Home






SCHEME OF WORK
Physics
Form 4 2026
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1

OPENING AND REVISION OF ENDTERM 3 EXAMINATION 2024

2 1
Heating Effect of Electric Current
Introduction to heating effect
Factors affecting heat produced - current and time
By the end of the lesson, the learner should be able to:
Define heating effect of electric current
- Explain mechanism of heat production in conductors
- Investigate effect of current on resistance wire
- Observe temperature changes in conductors
Q/A on electric current from previous units
- Experiment investigating effect of current on coil temperature
- Observation of heating in different parts of circuit
- Discussion on electron collision mechanism
Battery, Resistance wire coils, Ammeter, Variable resistor, Thermometer, Stopwatch, Connecting wires
Resistance coils, Variable resistor, Ammeter, Thermometer, Stopwatch, Graph paper, Different current values
KLB Secondary Physics Form 3, Pages 195-197
2 2
Heating Effect of Electric Current
Factors affecting heat produced - resistance
Joule's law and electrical energy
Electrical power and energy calculations
Applications - electrical lighting and heating devices
By the end of the lesson, the learner should be able to:
Investigate relationship between heat produced and resistance
- Compare heating in different resistance wires
- State H ∝ R relationship
- Derive complete heating formula H = I²Rt
Experiment using coils of different resistance
- Temperature measurements with constant current
- Comparison of heating rates
- Mathematical derivation of heating law
Coils of different resistance, Ammeter, Thermometer, Measuring instruments, Stopwatch, Calculation worksheets
Formula charts, Calculators, Problem worksheets, Electrical devices for analysis
Calculators, Unit conversion charts, Household appliance ratings, Electricity bills, Problem sets
Filament lamps, Electric iron, Electric kettle, Heating elements, Energy saving bulbs, Appliance diagrams
KLB Secondary Physics Form 3, Pages 199-200
2 3
Heating Effect of Electric Current
Quantity of Heat
Quantity of Heat
Electrical safety - fuses and circuit protection
Efficiency calculations and motor problems
Series and parallel heating circuits
Heat capacity and specific heat capacity
Determination of specific heat capacity - method of mixtures for solids
By the end of the lesson, the learner should be able to:
Explain working principle of fuses
- Calculate appropriate fuse ratings
- Describe safety measures in electrical installations
- Analyze circuit protection methods
Demonstration of fuse operation
- Calculation of fuse ratings for appliances
- Discussion on electrical safety
- Analysis of circuit protection devices
Various fuses, Fuse holders, Circuit diagrams, Safety equipment demonstrations, Rating calculations
Motor specifications, Efficiency calculation worksheets, Power meters, Mechanical loading systems
Resistors in circuits, Ammeters, Voltmeters, Power calculation sheets, Circuit boards
Charts on heat definitions, Calculators, Simple problem worksheets, Various materials for comparison
Metal blocks, Beakers, Water, Thermometers, Weighing balance, Heat source, Well-lagged calorimeter, Stirrer
KLB Secondary Physics Form 3, Pages 203-204
3

