If this scheme pleases you, click here to download.
| WK | LSN | STRAND | SUB-STRAND | LESSON LEARNING OUTCOMES | LEARNING EXPERIENCES | KEY INQUIRY QUESTIONS | LEARNING RESOURCES | ASSESSMENT METHODS | REFLECTION |
|---|---|---|---|---|---|---|---|---|---|
| 2 | 1 |
Numbers
|
Integers - Addition of positive integers to positive integers
|
By the end of the
lesson, the learner
should be able to:
- Define integers and identify positive integers - Add positive integers to positive integers - Show interest in learning about integers |
- Use number cards with positive signs to demonstrate addition of integers
- Draw tables and arrange cards to work out addition - Discuss real-life scenarios involving addition of positive integers - Use counters to visualize addition operations |
How do we add positive integers in real-life situations?
|
- Master Mathematics Grade 9 pg. 1
- Number cards - Counters with positive signs - Charts - Number lines |
- Observation
- Oral questions
- Written assignments
|
|
| 2 | 2 |
Numbers
|
Integers - Addition of negative integers to negative integers
Integers - Addition of negative to positive integers and subtraction of integers Integers - Multiplication and division of integers Integers - Combined operations on integers and applications |
By the end of the
lesson, the learner
should be able to:
- Identify negative integers - Add negative integers to negative integers - Appreciate the use of negative integers in daily life |
- Use number cards with negative signs to demonstrate addition
- Arrange cards in rows to show addition of negative integers - Discuss real-life applications involving temperature and borrowing money - Use number lines to visualize operations |
How do we represent and add negative numbers in everyday situations?
|
- Master Mathematics Grade 9 pg. 1
- Number cards with negative signs - Number lines - Thermometers - Charts - Counters - Digital devices - Internet access - Drawing materials - Charts showing triangles - Number cards - Reference books |
- Observation
- Oral questions
- Written tests
|
|
| 2 | 3 |
Numbers
|
Cubes and Cube Roots - Cubes of numbers by multiplication
Cubes and Cube Roots - Cubes of numbers from mathematical tables Cubes and Cube Roots - Cube roots by factor method Cubes and Cube Roots - Cube roots from mathematical tables |
By the end of the
lesson, the learner
should be able to:
- Define the cube of a number - Work out cubes of whole numbers, decimals and fractions by multiplication - Show interest in finding cubes of numbers |
- Use stacks of dice to demonstrate the concept of cubes
- Count dice representing length, width, and height - Multiply numbers three times to find cubes - Work out cubes of mixed numbers and fractions |
How do we work out the cubes of numbers?
|
- Master Mathematics Grade 9 pg. 12
- Dice or cubes - Number cards - Charts - Drawing materials - Mathematical tables - Calculators - Charts showing sample tables - Factor trees diagrams - Reference books |
- Observation
- Oral questions
- Written tests
|
|
| 2 | 4 |
Numbers
|
Cubes and Cube Roots - Using calculators and real-life applications
|
By the end of the
lesson, the learner
should be able to:
- Identify calculator functions for cubes and cube roots - Use calculators to find cubes and cube roots - Show confidence in using digital tools |
- Key in numbers and use x³ function on calculators
- Use shift and ∛ functions to find cube roots - Solve problems involving cubic boxes, tanks, and containers - Calculate lengths of cubes from given volumes |
Where do we apply cubes and cube roots in real-life situations?
|
- Master Mathematics Grade 9 pg. 12
- Calculators - Digital devices - Models of cubes - Internet access |
- Observation
- Oral questions
- Written tests
- Project work
|
|
| 2 | 5 |
Numbers
|
Indices and Logarithms - Expressing numbers in index form
Indices and Logarithms - Multiplication and division laws of indices |
By the end of the
lesson, the learner
should be able to:
- Define base and index - Express numbers in index form using prime factors - Appreciate the use of index notation |
- Use factor trees to express numbers as products of prime factors
- Count the number of times each prime factor appears - Express numbers in the form xⁿ where x is the base and n is the index - Solve for unknown bases or indices |
How do we express numbers in powers?
|
- Master Mathematics Grade 9 pg. 24
- Number cards - Factor tree charts - Drawing materials - Charts - Mathematical tables |
- Observation
- Oral questions
- Written assignments
|
|
| 3 | 1 |
Numbers
|
Indices and Logarithms - Power law and zero indices
Indices and Logarithms - Negative and fractional indices |
By the end of the
lesson, the learner
should be able to:
- Explain the power law for indices - Apply the power law and zero indices to simplify expressions - Appreciate the patterns in indices |
- Work with indices in brackets and multiply the powers
- Use factor method and division law to discover zero indices - Use calculators to verify that any number to power zero equals 1 - Simplify expressions combining different laws |
Why does any number to power zero equal one?
