Home






SCHEME OF WORK
Mathematics
Grade 9 2026
TERM II
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN STRAND SUB-STRAND LESSON LEARNING OUTCOMES LEARNING EXPERIENCES KEY INQUIRY QUESTIONS LEARNING RESOURCES ASSESSMENT METHODS REFLECTION
2 1
Measurements
Area - Area of a pentagon
By the end of the lesson, the learner should be able to:

- Define a regular pentagon
- Draw a regular pentagon and divide it into triangles
- Calculate the area of a regular pentagon
- Draw a regular pentagon of sides 4 cm using protractor (108° angles)
- Join vertices to the centre to form triangles
- Determine the height of one triangle
- Calculate area of one triangle then multiply by number of triangles
- Use alternative formula: ½ × perimeter × perpendicular height
How do we find the area of a pentagon?
- Master Mathematics Grade 9 pg. 85
- Rulers and protractors
- Compasses
- Graph paper
- Charts showing pentagons
- Observation - Oral questions - Written assignments
2 2
Measurements
Area - Area of a hexagon
Area - Surface area of triangular prisms
By the end of the lesson, the learner should be able to:

- Define a regular hexagon
- Draw a regular hexagon and identify equilateral triangles
- Calculate the area of a regular hexagon
- Draw a circle of radius 5 cm
- Mark arcs of 5 cm on the circumference to form 6 points
- Join points to form a regular hexagon
- Join vertices to centre to form equilateral triangles
- Calculate area using formula
- Verify using alternative method
How do we find the area of a hexagon?
- Master Mathematics Grade 9 pg. 85
- Compasses and rulers
- Protractors
- Manila paper
- Digital devices
- Models of prisms
- Graph paper
- Rulers
- Reference materials
- Observation - Oral questions - Written tests
2 3
Measurements
Area - Surface area of rectangular prisms
By the end of the lesson, the learner should be able to:

- Identify rectangular prisms (cuboids)
- Sketch nets of cuboids
- Calculate surface area of rectangular prisms
- Sketch nets of rectangular prisms
- Identify pairs of equal rectangular faces
- Calculate area of each face
- Apply formula: 2(lw + lh + wh)
- Solve real-life problems involving cuboids
How do we calculate the surface area of a cuboid?
- Master Mathematics Grade 9 pg. 85
- Cuboid models
- Manila paper
- Scissors
- Calculators
- Observation - Oral questions - Written tests
2 4
Measurements
Area - Surface area of pyramids
By the end of the lesson, the learner should be able to:

- Define different types of pyramids
- Sketch nets of pyramids
- Calculate surface area of triangular-based pyramids
- Make pyramid shapes using sticks or straws
- Count faces of different pyramids
- Sketch nets showing base and triangular faces
- Calculate area of base
- Calculate area of all triangular faces
- Add to get total surface area
How do we find the surface area of a pyramid?
- Master Mathematics Grade 9 pg. 85
- Sticks/straws
- Graph paper
- Protractors
- Reference books
- Observation - Oral questions - Written assignments
2 5
Measurements
Area - Surface area of square and rectangular pyramids
By the end of the lesson, the learner should be able to:

- Distinguish between square and rectangular based pyramids
- Apply Pythagoras theorem to find heights
- Calculate surface area of square and rectangular pyramids
- Sketch nets of square and rectangular pyramids
- Use Pythagoras theorem to find perpendicular heights
- Calculate area of base
- Calculate area of each triangular face
- Apply formula: Base area + sum of triangular faces
How do we calculate surface area of different pyramids?
- Master Mathematics Grade 9 pg. 85
- Graph paper
- Calculators
- Pyramid models
- Charts
- Observation - Oral questions - Written tests
3 1
Measurements
Area - Area of sectors of circles
By the end of the lesson, the learner should be able to:

- Define a sector of a circle
- Distinguish between major and minor sectors
- Calculate area of sectors using the formula
- Draw a circle and mark a clock face
- Identify sectors formed by clock hands
- Derive formula: Area = (θ/360) × πr²
- Calculate areas of sectors with different angles
- Use digital devices to watch videos on sectors
How do we find the area of a sector?
- Master Mathematics Grade 9 pg. 85
- Compasses and rulers
- Protractors
- Digital devices
- Internet access
- Observation - Oral questions - Written assignments
3 2
Measurements
Area - Area of segments of circles
Area - Surface area of cones
By the end of the lesson, the learner should be able to:

- Define a segment of a circle
- Distinguish between major and minor segments
- Calculate area of segments
- Draw a circle and mark two points on circumference
- Join points with a chord to form segments
- Calculate area of sector
- Calculate area of triangle
- Apply formula: Area of segment = Area of sector - Area of triangle
- Calculate area of major segments
How do we calculate the area of a segment?
- Master Mathematics Grade 9 pg. 85
- Compasses
- Rulers
- Calculators
- Graph paper
- Manila paper
- Scissors
- Compasses and rulers
- Reference materials
- Observation - Oral questions - Written tests
3 3
Measurements
Area - Surface area of spheres and hemispheres
By the end of the lesson, the learner should be able to:

- Define a sphere and hemisphere
- Derive the formula for surface area of a sphere
- Calculate surface area of spheres and hemispheres
- Get a spherical ball and rectangular paper
- Cover ball with paper to form open cylinder
- Measure diameter and compare to height
- Derive formula: 4πr²
- Calculate surface area of hemispheres: 3πr²
- Solve real-life problems
How do we calculate the surface area of a sphere?
- Master Mathematics Grade 9 pg. 85
- Spherical balls
- Rectangular paper
- Rulers
- Calculators
- Observation - Oral questions - Written tests
3 4
Measurements
Volume - Volume of triangular prisms
By the end of the lesson, the learner should be able to:

- Define a prism
- Identify uniform cross-sections
- Calculate volume of triangular prisms
- Make a triangular prism using locally available materials
- Place prism vertically and fill with sand
- Identify the cross-section
- Apply formula: V = Area of cross-section × length
- Calculate area of triangular cross-section
- Multiply by length to get volume
How do we find the volume of a prism?
- Master Mathematics Grade 9 pg. 102
- Straws and paper
- Sand or soil
- Measuring tools
- Reference books
- Observation - Oral questions - Written assignments
3 5
Measurements
Volume - Volume of rectangular prisms
By the end of the lesson, the learner should be able to:

- Identify rectangular prisms (cuboids)
- Apply the volume formula for cuboids
- Solve problems involving rectangular prisms
- Identify that cuboids are prisms with rectangular cross-section
- Apply formula: V = l × w × h
- Calculate volumes with different measurements
- Solve real-life problems (water tanks, dump trucks)
- Convert between cubic units
How do we calculate the volume of a cuboid?
- Master Mathematics Grade 9 pg. 102
- Cuboid models
- Calculators
- Charts
- Reference materials
- Observation - Oral questions - Written tests
4 1
Measurements
Volume - Volume of square-based pyramids
By the end of the lesson, the learner should be able to:

- Define a right pyramid
- Relate pyramid volume to cube volume
- Calculate volume of square-based pyramids
- Model a cube and pyramid with same base and height
- Fill pyramid with soil and transfer to cube
- Observe that pyramid is ⅓ of cube
- Apply formula: V = ⅓ × base area × height
- Calculate volumes of square-based pyramids
How do we find the volume of a pyramid?
- Master Mathematics Grade 9 pg. 102
- Modeling materials
- Soil or sand
- Rulers
- Calculators
- Observation - Oral questions - Written assignments
4 2
Measurements
Volume - Volume of rectangular-based pyramids
Volume - Volume of triangular-based pyramids
By the end of the lesson, the learner should be able to:

- Apply volume formula to rectangular-based pyramids
- Calculate base area of rectangles
- Solve problems involving rectangular pyramids
- Calculate area of rectangular base
- Apply formula: V = ⅓ × (l × w) × h
- Work out volumes with different dimensions
- Solve real-life problems (roofs, monuments)
How do we calculate volume of rectangular pyramids?
- Master Mathematics Grade 9 pg. 102
- Pyramid models
- Graph paper
- Calculators
- Reference books
- Triangular pyramid models
- Rulers
- Charts
- Observation - Oral questions - Written tests
4 3
Measurements
Volume - Introduction to volume of cones
By the end of the lesson, the learner should be able to:

- Define a cone as a circular-based pyramid
- Relate cone volume to cylinder volume
- Derive the volume formula for cones
- Model a cylinder and cone with same radius and height
- Fill cone with water and transfer to cylinder
- Observe that cone is ⅓ of cylinder
- Derive formula: V = ⅓πr²h
- Use digital devices to watch videos
How is a cone related to a cylinder?
- Master Mathematics Grade 9 pg. 102
- Cone and cylinder models
- Water
- Digital devices
- Internet access
- Observation - Oral questions - Written tests
4 4
Measurements
Volume - Calculating volume of cones
By the end of the lesson, the learner should be able to:

- Apply the cone volume formula
- Use Pythagoras theorem to find missing dimensions
- Calculate volumes of cones with different measurements
- Apply formula: V = ⅓πr²h
- Use Pythagoras to find radius when given slant height
- Use Pythagoras to find height when given slant height
- Solve practical problems (birthday caps, funnels)
How do we calculate the volume of a cone?
- Master Mathematics Grade 9 pg. 102
- Cone models
- Calculators
- Graph paper
- Reference materials
- Observation - Oral questions - Written assignments
4 5
Measurements
Volume - Volume of frustums of pyramids
By the end of the lesson, the learner should be able to:

- Define a frustum
- Explain how to obtain a frustum
- Calculate volume of frustums of pyramids
- Model a pyramid and cut it parallel to base
- Identify the frustum formed
- Calculate volume of original pyramid
- Calculate volume of small pyramid cut off
- Apply formula: Volume of frustum = V(large) - V(small)
What is a frustum and how do we find its volume?
- Master Mathematics Grade 9 pg. 102
- Pyramid models
- Cutting tools
- Rulers
- Calculators
- Observation - Oral questions - Written tests
5 1
Measurements
Volume - Volume of frustums of cones
By the end of the lesson, the learner should be able to:

- Identify frustums of cones
- Apply the frustum concept to cones
- Calculate volume of frustums of cones
- Identify frustums with circular bases
- Calculate volume of original cone
- Calculate volume of small cone cut off
- Subtract to get volume of frustum
- Solve real-life problems (lampshades, buckets)
How do we calculate the volume of a frustum of a cone?
- Master Mathematics Grade 9 pg. 102
- Cone models
- Frustum examples
- Calculators
- Reference books
- Observation - Oral questions - Written assignments
5 2
Measurements
Volume - Volume of spheres
Volume - Volume of hemispheres and applications
By the end of the lesson, the learner should be able to:

- Relate sphere volume to cone volume
- Derive the formula for volume of a sphere
- Calculate volumes of spheres
- Select hollow spherical object
- Model cone with same radius and height 2r
- Fill cone and transfer to sphere
- Observe that 2 cones fill the sphere
- Derive formula: V = 4/3πr³
- Calculate volumes with different radii
How do we find the volume of a sphere?
- Master Mathematics Grade 9 pg. 102
- Hollow spheres
- Cone models
- Water or soil
- Calculators
- Hemisphere models
- Real objects
- Reference materials
- Observation - Oral questions - Written tests
5 3
Measurements
Mass, Volume, Weight and Density - Conversion of units of mass
By the end of the lesson, the learner should be able to:

- Define mass and state its SI unit
- Identify different units of mass
- Convert between different units of mass
- Use balance to measure mass of objects
- Record masses in grams
- Study conversion table for mass units
- Convert between kg, g, mg, tonnes, etc.
- Apply conversions to real situations
How do we convert between different units of mass?
- Master Mathematics Grade 9 pg. 111
- Weighing balances
- Various objects
- Conversion charts
- Calculators
- Observation - Oral questions - Written tests
5 4
Measurements
Mass, Volume, Weight and Density - More practice on mass conversions
By the end of the lesson, the learner should be able to:

- Convert masses to kilograms
- Apply conversions in real-life contexts
- Appreciate the importance of mass measurements
- Convert various masses to kilograms
- Work with large masses (tonnes)
- Work with small masses (milligrams, micrograms)
- Solve practical problems (construction, medicine, shopping)
Why is it important to convert units of mass?
- Master Mathematics Grade 9 pg. 111
- Conversion tables
- Calculators
- Real-world examples
- Reference books
- Observation - Oral questions - Written assignments
5 5
Measurements
Mass, Volume, Weight and Density - Relationship between mass and weight
By the end of the lesson, the learner should be able to:

- Define weight and state its SI unit
- Distinguish between mass and weight
- Calculate weight from mass using gravity
- Study spring balance showing both mass and weight
- Observe relationship: 1 kg = 10 N
- Apply formula: Weight = mass × gravity
- Calculate weights of various objects
- Understand that mass is constant but weight varies
What is the difference between mass and weight?
- Master Mathematics Grade 9 pg. 111
- Spring balances
- Various objects
- Charts
- Calculators
- Observation - Oral questions - Written tests
6 1
Measurements
Mass, Volume, Weight and Density - Calculating mass and gravity
By the end of the lesson, the learner should be able to:

- Calculate mass when given weight
- Calculate gravity of different planets
- Apply weight formula in different contexts
- Rearrange formula to find mass: m = W/g
- Rearrange formula to find gravity: g = W/m
- Compare gravity on Earth, Moon, and other planets
- Solve problems involving astronauts on different planets
How do we calculate mass and gravity from weight?
- Master Mathematics Grade 9 pg. 111
- Calculators
- Charts showing planetary data
- Reference materials
- Digital devices
- Observation - Oral questions - Written assignments
6 2
Measurements
Mass, Volume, Weight and Density - Introduction to density
Mass, Volume, Weight and Density - Calculating density, mass and volume
By the end of the lesson, the learner should be able to:

- Define density
- State units of density
- Relate mass, volume and density
- Weigh empty container
- Measure volume of water using measuring cylinder
- Weigh container with water
- Calculate mass of water
- Divide mass by volume to get density
- Apply formula: Density = Mass/Volume
What is density?
- Master Mathematics Grade 9 pg. 111
- Weighing balances
- Measuring cylinders
- Water
- Containers
- Calculators
- Charts with formulas
- Various solid objects
- Reference books
- Observation - Oral questions - Written tests
6 3
Measurements
Mass, Volume, Weight and Density - Applications of density
By the end of the lesson, the learner should be able to:

- Apply density to identify materials
- Determine if objects will float or sink
- Solve real-life problems using density
- Compare calculated density with known values
- Identify minerals (e.g., diamond) using density
- Determine if objects float (density < 1 g/cm³)
- Apply to quality control (milk, water)
- Solve problems involving balloons, anchors
How is density used in real life?
- Master Mathematics Grade 9 pg. 111
- Density tables
- Calculators
- Real-world scenarios
- Reference materials
- Observation - Oral questions - Written tests
6 4
Measurements
Time, Distance and Speed - Working out speed in km/h and m/s
By the end of the lesson, the learner should be able to:

- Define speed
- Calculate speed in km/h
- Calculate speed in m/s
- Convert between km/h and m/s
- Go to field and mark two points 100 m apart
- Measure distance between points
- Time a person running between points
- Calculate speed: Speed = Distance/Time
- Calculate speed in m/s using metres and seconds
- Convert distance to kilometers and time to hours
- Calculate speed in km/h
- Convert km/h to m/s (divide by 3.6)
- Convert m/s to km/h (multiply by 3.6)
How do we calculate speed in different units?
- Master Mathematics Grade 9 pg. 117
- Stopwatches
- Tape measures
- Open field
- Calculators
- Conversion charts
- Observation - Oral questions - Written assignments
6 5
Measurements
Time, Distance and Speed - Calculating distance and time from speed
By the end of the lesson, the learner should be able to:

- Rearrange speed formula to find distance
- Rearrange speed formula to find time
- Solve problems involving speed, distance and time
- Apply to real-life situations
- Apply formula: Distance = Speed × Time
- Apply formula: Time = Distance/Speed
- Solve problems with different units
- Apply to journeys, races, train travel
- Work with Madaraka Express train problems
- Calculate distances covered at given speeds
- Calculate time taken for journeys
How do we calculate distance and time from speed?
- Master Mathematics Grade 9 pg. 117
- Calculators
- Formula charts
- Real-world examples
- Reference materials
- Observation - Oral questions - Written tests
7 1
Measurements
Time, Distance and Speed - Working out average speed
Time, Distance and Speed - Determining velocity
By the end of the lesson, the learner should be able to:

- Define average speed
- Calculate average speed for journeys with varying speeds
- Distinguish between speed and average speed
- Solve multi-stage journey problems
- Identify two points with a midpoint
- Run from start to midpoint, walk from midpoint to end
- Calculate speed for each section
- Calculate total distance and total time
- Apply formula: Average speed = Total distance/Total time
- Solve problems on cyclists, buses, motorists
- Work with journeys having different speeds in different sections
What is average speed and how is it different from speed?
- Master Mathematics Grade 9 pg. 117
- Field with marked points
- Stopwatches
- Calculators
- Reference books
- Diagrams showing direction
- Charts
- Reference materials
- Observation - Oral questions - Written assignments
7 2
Measurements
Time, Distance and Speed - Working out acceleration
By the end of the lesson, the learner should be able to:

- Define acceleration
- Calculate acceleration from velocity changes
- Apply acceleration formula
- State units of acceleration (m/s²)
- Identify situations involving acceleration
- Walk from one point then run to another point
- Calculate velocity for each section
- Find difference in velocities (change in velocity)
- Define acceleration as rate of change of velocity
- Apply formula: a = (v - u)/t where v=final velocity, u=initial velocity, t=time
- Calculate acceleration when starting from rest (u=0)
- Calculate acceleration with initial velocity
- State that acceleration is measured in m/s²
- Identify real-life examples of acceleration
What is acceleration and how do we calculate it?
- Master Mathematics Grade 9 pg. 117
- Field for activity
- Stopwatches
- Measuring tools
- Calculators
- Formula charts
- Observation - Oral questions - Written assignments
7 3
Measurements
Time, Distance and Speed - Deceleration and applications
By the end of the lesson, the learner should be able to:

- Define deceleration (retardation)
- Calculate deceleration
- Distinguish between acceleration and deceleration
- Solve problems involving both acceleration and deceleration
- Appreciate safety implications
- Define deceleration as negative acceleration
- Calculate when final velocity is less than initial velocity
- Apply to vehicles slowing down, braking
- Apply to matatus crossing speed bumps
- Understand safety implications of deceleration
- Calculate final velocity given acceleration and time
- Solve problems on cars, buses, gazelles
- Discuss importance of controlled deceleration for safety
What is deceleration and why is it important for safety?
- Master Mathematics Grade 9 pg. 117
- Calculators
- Road safety materials
- Charts
- Reference materials
- Observation - Oral questions - Written tests
7 4
Measurements
Time, Distance and Speed - Identifying longitudes on the globe
By the end of the lesson, the learner should be able to:

- Identify longitudes on a globe
- Distinguish between latitudes and longitudes
- Use atlas to find longitudes of places
- State longitudes of various towns and cities
- Study globe showing longitudes and latitudes
- Identify that longitudes run North to South (meridians)
- Identify that latitudes run East to West
- Identify Greenwich Meridian (0°)
- Use atlas to find longitudes of various places
- Distinguish between East and West longitudes
- Find longitudes of towns in Kenya, Africa, and world map
- Identify islands at specific longitudes
What are longitudes and how do we identify them?
- Master Mathematics Grade 9 pg. 117
- Globes
- Atlases
- World maps
- Charts
- Observation - Oral questions - Written assignments
7 5
Measurements
Time, Distance and Speed - Relating longitudes to time
By the end of the lesson, the learner should be able to:

- Explain relationship between longitudes and time
- State that Earth rotates 360° in 24 hours
- Calculate that 1° = 4 minutes
- Understand time zones and GMT
- Understand Earth rotates 360° in 24 hours
- Calculate: 360° = 24 hours = 1440 minutes
- Therefore: 1° = 4 minutes
- Identify time zones on world map
- Understand GMT (Greenwich Mean Time)
- Learn that places East of Greenwich are ahead in time
- Learn that places West of Greenwich are behind in time
- Use digital devices to check time zones
How are longitudes related to time?
- Master Mathematics Grade 9 pg. 117
- Globes
- Time zone maps
- Calculators
- Digital devices
- Observation - Oral questions - Written tests
8 1
Measurements
Time, Distance and Speed - Calculating time differences between places
Time, Distance and Speed - Determining local time of places along different longitudes
By the end of the lesson, the learner should be able to:

- Calculate longitude differences
- Calculate time differences between places
- Apply rules for same side and opposite sides of Greenwich
- Convert time differences to hours and minutes
- Find longitude difference:
• Subtract longitudes if on same side of Greenwich
• Add longitudes if on opposite sides of Greenwich
- Multiply longitude difference by 4 minutes
- Convert minutes to hours and minutes
- Determine if place is ahead or behind GMT
- Solve problems on towns X and Z, Memphis and Kigali
- Complete tables with longitude and time differences
How do we calculate time difference from longitudes?
- Master Mathematics Grade 9 pg. 117
- Atlases
- Calculators
- Time zone charts
- Reference books
- World maps
- Time zone references
- Real-world scenarios
- Observation - Oral questions - Written assignments
8 2
Measurements
Money - Identifying currencies of different countries
By the end of the lesson, the learner should be able to:

- Identify currencies used in different countries
- State the Kenyan currency and its abbreviation
- Match countries with their currencies
- Appreciate diversity in world currencies
- Use digital devices to search for pictures of currencies
- Identify currencies of Britain, Uganda, Tanzania, USA, Rwanda, South Africa
- Make a collage of currencies from African countries
- Complete tables matching countries with their currencies
- Study Kenya shilling and its subdivision into cents
- Discuss the importance of different currencies
What currencies are used in different countries?
- Master Mathematics Grade 9 pg. 131
- Digital devices
- Internet access
- Pictures of currencies
- Atlases
- Reference materials
- Observation - Oral questions - Written assignments - Project work
8 3
Measurements
Money - Converting foreign currency to Kenyan shillings
By the end of the lesson, the learner should be able to:

- Define exchange rate
- Read and interpret exchange rate tables
- Convert foreign currencies to Kenyan shillings
- Apply exchange rates accurately
- Discuss dialogue about using foreign currency in Kenya
- Understand that each country has its own currency
- Learn about exchange rates and their purpose
- Study currency conversion tables (Table 3.5.1)
- Convert US dollars, Euros, and other currencies to Ksh
- Use formula: Ksh amount = Foreign amount × Exchange rate
- Solve practical problems involving conversion
How do we convert foreign currency to Kenya shillings?
- Master Mathematics Grade 9 pg. 131
- Currency conversion tables
- Calculators
- Charts
- Reference materials
- Observation - Oral questions - Written tests
8 4
Measurements
Money - Converting Kenyan shillings to foreign currency and buying/selling rates
By the end of the lesson, the learner should be able to:

- Convert Kenyan shillings to foreign currencies
- Distinguish between buying and selling rates
- Apply correct rates when converting currency
- Solve multi-step currency problems
- Convert Ksh to Ugandan shillings, Sterling pounds, Japanese Yen
- Study Table 3.5.2 showing buying and selling rates
- Understand that banks buy at lower rate, sell at higher rate
- Learn when to use buying rate (foreign to Ksh)
- Learn when to use selling rate (Ksh to foreign)
- Solve tourist problems with multiple conversions
- Visit commercial banks or Forex Bureaus
Why do buying and selling rates differ?
- Master Mathematics Grade 9 pg. 131
- Exchange rate tables
- Calculators
- Real-world scenarios
- Reference books
- Observation - Oral questions - Written assignments
8 5
Measurements
Money - Export duty on goods
By the end of the lesson, the learner should be able to:

- Define export and export duty
- Explain the purpose of export duty
- Calculate product cost and export duty
- Solve problems on exported goods
- Discuss goods Kenya exports to other countries
- Understand how Kenya benefits from exports
- Define product cost and its components
- Apply formula: Product cost = Unit cost × Quantity
- Apply formula: Export duty = Tax rate × Product cost
- Calculate export duty on flowers, tea, coffee, cement
- Discuss importance of increasing exports
What is export duty and why is it charged?
- Master Mathematics Grade 9 pg. 131
- Calculators
- Examples of export goods
- Charts
- Reference materials
- Observation - Oral questions - Written tests
9 1
Measurements
Money - Import duty on goods
Money - Excise duty and Value Added Tax (VAT)
By the end of the lesson, the learner should be able to:

- Define import and import duty
- Calculate customs value of imported goods
- Calculate import duty on goods
- Apply knowledge to real-life situations
- Discuss goods imported into Kenya
- Learn about Kenya Revenue Authority (KRA)
- Calculate customs value: Cost + Insurance + Freight
- Apply formula: Import duty = Tax rate × Customs value
- Solve problems on vehicles, electronics, tractors, phones
- Discuss ways to reduce imports
- Understand importance of local production
What is import duty and how is it calculated?
- Master Mathematics Grade 9 pg. 131
- Calculators
- Import duty examples
- Charts
- Reference books
- Digital devices
- ETR receipts
- Tax rate tables
- Reference materials
- Observation - Oral questions - Written assignments
9 2
Measurements
Money - Combined duties and taxes on imported goods
By the end of the lesson, the learner should be able to:

- Calculate multiple taxes on imported goods
- Apply import duty, excise duty, and VAT sequentially
- Solve complex problems involving all taxes
- Appreciate the cumulative effect of taxes
- Calculate import duty first
- Calculate excise value: Customs value + Import duty
- Calculate excise duty on excise value
- Calculate VAT value: Customs value + Import duty + Excise duty
- Calculate VAT on VAT value
- Apply to vehicles, electronics, cement, phones
- Solve comprehensive taxation problems
- Work backwards to find customs value
How do we calculate total taxes on imported goods?
- Master Mathematics Grade 9 pg. 131
- Calculators
- Comprehensive examples
- Charts showing tax flow
- Reference materials
- Observation - Oral questions - Written assignments
9 3
Measurements
Approximations and Errors - Approximating quantities in measurements
By the end of the lesson, the learner should be able to:

- Define approximation
- Approximate quantities using arbitrary units
- Use estimation in various contexts
- Appreciate the use of approximations in daily life
- Estimate length of teacher's table using palm length
- Estimate height of classroom door in metres
- Estimate width of textbook using palm
- Approximate distance using strides
- Approximate weight, capacity, temperature, time
- Use arbitrary units like strides and palm lengths
- Understand that approximations are not accurate
- Apply approximations in budgeting and planning
What is approximation and when do we use it?
- Master Mathematics Grade 9 pg. 146
- Tape measures
- Various objects to measure
- Containers for capacity
- Reference materials
- Observation - Oral questions - Practical activities
9 4
Measurements
Approximations and Errors - Determining errors using estimations and actual measurements
By the end of the lesson, the learner should be able to:

- Define error in measurement
- Calculate error using approximated and actual values
- Distinguish between positive and negative errors
- Appreciate the importance of accuracy
- Fill 500 ml bottle and measure actual volume
- Calculate difference between labeled and actual values
- Apply formula: Error = Approximated value - Actual value
- Work with errors in mass, length, volume, time
- Complete tables showing actual, estimated values and errors
- Apply to bread packages, water bottles, cement bags
- Discuss integrity in measurements
What is error and how do we calculate it?
- Master Mathematics Grade 9 pg. 146
- Measuring cylinders
- Water bottles
- Weighing scales
- Calculators
- Reference materials
- Observation - Oral questions - Written assignments
9 5
Measurements
Approximations and Errors - Calculating percentage error
By the end of the lesson, the learner should be able to:

- Define percentage error
- Calculate percentage error from approximations
- Express error as a percentage of actual value
- Compare errors using percentages
- Make strides and estimate total distance
- Measure actual distance covered
- Calculate error: Estimated value - Actual value
- Apply formula: Percentage error = (Error/Actual value) × 100%
- Solve problems on pavement width
- Calculate percentage errors in various measurements
- Round answers appropriately
How do we calculate percentage error?
- Master Mathematics Grade 9 pg. 146
- Tape measures
- Calculators
- Open ground for activities
- Reference books
- Observation - Oral questions - Written tests
10 1
Measurements
Approximations and Errors - Percentage error in real-life situations
Approximations and Errors - Complex applications and problem-solving
By the end of the lesson, the learner should be able to:

- Apply percentage error to real-life situations
- Calculate errors in various contexts
- Analyze significance of errors
- Show integrity when making approximations
- Calculate percentage errors in electoral voting estimates
- Work on football match attendance approximations
- Solve problems on road length estimates
- Apply to temperature recordings
- Calculate errors in land plot sizes
- Work on age recording errors
- Discuss consequences of errors in planning
Why are accurate approximations important in real life?
- Master Mathematics Grade 9 pg. 146
- Calculators
- Real-world scenarios
- Case studies
- Reference materials
- Complex scenarios
- Charts
- Reference books
- Real-world case studies
- Observation - Oral questions - Written assignments
10 2
4.0 Geometry
4.1 Coordinates and Graphs - Plotting points on a Cartesian plane
4.1 Coordinates and Graphs - Drawing straight line graphs given equations
By the end of the lesson, the learner should be able to:

- Define a Cartesian plane and identify its components
- Plot points accurately on a Cartesian plane using coordinates
- Show interest in learning about coordinate geometry
The learner is guided to:
- Discuss with friends what they remember about plotting points on a Cartesian plane
- Draw a Cartesian plane in their graph book
- Mark the points where given coordinates lie
- Discuss and compare their work with other learners
How do we locate points on a Cartesian plane?
- Master Mathematics Grade 9 pg. 152
- Graph papers/squared books
- Rulers
- Pencils
- Digital devices
- Master Mathematics Grade 9 pg. 154
- Graph papers
- Mathematical tables
- Observation - Oral questions - Written assignments
10 3
4.0 Geometry
4.1 Coordinates and Graphs - Drawing parallel lines on the Cartesian plane
4.1 Coordinates and Graphs - Relating gradients of parallel lines
4.1 Coordinates and Graphs - Drawing perpendicular lines on the Cartesian plane
By the end of the lesson, the learner should be able to:

- State the properties of parallel lines
- Draw parallel lines accurately on the same Cartesian plane
- Develop interest in identifying parallel lines using graphs
The learner is guided to:
- Generate tables of values for each of the given linear equations
- Plot the points and draw straight line graphs for each equation on the same plane
- Use a set square to determine the distance between the two lines at any point
- Share and discuss findings with other groups
What is the relationship between parallel lines on a graph?
- Master Mathematics Grade 9 pg. 156
- Graph papers
- Rulers
- Set squares
- Pencils
- Master Mathematics Grade 9 pg. 158
- Calculators
- Digital devices
- Master Mathematics Grade 9 pg. 160
- Protractors
- Class activities - Written tests
10 4
4.0 Geometry
4.1 Coordinates and Graphs - Relating gradients of perpendicular lines and applications
4.2 Scale Drawing - Compass bearing
By the end of the lesson, the learner should be able to:

- State the relationship between gradients of perpendicular lines
- Apply the relationship m₁ × m₂ = -1 to solve problems
- Appreciate solving real-life problems involving graphs of straight lines
The learner is guided to:
- Work out the gradient of each perpendicular line
- Multiply the gradients of two perpendicular lines
- Apply the concept to determine equations of perpendicular lines
- Interpret graphs representing real-life situations
What is the relationship between gradients of perpendicular lines?
- Master Mathematics Grade 9 pg. 162
- Graph papers
- Calculators
- Real-life graph examples
- Master Mathematics Grade 9 pg. 166
- Pair of compasses
- Protractors
- Rulers
- Charts showing compass directions
- Written assignments - Class activities
10 5
4.0 Geometry
4.2 Scale Drawing - True bearings
4.2 Scale Drawing - Determining the bearing of one point from another (1)
By the end of the lesson, the learner should be able to:

- Explain what true bearings are
- Convert compass bearings to true bearings and measure them accurately
- Appreciate expressing direction using true bearings
The learner is guided to:
- Discuss that true bearings are measured clockwise from North
- Express bearings in three-digit format
- Draw diagrams showing true bearings
- Convert between compass and true bearings
How do we express direction using true bearings?
- Master Mathematics Grade 9 pg. 169
- Protractors
- Rulers
- Compasses
- Map samples
- Master Mathematics Grade 9 pg. 171
- Pencils
- Graph papers
- Written tests - Class activities
11 1
4.0 Geometry
4.2 Scale Drawing - Determining the bearing of one point from another (2)
By the end of the lesson, the learner should be able to:

- State the bearing of places from maps
- Determine bearings from scale drawings and solve related problems
- Appreciate applying bearing concepts to real-life situations
The learner is guided to:
- Use maps of Kenya to determine bearings of different towns
- Work out bearings of points from given diagrams
- Determine reverse bearings
- Apply bearing concepts to real-life situations
Why is it important to know bearings in real life?
- Master Mathematics Grade 9 pg. 171
- Atlas/Maps of Kenya
- Protractors
- Rulers
- Digital devices
- Class activities - Written tests
11 2
4.0 Geometry
4.2 Scale Drawing - Locating a point using bearing and distance (1)
By the end of the lesson, the learner should be able to:

- Explain how to choose appropriate scales for scale drawings
- Convert actual distances to scale lengths accurately
- Show interest in representing actual distances on paper
The learner is guided to:
- Draw sketch diagrams showing relative positions
- Choose suitable scales
- Convert actual distances to scale lengths
- Mark North lines and measure angles
How do we represent actual distances on paper?
- Master Mathematics Grade 9 pg. 173
- Rulers
- Protractors
- Compasses
- Plain papers
- Observation - Written assignments
11 3
4.0 Geometry
4.2 Scale Drawing - Locating a point using bearing and distance (2)
4.2 Scale Drawing - Identifying angles of elevation (1)
By the end of the lesson, the learner should be able to:

- Describe the process of locating points using bearing and distance
- Draw accurate scale diagrams and determine unknown measurements
- Appreciate the accuracy of scale drawings in representing real situations
The learner is guided to:
- Use given bearings and distances to locate points
- Draw accurate scale diagrams
- Measure and determine unknown distances and bearings from diagrams
- Verify accuracy of their drawings
How accurate are scale drawings in representing real situations?
- Master Mathematics Grade 9 pg. 173
- Rulers
- Protractors
- Compasses
- Graph papers
- Master Mathematics Grade 9 pg. 175
- Pictures showing elevation
- Models
- Class activities - Written tests
11 4
4.0 Geometry
4.2 Scale Drawing - Determining angles of elevation (2)
By the end of the lesson, the learner should be able to:

- Explain the process of determining angles of elevation
- Draw scale diagrams and measure angles of elevation using protractors
- Appreciate applying concepts to real-life situations
The learner is guided to:
- Draw scale diagrams representing elevation situations
- Use appropriate scales
- Measure angles of elevation from scale drawings
- Solve problems involving heights and distances
How do we calculate angles of elevation?
- Master Mathematics Grade 9 pg. 175
- Protractors
- Rulers
- Graph papers
- Calculators
- Written tests - Class activities
11 5
4.0 Geometry
4.2 Scale Drawing - Identifying angles of depression (1)
By the end of the lesson, the learner should be able to:

- Define angle of depression
- Identify and sketch situations involving angles of depression
- Show interest in distinguishing between angles of elevation and depression
The learner is guided to:
- Stand at elevated positions and observe objects below
- Identify the angle through which eyes are lowered
- Sketch right-angled triangles formed
- Label the angle of depression correctly
How is angle of depression different from angle of elevation?
- Master Mathematics Grade 9 pg. 178
- Protractors
- Rulers
- Pictures showing depression
- Models
- Observation - Oral questions
12 1
4.0 Geometry
4.2 Scale Drawing - Determining angles of depression (2)
By the end of the lesson, the learner should be able to:

- Describe the steps for determining angles of depression
- Draw scale diagrams and measure angles of depression accurately
- Appreciate using angles of depression in real life
The learner is guided to:
- Draw scale diagrams representing depression situations
- Use appropriate scales
- Measure angles of depression from scale drawings
- Apply concepts to real-life problems
How do we use angles of depression in real life?
- Master Mathematics Grade 9 pg. 178
- Protractors
- Rulers
- Graph papers
- Calculators
- Written assignments - Written tests
12 2
4.0 Geometry
4.2 Scale Drawing - Application in simple surveying - Triangulation (1)
By the end of the lesson, the learner should be able to:

- Explain the concept of triangulation in surveying
- Identify baselines and offsets and draw diagrams using triangulation method
- Develop interest in using triangulation for surveying
The learner is guided to:
- Trace irregular shapes to be surveyed
- Enclose the shape with a triangle
- Identify and measure baselines
- Draw perpendicular offsets to the baselines
What is triangulation and how is it used in surveying?
- Master Mathematics Grade 9 pg. 180
- Rulers
- Set squares
- Compasses
- Plain papers
- Observation - Class activities
12 3
4.0 Geometry
4.2 Scale Drawing - Application in simple surveying - Triangulation (2)
4.2 Scale Drawing - Application in simple surveying - Transverse survey (1)
By the end of the lesson, the learner should be able to:

- Describe how to record measurements in field books
- Draw accurate scale maps using triangulation data
- Appreciate applying triangulation to survey school compound areas
The learner is guided to:
- Measure lengths of offsets
- Record measurements in field book format
- Choose appropriate scales
- Draw accurate scale maps from recorded data
How do we record and use surveying measurements?
- Master Mathematics Grade 9 pg. 180
- Meter rules
- Strings
- Pegs
- Field books
- Rulers
- Set squares
- Plain papers
- Written tests - Practical activities
12 4
4.0 Geometry
4.2 Scale Drawing - Application in simple surveying - Transverse survey (2)
By the end of the lesson, the learner should be able to:

- Describe the process of completing field books for transverse surveys
- Draw scale maps from transverse survey data
- Appreciate using transverse survey method for road reserves
The learner is guided to:
- Complete field book recordings
- Use appropriate scales to draw maps
- Join offset points to show boundaries
- Compare their work with other members
When do we use transverse survey method?
- Master Mathematics Grade 9 pg. 180
- Rulers
- Pencils
- Graph papers
- Field books
- Written assignments - Practical activities
12 5
4.0 Geometry
4.2 Scale Drawing - Surveying using bearings and distances
By the end of the lesson, the learner should be able to:

- Explain how to record positions using bearings and distances
- Draw scale maps using bearing and distance data
- Appreciate different surveying methods
The learner is guided to:
- Record bearings and distances from fixed points
- Use ordered pairs to represent positions
- Draw North lines and locate points using bearings
- Join points to show boundaries
How do we survey using bearings and distances?
- Master Mathematics Grade 9 pg. 180
- Protractors
- Compasses
- Rulers
- Field books
- Class activities - Written tests

Your Name Comes Here


Download

Feedback