion of evaporation process and factors: humidity, temperature, wind, sunshine hours, water characteristics; Analysis of transpiration through stomata and lenticles; Study of evapotranspiration as combined process
Precipitation examples, Evaporation demonstration materials, Plant samples showing stomata, Factor analysis charts
Secondary Geography Form 3 Student's Book, Pages 63-65
6 5
The Hydrological Cycle
Input and Output Processes
By the end of the lesson, the learner should be able to:
Identify precipitation as main input in various forms: dew, rainfall, mist, snow, fog
Explain evaporation as physical process of moisture loss to atmosphere
Describe transpiration as biological process of water loss from plants
Analyze factors affecting evaporation and transpiration rates
Exposition of precipitation forms and conditions for occurrence; Detailed discussion of evaporation process and factors: humidity, temperature, wind, sunshine hours, water characteristics; Analysis of transpiration through stomata and lenticles; Study of evapotranspiration as combined process
Precipitation examples, Evaporation demonstration materials, Plant samples showing stomata, Factor analysis charts
Secondary Geography Form 3 Student's Book, Pages 63-65
7 1
The Hydrological Cycle
Internal Transfer Processes
By the end of the lesson, the learner should be able to:
Explain interception as first contact of rain with vegetation
Describe runoff as overland flow when ground cannot absorb water
Define infiltration as vertical water absorption through soil pores
Distinguish percolation as movement through underlying rock layers
Study of interception storage and through fall processes; Analysis of surface storage and ground saturation; Discussion of runoff conditions and overland flow; Examination of infiltration capacity and factors; Study of percolation leading to underground water storage
Vegetation interception examples, Runoff demonstration materials, Soil infiltration samples, Percolation process diagrams
Secondary Geography Form 3 Student's Book, Pages 65-66
7 2
The Hydrological Cycle
Internal Transfer Processes
By the end of the lesson, the learner should be able to:
Explain interception as first contact of rain with vegetation
Describe runoff as overland flow when ground cannot absorb water
Define infiltration as vertical water absorption through soil pores
Distinguish percolation as movement through underlying rock layers
Study of interception storage and through fall processes; Analysis of surface storage and ground saturation; Discussion of runoff conditions and overland flow; Examination of infiltration capacity and factors; Study of percolation leading to underground water storage
Vegetation interception examples, Runoff demonstration materials, Soil infiltration samples, Percolation process diagrams
Secondary Geography Form 3 Student's Book, Pages 65-66
7 3
The Hydrological Cycle
Internal Transfer Processes
By the end of the lesson, the learner should be able to:
Explain interception as first contact of rain with vegetation
Describe runoff as overland flow when ground cannot absorb water
Define infiltration as vertical water absorption through soil pores
Distinguish percolation as movement through underlying rock layers
Study of interception storage and through fall processes; Analysis of surface storage and ground saturation; Discussion of runoff conditions and overland flow; Examination of infiltration capacity and factors; Study of percolation leading to underground water storage
Vegetation interception examples, Runoff demonstration materials, Soil infiltration samples, Percolation process diagrams
Secondary Geography Form 3 Student's Book, Pages 65-66
7 4
The Hydrological Cycle
Internal Transfer Processes
By the end of the lesson, the learner should be able to:
Explain interception as first contact of rain with vegetation
Describe runoff as overland flow when ground cannot absorb water
Define infiltration as vertical water absorption through soil pores
Distinguish percolation as movement through underlying rock layers
Study of interception storage and through fall processes; Analysis of surface storage and ground saturation; Discussion of runoff conditions and overland flow; Examination of infiltration capacity and factors; Study of percolation leading to underground water storage
Vegetation interception examples, Runoff demonstration materials, Soil infiltration samples, Percolation process diagrams
Secondary Geography Form 3 Student's Book, Pages 65-66
7 5
The Hydrological Cycle
Storage Processes and Significance
By the end of the lesson, the learner should be able to:
Identify surface water storage: seas, oceans, lakes, swamps
Describe ground water storage above impermeable rocks creating water table
Explain cryosphere as water stored in ice-covered regions
Analyze significance of hydrological cycle in ecological balance and distribution
Discussion of surface water storage through rivers to seas and lakes; Analysis of ground water formation through percolation and infiltration; Study of cryosphere as fresh water store; Examination of cycle significance: ecological balance, rainfall formation, atmospheric unity, oxygen-carbon cycle, water distribution
Water storage examples, Ground water table diagrams, Ice storage examples, Significance analysis charts
Secondary Geography Form 3 Student's Book, Pages 66-67
8 1
LAKES
Other Lake Types - Wind Erosion, Solution, and Human-made
By the end of the lesson, the learner should be able to:
Describe wind erosion lakes through deflation to water table. Explain solution lakes in limestone areas (sink holes). Identify human-made lakes behind dams (Masinga, Volta, Kariba, Nasser).
Discussion of oasis formation through wind erosion. Explanation of solution processes in limestone using chalk demonstration. Review of major African dams and their lakes.
Pieces of chalk, water container, chalkboard, atlas
KLB Secondary Geography Form 3, Pages 108-109
8 2
LAKES
Other Lake Types - Wind Erosion, Solution, and Human-made
By the end of the lesson, the learner should be able to:
Describe wind erosion lakes through deflation to water table. Explain solution lakes in limestone areas (sink holes). Identify human-made lakes behind dams (Masinga, Volta, Kariba, Nasser).
Discussion of oasis formation through wind erosion. Explanation of solution processes in limestone using chalk demonstration. Review of major African dams and their lakes.
Pieces of chalk, water container, chalkboard, atlas
KLB Secondary Geography Form 3, Pages 108-109
8 3
LAKES
Other Lake Types - Wind Erosion, Solution, and Human-made
By the end of the lesson, the learner should be able to:
Describe wind erosion lakes through deflation to water table. Explain solution lakes in limestone areas (sink holes). Identify human-made lakes behind dams (Masinga, Volta, Kariba, Nasser).
Discussion of oasis formation through wind erosion. Explanation of solution processes in limestone using chalk demonstration. Review of major African dams and their lakes.
Pieces of chalk, water container, chalkboard, atlas
KLB Secondary Geography Form 3, Pages 108-109
8 4
LAKES
Lake Classification Summary and Regional Examples
By the end of the lesson, the learner should be able to:
Consolidate all lake formation types. Compare characteristics of different lake types. Analyze distribution patterns of lakes in East Africa and beyond.
Creating comprehensive classification table on chalkboard. Students copy into exercise books. Group discussions on different lake formation processes.
Chalkboard, chalk, exercise books, atlas
KLB Secondary Geography Form 3, Pages 100-109
8 5
LAKES
Lake Classification Summary and Regional Examples
By the end of the lesson, the learner should be able to:
Consolidate all lake formation types. Compare characteristics of different lake types. Analyze distribution patterns of lakes in East Africa and beyond.
Creating comprehensive classification table on chalkboard. Students copy into exercise books. Group discussions on different lake formation processes.
Chalkboard, chalk, exercise books, atlas
KLB Secondary Geography Form 3, Pages 100-109
11-14

END OF TERM EXAMS


Your Name Comes Here


Download

Feedback