|
- Master Mathematics Grade 9 pg. 24
- Calculators - Charts - Reference books - Mathematical tables |
- Observation
- Oral questions
- Written assignments
|
|
| 3 | 2 |
Numbers
|
Indices and Logarithms - Applications of laws of indices
Indices and Logarithms - Powers of 10 and common logarithms |
By the end of the
lesson, the learner
should be able to:
- Identify equations involving indices - Solve equations and simultaneous equations with indices - Appreciate the importance of indices |
- Solve for unknowns by equating indices
- Work out simultaneous equations involving indices - Discuss real-life applications of indices - Use IT devices to explore more on indices |
How do we use indices to solve equations?
|
- Master Mathematics Grade 9 pg. 24
- Digital devices - Internet access - Mathematical tables - Reference books - Charts |
- Observation
- Oral questions
- Written assignments
|
|
| 3 | 3 |
Numbers
|
Compound Proportions and Rates of Work - Dividing quantities into proportional parts
Compound Proportions and Rates of Work - Dividing quantities into proportional parts (continued) |
By the end of the
lesson, the learner
should be able to:
- Define proportion and proportional parts - Divide quantities into proportional parts accurately - Appreciate fair sharing of resources |
- Discuss the concept of proportion and proportional parts
- Calculate total number of proportional parts - Share quantities in given ratios - Solve problems involving sharing profits, land, and resources |
What are proportions and how do we share quantities fairly?
|
- Master Mathematics Grade 9 pg. 33
- Number cards - Charts - Reference materials - Calculators - Real objects for sharing |
- Observation
- Oral questions
- Written assignments
|
|
| 3 | 4 |
Numbers
|
Compound Proportions and Rates of Work - Relating different ratios
|
By the end of the
lesson, the learner
should be able to:
- Identify when ratios are related - Relate two or more ratios accurately - Appreciate the connections between ratios |
- Draw number lines to show proportional relationships
- Find distances and relate ratios on number lines - Identify when numbers are in proportion - Use cross multiplication to solve proportions |
How do we determine if ratios are related?
|
- Master Mathematics Grade 9 pg. 33
- Number lines - Drawing materials - Charts - Reference books |
- Observation
- Oral questions
- Written assignments
|
|
| 3 | 5 |
Numbers
|
Compound Proportions and Rates of Work - Continuous proportion
Compound Proportions and Rates of Work - Working out compound proportions using ratio method |
By the end of the
lesson, the learner
should be able to:
- Define continuous proportion - Determine missing values in continuous proportions - Show interest in proportional patterns |
- Work with four numbers in continuous proportion
- Use the relationship a:b = c:d to solve problems - Find unknown values in proportional sequences - Apply continuous proportion to harvest and measurement problems |
How do we work with continuous proportions?
|
- Master Mathematics Grade 9 pg. 33
- Number cards - Charts - Calculators - Pictures and photos - Measuring tools |
- Observation
- Oral questions
- Written tests
|
|
| 4 | 1 |
Numbers
|
Compound Proportions and Rates of Work - Compound proportions (continued)
Compound Proportions and Rates of Work - Introduction to rates of work |
By the end of the
lesson, the learner
should be able to:
- Identify compound proportion problems - Solve various compound proportion problems - Show accuracy in calculations |
- Work out dimensions of similar rectangles
- Calculate materials needed in construction maintaining ratios - Solve problems on imports, school enrollment, and harvests - Discuss consumer awareness in proportional buying |
How do we maintain constant ratios in different situations?
|
- Master Mathematics Grade 9 pg. 33
- Rectangles and shapes - Calculators - Reference materials - Stopwatch or timer - Classroom furniture - Charts |
- Observation
- Oral questions
- Written tests
|
|
| 4 | 2 |
Numbers
|
Compound Proportions and Rates of Work - Calculating rates of work with two variables
Compound Proportions and Rates of Work - Rates of work with three variables |
By the end of the
lesson, the learner
should be able to:
- Identify increasing and decreasing ratios - Calculate workers needed for specific time periods - Show systematic problem-solving skills |
- Solve problems involving men and days
- Determine when to use increasing and decreasing ratios - Calculate additional workers needed - Practice with work completion scenarios |
How do we calculate the number of workers needed to complete work in a given time?
|
- Master Mathematics Grade 9 pg. 33
- Charts showing worker-day relationships - Calculators - Reference books - Charts - Real-world work scenarios |
- Observation
- Oral questions
- Written tests
|
|
| 4 | 3 |
Numbers
|
Compound Proportions and Rates of Work - More rate of work problems
Compound Proportions and Rates of Work - Applications of rates of work |
By the end of the
lesson, the learner
should be able to:
- Identify different types of rate problems - Determine resources needed for various tasks - Appreciate practical applications of mathematics |
- Calculate tractors needed for field cultivation
- Determine teachers required for lesson allocation - Work out lorries needed for transportation - Solve water pump flow rate problems |
How do we apply rates of work to different real-life situations?
|
- Master Mathematics Grade 9 pg. 33
- Calculators - Charts showing different scenarios - Reference materials - Digital devices - Charts - Reference books |
- Observation
- Oral questions
- Written tests
|
|
| 4 | 4 |
Numbers
|
Compound Proportions and Rates of Work - Using IT and comprehensive applications
|
By the end of the
lesson, the learner
should be able to:
- Identify IT tools for solving rate problems - Use IT devices to work on rates of work - Appreciate the use of compound proportions and rates in real life |
- Use digital devices to solve rate problems
- Play creative games on rates and proportions - Review and consolidate all concepts covered - Discuss careers involving proportions and rates |
How do we use technology to solve compound proportion and rate problems?
|
- Master Mathematics Grade 9 pg. 33
- Digital devices - Internet access - Educational games - Reference materials |
- Observation
- Oral questions
- Written tests
- Project work
|
|
| 4 | 5 |
Algebra
|
Matrices - Identifying a matrix
Matrices - Determining the order of a matrix |
By the end of the
lesson, the learner
should be able to:
- Define a matrix and identify rows and columns - Identify matrices in different situations - Appreciate the organization of items in rows and columns |
- Discuss how items are organised on supermarket shelves
- Observe sitting arrangements of learners in the classroom - Study tables showing football league standings and calendars - Identify rows and columns in different arrangements |
How do we organize items in rows and columns in real life?
|
- Master Mathematics Grade 9 pg. 42
- Charts showing matrices - Calendar samples - Tables and schedules - Mathematical tables - Charts showing different matrix types - Digital devices |
- Observation
- Oral questions
- Written assignments
|
|
| 5 | 1 |
Algebra
|
Matrices - Determining the position of items in a matrix
Matrices - Position of items and equal matrices |
By the end of the
lesson, the learner
should be able to:
- Explain how to identify position of elements in a matrix - Determine the position of items in terms of rows and columns - Show accuracy in identifying matrix elements |
- Study classroom sitting arrangements in matrix form
- Describe positions using row and column notation - Identify elements using subscript notation - Work with calendars and football league tables |
How do we locate specific items in a matrix?
|
- Master Mathematics Grade 9 pg. 42
- Classroom seating charts - Calendar samples - Football league tables - Number cards - Matrix charts - Real objects arranged in matrices |
- Observation
- Oral questions
- Written assignments
|
|
| 5 | 2 |
Algebra
|
Matrices - Determining compatibility for addition and subtraction
Matrices - Addition of matrices |
By the end of the
lesson, the learner
should be able to:
- Define compatible matrices - Determine compatibility of matrices for addition and subtraction - Show understanding of matrix order requirements |
- Study classroom stream arrangements with same sitting positions
- Compare orders of different matrices - Identify matrices that can be added or subtracted - Determine which matrices have the same order |
When can we add or subtract matrices?
|
- Master Mathematics Grade 9 pg. 42
- Charts showing matrix orders - Classroom arrangement diagrams - Reference materials - Number cards with matrices - Charts - Calculators |
- Observation
- Oral questions
- Written assignments
|
|
| 5 | 3 |
Algebra
|
Matrices - Subtraction of matrices
Matrices - Combined operations and applications |
By the end of the
lesson, the learner
should be able to:
- Explain the process of subtracting matrices - Subtract compatible matrices accurately - Appreciate the importance of corresponding positions |
- Identify elements in corresponding positions in matrices
- Subtract matrices by subtracting corresponding elements - Work out matrix subtraction problems - Verify compatibility before subtracting |
How do we subtract matrices?
|
- Master Mathematics Grade 9 pg. 42
- Number cards - Matrix charts - Reference books - Digital devices - Real-world data tables - Reference materials |
- Observation
- Oral questions
- Written assignments
|
|
| 5 | 4 |
Algebra
|
Equations of a Straight Line - Identifying the gradient in real life
|
By the end of the
lesson, the learner
should be able to:
- Define gradient and slope - Identify gradients in real-life situations - Appreciate the concept of steepness |
- Search for the meaning of gradient using digital devices
- Identify slopes in pictures of hills, roofs, stairs, and ramps - Discuss steepness in different structures - Observe slopes in the immediate environment |
What is a gradient and where do we see it in real life?
|
- Master Mathematics Grade 9 pg. 57
- Pictures showing slopes - Digital devices - Internet access - Charts |
- Observation
- Oral questions
- Written assignments
|
|
| 5 | 5 |
Algebra
|
Equations of a Straight Line - Gradient as ratio of rise to run
Equations of a Straight Line - Determining gradient from two known points |
By the end of the
lesson, the learner
should be able to:
- Define rise and run in relation to gradient - Calculate gradient as ratio of vertical to horizontal distance - Show understanding of positive and negative gradients |
- Identify vertical distance (rise) and horizontal distance (run)
- Work out gradient using the formula gradient = rise/run - Use adjustable ladders to demonstrate different gradients - Complete tables showing different ladder positions |
How do we calculate the slope or gradient?
|
- Master Mathematics Grade 9 pg. 57
- Ladders or models - Measuring tools - Charts - Reference books - Graph paper - Rulers - Plotting tools - Digital devices |
- Observation
- Oral questions
- Written tests
|
|
| 6 | 1 |
Algebra
|
Equations of a Straight Line - Types of gradients
Equations of a Straight Line - Equation given two points |
By the end of the
lesson, the learner
should be able to:
- Identify the four types of gradients - Distinguish between positive, negative, zero and undefined gradients - Show interest in gradient patterns |
- Study lines with positive gradients (rising from left to right)
- Study lines with negative gradients (falling from left to right) - Identify horizontal lines with zero gradient - Identify vertical lines with undefined gradient |
What are the different types of gradients?
|
- Master Mathematics Grade 9 pg. 57
- Graph paper - Charts showing gradient types - Digital devices - Internet access - Number cards - Charts - Reference books |
- Observation
- Oral questions
- Written tests
|
|
| 6 | 2 |
Algebra
|
Equations of a Straight Line - More practice on equations from two points
Equations of a Straight Line - Equation from a point and gradient |
By the end of the
lesson, the learner
should be able to:
- Identify the steps in finding equations from coordinates - Work out equations of lines passing through two points - Appreciate the application to geometric shapes |
- Find equations of lines through various point pairs
- Determine equations of sides of triangles and parallelograms - Practice with different types of coordinate pairs - Verify equations by substitution |
How do we apply equations of lines to geometric shapes?
|
- Master Mathematics Grade 9 pg. 57
- Graph paper - Plotting tools - Geometric shapes - Calculators - Number cards - Charts - Reference materials |
- Observation
- Oral questions
- Written tests
|
|
| 6 | 3 |
Algebra
|
Equations of a Straight Line - Applications of point-gradient method
Equations of a Straight Line - Expressing in the form y = mx + c |
By the end of the
lesson, the learner
should be able to:
- Identify problems involving point and gradient - Apply the point-gradient method to various situations - Appreciate practical applications of linear equations |
- Work out equations of lines with different gradients and points
- Solve problems involving edges of squares and sides of triangles - Find unknown coordinates using equations - Determine missing values in linear relationships |
How do we use point-gradient method in different situations?
|
- Master Mathematics Grade 9 pg. 57
- Graph paper - Calculators - Geometric shapes - Reference books - Number cards - Charts - Reference materials |
- Observation
- Oral questions
- Written tests
|
|
| 6 | 4 |
Algebra
|
Equations of a Straight Line - More practice on y = mx + c form
Equations of a Straight Line - Interpreting y = mx + c |
By the end of the
lesson, the learner
should be able to:
- Identify equations that need conversion - Convert various equations to y = mx + c form - Appreciate the standard form of linear equations |
- Express equations from two points in y = mx + c form
- Express equations from point and gradient in y = mx + c form - Practice with different types of linear equations - Verify transformed equations |
How do we apply the y = mx + c form to different equations?
|
- Master Mathematics Grade 9 pg. 57
- Graph paper - Calculators - Charts - Reference books - Plotting tools - Digital devices |
- Observation
- Oral questions
- Written tests
|
|
| 6 | 5 |
Algebra
|
Equations of a Straight Line - Finding gradient and y-intercept from equations
|
By the end of the
lesson, the learner
should be able to:
- Identify m and c from equations in standard form - Determine gradient and y-intercept from various equations - Appreciate the relationship between equation and graph |
- Complete tables showing equations, gradients, and y-intercepts
- Extract m and c values from equations - Convert equations to y = mx + c form first if needed - Verify values by graphing |
How do we read gradient and y-intercept from equations?
|
- Master Mathematics Grade 9 pg. 57
- Charts with tables - Calculators - Graph paper - Reference materials |
- Observation
- Oral questions
- Written tests
|
|
| 7 | 1 |
Algebra
|
Equations of a Straight Line - Determining x-intercepts
Equations of a Straight Line - Determining y-intercepts |
By the end of the
lesson, the learner
should be able to:
- Define x-intercept of a line - Determine x-intercepts from equations - Show understanding that y = 0 at x-intercept |
- Observe where lines cross the x-axis on graphs
- Note that y-coordinate is 0 at x-intercept - Substitute y = 0 in equations to find x-intercept - Work out x-intercepts from various equations |
What is the x-intercept and how do we find it?
|
- Master Mathematics Grade 9 pg. 57
- Graph paper - Plotting tools - Charts - Reference books - Calculators |
- Observation
- Oral questions
- Written assignments
|
|
| 7 | 2 |
Algebra
|
Equations of a Straight Line - Finding equations from intercepts
Linear Inequalities - Solving linear inequalities in one unknown |
By the end of the
lesson, the learner
should be able to:
- Explain how to find equations from x and y intercepts - Determine equations given both intercepts - Appreciate the use of intercepts as two points |
- Use x-intercept and y-intercept as two points on the line
- Write coordinates as (x-intercept, 0) and (0, y-intercept) - Calculate gradient from these two points - Use point-gradient method to find equation |
How do we find the equation from the intercepts?
|
- Master Mathematics Grade 9 pg. 57
- Graph paper - Number cards - Charts - Reference materials - Master Mathematics Grade 9 pg. 72 - Number lines - Reference books |
- Observation
- Oral questions
- Written assignments
|
|
| 7 | 3 |
Algebra
|
Linear Inequalities - Multiplication and division by negative numbers
Linear Inequalities - Graphical representation in one unknown |
By the end of the
lesson, the learner
should be able to:
- Explain the effect of multiplying/dividing by negative numbers - Solve inequalities involving multiplication and division - Appreciate that inequality sign reverses with negative operations |
- Solve inequalities and test with integer substitution
- Observe that inequality sign reverses when multiplying/dividing by negative - Compare solutions with and without sign reversal - Work out various inequality problems |
What happens to the inequality sign when we multiply or divide by a negative number?
|
- Master Mathematics Grade 9 pg. 72
- Number lines - Number cards - Charts - Calculators - Graph paper - Rulers - Plotting tools |
- Observation
- Oral questions
- Written assignments
|
|
| 7 | 4 |
Algebra
|
Linear Inequalities - Linear inequalities in two unknowns
Linear Inequalities - Graphical representation in two unknowns |
By the end of the
lesson, the learner
should be able to:
- Identify linear inequalities in two unknowns - Solve linear inequalities with two variables - Appreciate the relationship between equations and inequalities |
- Generate tables of values for linear equations
- Change inequalities to equations - Plot points and draw boundary lines - Test points to determine correct regions |
How do we work with inequalities that have two unknowns?
|
- Master Mathematics Grade 9 pg. 72
- Graph paper - Plotting tools - Tables for values - Calculators - Rulers and plotting tools - Digital devices - Reference materials |
- Observation
- Oral questions
- Written assignments
|
|
| 7 | 5 |
Algebra
|
Linear Inequalities - Applications to real-life situations
|
By the end of the
lesson, the learner
should be able to:
- Identify real-life situations involving inequalities - Apply linear inequalities to solve real-life problems - Appreciate the use of inequalities in planning and budgeting |
- Solve problems on wedding planning with budget constraints
- Work on train passenger capacity problems - Solve worker hiring and payment problems - Play creative games involving inequalities - Apply to school trips, tree planting, and other scenarios |
How do we use inequalities to solve real-life problems?
|
- Master Mathematics Grade 9 pg. 72
- Digital devices - Real-world scenarios - Charts - Reference materials |
- Observation
- Oral questions
- Written tests
- Project work
|
|
| 8 |
Midterm |
||||||||
| 9 | 1 |
Measurements
|
Area - Area of a pentagon
Area - Area of a hexagon |
By the end of the
lesson, the learner
should be able to:
- Define a regular pentagon - Draw a regular pentagon and divide it into triangles - Calculate the area of a regular pentagon |
- Draw a regular pentagon of sides 4 cm using protractor (108° angles)
- Join vertices to the centre to form triangles - Determine the height of one triangle - Calculate area of one triangle then multiply by number of triangles - Use alternative formula: ½ × perimeter × perpendicular height |
How do we find the area of a pentagon?
|
- Master Mathematics Grade 9 pg. 85
- Rulers and protractors - Compasses - Graph paper - Charts showing pentagons - Compasses and rulers - Protractors - Manila paper - Digital devices |
- Observation
- Oral questions
- Written assignments
|
|
| 9 | 2 |
Measurements
|
Area - Surface area of triangular prisms
Area - Surface area of rectangular prisms |
By the end of the
lesson, the learner
should be able to:
- Identify triangular prisms - Sketch nets of triangular prisms - Calculate surface area of triangular prisms |
- Identify differences between triangular and rectangular prisms
- Sketch nets of triangular prisms - Identify all faces from the net - Calculate area of each face - Add all areas to get total surface area |
How do we find the surface area of a triangular prism?
|
- Master Mathematics Grade 9 pg. 85
- Models of prisms - Graph paper - Rulers - Reference materials - Cuboid models - Manila paper - Scissors - Calculators |
- Observation
- Oral questions
- Written assignments
|
|
| 9 | 3 |
Measurements
|
Area - Surface area of pyramids
Area - Surface area of square and rectangular pyramids |
By the end of the
lesson, the learner
should be able to:
- Define different types of pyramids - Sketch nets of pyramids - Calculate surface area of triangular-based pyramids |
- Make pyramid shapes using sticks or straws
- Count faces of different pyramids - Sketch nets showing base and triangular faces - Calculate area of base - Calculate area of all triangular faces - Add to get total surface area |
How do we find the surface area of a pyramid?
|
- Master Mathematics Grade 9 pg. 85
- Sticks/straws - Graph paper - Protractors - Reference books - Calculators - Pyramid models - Charts |
- Observation
- Oral questions
- Written assignments
|
|
| 9 | 4 |
Measurements
|
Area - Area of sectors of circles
Area - Area of segments of circles |
By the end of the
lesson, the learner
should be able to:
- Define a sector of a circle - Distinguish between major and minor sectors - Calculate area of sectors using the formula |
- Draw a circle and mark a clock face
- Identify sectors formed by clock hands - Derive formula: Area = (θ/360) × πr² - Calculate areas of sectors with different angles - Use digital devices to watch videos on sectors |
How do we find the area of a sector?
|
- Master Mathematics Grade 9 pg. 85
- Compasses and rulers - Protractors - Digital devices - Internet access - Compasses - Rulers - Calculators - Graph paper |
- Observation
- Oral questions
- Written assignments
|
|
| 9 | 5 |
Measurements
|
Area - Surface area of cones
|
By the end of the
lesson, the learner
should be able to:
- Define a cone and identify its parts - Derive the formula for curved surface area - Calculate surface area of solid cones |
- Draw and cut a circle from manila paper
- Divide into two parts and fold to make a cone - Identify slant height and radius - Derive formula: πrl for curved surface - Calculate total surface area: πrl + πr² - Solve practical problems |
How do we find the surface area of a cone?
|
- Master Mathematics Grade 9 pg. 85
- Manila paper - Scissors - Compasses and rulers - Reference materials |
- Observation
- Oral questions
- Written assignments
|
|
| 10 | 1 |
Measurements
|
Area - Surface area of spheres and hemispheres
Volume - Volume of triangular prisms |
By the end of the
lesson, the learner
should be able to:
- Define a sphere and hemisphere - Derive the formula for surface area of a sphere - Calculate surface area of spheres and hemispheres |
- Get a spherical ball and rectangular paper
- Cover ball with paper to form open cylinder - Measure diameter and compare to height - Derive formula: 4πr² - Calculate surface area of hemispheres: 3πr² - Solve real-life problems |
How do we calculate the surface area of a sphere?
|
- Master Mathematics Grade 9 pg. 85
- Spherical balls - Rectangular paper - Rulers - Calculators - Master Mathematics Grade 9 pg. 102 - Straws and paper - Sand or soil - Measuring tools - Reference books |
- Observation
- Oral questions
- Written tests
|
|
| 10 | 2 |
Measurements
|
Volume - Volume of rectangular prisms
Volume - Volume of square-based pyramids |
By the end of the
lesson, the learner
should be able to:
- Identify rectangular prisms (cuboids) - Apply the volume formula for cuboids - Solve problems involving rectangular prisms |
- Identify that cuboids are prisms with rectangular cross-section
- Apply formula: V = l × w × h - Calculate volumes with different measurements - Solve real-life problems (water tanks, dump trucks) - Convert between cubic units |
How do we calculate the volume of a cuboid?
|
- Master Mathematics Grade 9 pg. 102
- Cuboid models - Calculators - Charts - Reference materials - Modeling materials - Soil or sand - Rulers |
- Observation
- Oral questions
- Written tests
|
|
| 10 | 3 |
Measurements
|
Volume - Volume of rectangular-based pyramids
Volume - Volume of triangular-based pyramids |
By the end of the
lesson, the learner
should be able to:
- Apply volume formula to rectangular-based pyramids - Calculate base area of rectangles - Solve problems involving rectangular pyramids |
- Calculate area of rectangular base
- Apply formula: V = ⅓ × (l × w) × h - Work out volumes with different dimensions - Solve real-life problems (roofs, monuments) |
How do we calculate volume of rectangular pyramids?
|
- Master Mathematics Grade 9 pg. 102
- Pyramid models - Graph paper - Calculators - Reference books - Triangular pyramid models - Rulers - Charts |
- Observation
- Oral questions
- Written tests
|
|
| 10 | 4 |
Measurements
|
Volume - Introduction to volume of cones
Volume - Calculating volume of cones |
By the end of the
lesson, the learner
should be able to:
- Define a cone as a circular-based pyramid - Relate cone volume to cylinder volume - Derive the volume formula for cones |
- Model a cylinder and cone with same radius and height
- Fill cone with water and transfer to cylinder - Observe that cone is ⅓ of cylinder - Derive formula: V = ⅓πr²h - Use digital devices to watch videos |
How is a cone related to a cylinder?
|
- Master Mathematics Grade 9 pg. 102
- Cone and cylinder models - Water - Digital devices - Internet access - Cone models - Calculators - Graph paper - Reference materials |
- Observation
- Oral questions
- Written tests
|
|
| 10 | 5 |
Measurements
|
Volume - Volume of frustums of pyramids
|
By the end of the
lesson, the learner
should be able to:
- Define a frustum - Explain how to obtain a frustum - Calculate volume of frustums of pyramids |
- Model a pyramid and cut it parallel to base
- Identify the frustum formed - Calculate volume of original pyramid - Calculate volume of small pyramid cut off - Apply formula: Volume of frustum = V(large) - V(small) |
What is a frustum and how do we find its volume?
|
- Master Mathematics Grade 9 pg. 102
- Pyramid models - Cutting tools - Rulers - Calculators |
- Observation
- Oral questions
- Written tests
|
|
| 11 | 1 |
Measurements
|
Volume - Volume of frustums of cones
Volume - Volume of spheres |
By the end of the
lesson, the learner
should be able to:
- Identify frustums of cones - Apply the frustum concept to cones - Calculate volume of frustums of cones |
- Identify frustums with circular bases
- Calculate volume of original cone - Calculate volume of small cone cut off - Subtract to get volume of frustum - Solve real-life problems (lampshades, buckets) |
How do we calculate the volume of a frustum of a cone?
|
- Master Mathematics Grade 9 pg. 102
- Cone models - Frustum examples - Calculators - Reference books - Hollow spheres - Water or soil |
- Observation
- Oral questions
- Written assignments
|
|
| 11 | 2 |
Measurements
|
Volume - Volume of hemispheres and applications
Mass, Volume, Weight and Density - Conversion of units of mass |
By the end of the
lesson, the learner
should be able to:
- Define a hemisphere - Calculate volume of hemispheres - Solve real-life problems involving volumes |
- Apply formula: V = ½ × 4/3πr³ = 2/3πr³
- Calculate volumes of hemispheres - Solve problems involving spheres and hemispheres - Apply to real situations (bowls, domes, balls) |
How do we calculate the volume of a hemisphere?
|
- Master Mathematics Grade 9 pg. 102
- Hemisphere models - Calculators - Real objects - Reference materials - Master Mathematics Grade 9 pg. 111 - Weighing balances - Various objects - Conversion charts |
- Observation
- Oral questions
- Written assignments
|
|
| 11 | 3 |
Measurements
|
Mass, Volume, Weight and Density - More practice on mass conversions
Mass, Volume, Weight and Density - Relationship between mass and weight |
By the end of the
lesson, the learner
should be able to:
- Convert masses to kilograms - Apply conversions in real-life contexts - Appreciate the importance of mass measurements |
- Convert various masses to kilograms
- Work with large masses (tonnes) - Work with small masses (milligrams, micrograms) - Solve practical problems (construction, medicine, shopping) |
Why is it important to convert units of mass?
|
- Master Mathematics Grade 9 pg. 111
- Conversion tables - Calculators - Real-world examples - Reference books - Spring balances - Various objects - Charts |
- Observation
- Oral questions
- Written assignments
|
|
| 11 | 4 |
Measurements
|
Mass, Volume, Weight and Density - Calculating mass and gravity
Mass, Volume, Weight and Density - Introduction to density |
By the end of the
lesson, the learner
should be able to:
- Calculate mass when given weight - Calculate gravity of different planets - Apply weight formula in different contexts |
- Rearrange formula to find mass: m = W/g
- Rearrange formula to find gravity: g = W/m - Compare gravity on Earth, Moon, and other planets - Solve problems involving astronauts on different planets |
How do we calculate mass and gravity from weight?
|
- Master Mathematics Grade 9 pg. 111
- Calculators - Charts showing planetary data - Reference materials - Digital devices - Weighing balances - Measuring cylinders - Water - Containers |
- Observation
- Oral questions
- Written assignments
|
|
| 11 | 5 |
Measurements
|
Mass, Volume, Weight and Density - Calculating density, mass and volume
Mass, Volume, Weight and Density - Applications of density |
By the end of the
lesson, the learner
should be able to:
- Apply density formula to find density - Calculate mass using density formula - Calculate volume using density formula |
- Apply formula: D = M/V to find density
- Rearrange to find mass: M = D × V - Rearrange to find volume: V = M/D - Convert between g/cm³ and kg/m³ - Solve various problems |
How do we use the density formula?
|
- Master Mathematics Grade 9 pg. 111
- Calculators - Charts with formulas - Various solid objects - Reference books - Density tables - Real-world scenarios - Reference materials |
- Observation
- Oral questions
- Written assignments
|
|
| 12 | 1 |
Measurements
|
Time, Distance and Speed - Working out speed in km/h and m/s
|
By the end of the
lesson, the learner
should be able to:
- Define speed - Calculate speed in km/h - Calculate speed in m/s - Convert between km/h and m/s |
- Go to field and mark two points 100 m apart
- Measure distance between points - Time a person running between points - Calculate speed: Speed = Distance/Time - Calculate speed in m/s using metres and seconds - Convert distance to kilometers and time to hours - Calculate speed in km/h - Convert km/h to m/s (divide by 3.6) - Convert m/s to km/h (multiply by 3.6) |
How do we calculate speed in different units?
|
- Master Mathematics Grade 9 pg. 117
- Stopwatches - Tape measures - Open field - Calculators - Conversion charts |
- Observation
- Oral questions
- Written assignments
|
|
| 12 | 2 |
Measurements
|
Time, Distance and Speed - Calculating distance and time from speed
Time, Distance and Speed - Working out average speed |
By the end of the
lesson, the learner
should be able to:
- Rearrange speed formula to find distance - Rearrange speed formula to find time - Solve problems involving speed, distance and time - Apply to real-life situations |
- Apply formula: Distance = Speed × Time
- Apply formula: Time = Distance/Speed - Solve problems with different units - Apply to journeys, races, train travel - Work with Madaraka Express train problems - Calculate distances covered at given speeds - Calculate time taken for journeys |
How do we calculate distance and time from speed?
|
- Master Mathematics Grade 9 pg. 117
- Calculators - Formula charts - Real-world examples - Reference materials - Field with marked points - Stopwatches - Reference books |
- Observation
- Oral questions
- Written tests
|
|
| 12 | 3 |
Measurements
|
Time, Distance and Speed - Determining velocity
Time, Distance and Speed - Working out acceleration |
By the end of the
lesson, the learner
should be able to:
- Define velocity - Distinguish between speed and velocity - Calculate velocity with direction - Appreciate the importance of direction in velocity |
- Define velocity as speed in a given direction
- Identify that velocity includes direction - Calculate velocity for objects moving in straight lines - Understand that velocity can be positive or negative - Understand that same speed in opposite directions means different velocities - Apply to real situations involving directional movement |
What is the difference between speed and velocity?
|
- Master Mathematics Grade 9 pg. 117
- Diagrams showing direction - Calculators - Charts - Reference materials - Field for activity - Stopwatches - Measuring tools - Formula charts |
- Observation
- Oral questions
- Written tests
|
|
| 12 | 4 |
Measurements
|
Time, Distance and Speed - Deceleration and applications
Time, Distance and Speed - Identifying longitudes on the globe |
By the end of the
lesson, the learner
should be able to:
- Define deceleration (retardation) - Calculate deceleration - Distinguish between acceleration and deceleration - Solve problems involving both acceleration and deceleration - Appreciate safety implications |
- Define deceleration as negative acceleration
- Calculate when final velocity is less than initial velocity - Apply to vehicles slowing down, braking - Apply to matatus crossing speed bumps - Understand safety implications of deceleration - Calculate final velocity given acceleration and time - Solve problems on cars, buses, gazelles - Discuss importance of controlled deceleration for safety |
What is deceleration and why is it important for safety?
|
- Master Mathematics Grade 9 pg. 117
- Calculators - Road safety materials - Charts - Reference materials - Globes - Atlases - World maps |
- Observation
- Oral questions
- Written tests
|
|
| 12 | 5 |
Measurements
|
Time, Distance and Speed - Relating longitudes to time
Time, Distance and Speed - Calculating time differences between places Time, Distance and Speed - Determining local time of places along different longitudes |
By the end of the
lesson, the learner
should be able to:
- Explain relationship between longitudes and time - State that Earth rotates 360° in 24 hours - Calculate that 1° = 4 minutes - Understand time zones and GMT |
- Understand Earth rotates 360° in 24 hours
- Calculate: 360° = 24 hours = 1440 minutes - Therefore: 1° = 4 minutes - Identify time zones on world map - Understand GMT (Greenwich Mean Time) - Learn that places East of Greenwich are ahead in time - Learn that places West of Greenwich are behind in time - Use digital devices to check time zones |
How are longitudes related to time?
|
- Master Mathematics Grade 9 pg. 117
- Globes - Time zone maps - Calculators - Digital devices - Atlases - Time zone charts - Reference books - World maps - Time zone references - Real-world scenarios |
- Observation
- Oral questions
- Written tests
|
|
Your Name Comes Here