OPENER EXAMINATION

3 3
Quantity of Heat
Determination of specific heat capacity - electrical method
Specific heat capacity of liquids and continuous flow method
Change of state and latent heat concepts
Specific latent heat of fusion
By the end of the lesson, the learner should be able to:
Describe electrical method for solids
- Perform electrical heating experiment
- Calculate electrical energy supplied
- Determine specific heat capacity using electrical method
Experiment using electrical heating of metal block
- Measurement of voltage, current and time
- Calculation of electrical energy supplied
- Determination of specific heat capacity
Metal cylinder with heater, Voltmeter, Ammeter, Thermometer, Stopwatch, Insulating materials, Power supply
Calorimeter, Electrical heater, Water, Measuring instruments, Continuous flow apparatus diagram, Problem sets
Naphthalene, Test tubes, Thermometer, Stopwatch, Graph paper, Heat source, Cooling apparatus
Ice, Calorimeter, Thermometer, Electrical heater, Filter funnels, Beakers, Measuring cylinders
KLB Secondary Physics Form 3, Pages 212-214
4 1
Quantity of Heat
Gas Laws
Gas Laws
Specific latent heat of vaporization
Effects of pressure and impurities on melting and boiling points
Evaporation and cooling effects
Introduction to gas behavior and Boyle's Law
Boyle's Law experiments and calculations
By the end of the lesson, the learner should be able to:
Define specific latent heat of vaporization
- Determine latent heat of steam by condensation method
- Perform electrical method for vaporization
- Solve complex latent heat problems
Steam condensation experiment in calorimeter
- Electrical method using boiling water
- Calculation of latent heat of vaporization
- Complex problem solving involving phase changes
Steam generator, Condenser, Calorimeter, Electrical heater, Measuring instruments, Safety equipment
Ice blocks, Weighted wire, Round-bottomed flask, Thermometer, Salt solutions, Pressure cooker model
Various liquids, Beakers, Fans, Thermometers, Ether, Test tubes, Humidity measuring devices
Syringes, J-shaped tubes, Oil, Bourdon gauge, Foot pump, Metre rule, Graph paper
Thick-walled J-shaped tube, Oil, Pressure gauge, Measuring instruments, Data tables, Graph paper, Calculators
KLB Secondary Physics Form 3, Pages 223-227
4 2
Gas Laws
Boyle's Law applications and kinetic theory explanation
Charles's Law
Charles's Law applications and absolute temperature scale
Pressure Law (Gay-Lussac's Law)
By the end of the lesson, the learner should be able to:
Apply Boyle's Law to solve numerical problems
- Explain Boyle's Law using kinetic theory
- Analyze isothermal processes
- Solve problems involving gas bubbles and atmospheric pressure
Problem solving using P₁V₁ = P₂V₂
- Kinetic theory explanation of pressure-volume relationship
- Analysis of molecular collision frequency
- Real-world applications like diving and altitude effects
Problem worksheets, Kinetic theory diagrams, Calculator, Gas bubble scenarios, Atmospheric pressure data
Gas tubes, Water baths, Thermometers, Measuring cylinders, Heating apparatus, Graph paper, Temperature control equipment
Temperature conversion charts, Problem sets, Calculators, Hot air balloon examples, Gas heating scenarios
Constant volume gas apparatus, Pressure gauges, Temperature control, Water baths, Thermometers, Graph materials
KLB Secondary Physics Form 3, Pages 238-240
4 3
Gas Laws
Combined gas laws and ideal gas behavior
Kinetic theory of gases
Absolute zero and temperature scales
Comprehensive applications and problem solving
By the end of the lesson, the learner should be able to:
Combine all three gas laws into general gas equation
- Apply PV/T = constant for fixed mass of gas
- Solve complex problems involving multiple variables
- Explain ideal gas assumptions
Mathematical combination of gas laws
- Problem solving with changing P, V, and T
- Discussion on ideal gas concept
- Analysis of real gas deviations from ideal behavior
Combined law worksheets, Complex problem sets, Calculators, Ideal gas assumption charts
Kinetic theory diagrams, Molecular motion animations, Temperature-energy relationship charts, Theoretical discussion materials
Graph paper, Extrapolation exercises, Temperature scale diagrams, Conversion worksheets, Scientific calculators
Past examination papers, Multi-step problem sets, Real-world scenario worksheets, Summary charts, Calculators
KLB Secondary Physics Form 3, Pages 243-245
5 1
Thin Lenses
Types of Lenses and Effects on Light
Definition of Terms and Ray Diagrams
Image Formation by Converging Lenses
Image Formation by Diverging Lenses and Linear Magnification
By the end of the lesson, the learner should be able to:
Define a lens and distinguish between convex and concave lenses; Describe the effect of lenses on parallel rays of light; Explain convergence and divergence of light rays; Identify practical examples of different lens types
Q/A on refraction concepts; Experiment 1.1 - investigating effects of lenses on parallel rays using sunlight and ray box; Demonstration of convergence and divergence; Group identification of lens types in everyday objects; Drawing and analysis of ray diagrams
Ray box; Various convex and concave lenses; White screen; Plane mirror; Card with parallel slits; Sunlight or strong lamp
Various lenses; Rulers; Graph paper; Ray boxes; Charts showing lens terminology; Drawing materials; Laser pointers (if available)
Converging lenses; Objects; White screen; Metre rule; Candle; Graph paper; Charts showing applications; Camera (if available)
Diverging lenses; Graph paper; Rulers; Calculators; Examples from textbook; Objects of known heights; Measuring equipment
KLB Secondary Physics Form 4, Pages 1-6
5 2
Thin Lenses
The Lens Formula
Determination of Focal Length I
Determination of Focal Length II
Power of Lens and Simple Microscope
Compound Microscope
By the end of the lesson, the learner should be able to:
Derive the lens formula using similar triangles; Understand and apply the Real-is-positive sign convention; Use the lens formula to solve problems involving object distance, image distance and focal length; Solve Examples 4, 5, 6, and 7 from textbook
Review of magnification concepts; Mathematical derivation of lens formula from similar triangles; Introduction to sign convention rules; Step-by-step solution of Examples 4-7; Practice problems applying lens formula to various situations; Group work on formula applications
Mathematical instruments; Charts showing derivation; Calculators; Worked examples; Sign convention chart; Practice worksheets
Converging lenses; Lens holders; Metre rule; White screen; Distant objects; Plane mirror; Pins; Cork; Glass rod; Light source; Cardboard with cross-wires
Experimental setup materials; Graph paper; Calculators; Data tables; Examples 8-10 from textbook; Materials for displacement method
Various lenses of different focal lengths; Magnifying glasses; Small objects; Calculators; Power calculation charts; Small print materials; Biological specimens
Compound microscope; Charts showing microscope structure; Lenses representing objective and eyepiece; Calculators; Example 11 from textbook; Ray tracing materials
KLB Secondary Physics Form 4, Pages 14-20
5 3
Thin Lenses
The Human Eye
Defects of Vision
By the end of the lesson, the learner should be able to:
Describe structure of human eye and functions of each part; Explain accommodation process and role of ciliary muscles; Define near point and far point; Understand how eye focuses at different distances; Compare eye structure with camera
Introduction to human eye as natural optical instrument; Detailed study of eye structure using charts/models; Demonstration of accommodation using flexible lens model; Practical measurement of near and far points; Comparison table of eye vs camera similarities and differences
Charts/models of human eye; Torch for demonstrations; Eye model with flexible lens; Objects at various distances; Measuring equipment; Camera comparison charts
Charts showing vision defects; Converging and diverging lenses; Eye models; Spectacles with different lenses; Vision test materials; Ray diagram materials
KLB Secondary Physics Form 4, Pages 30-32
6 1
Thin Lenses
Uniform Circular Motion
The Camera and Applications Review
Introduction and Angular Displacement
By the end of the lesson, the learner should be able to:
Describe camera structure and working principles; Explain functions of camera lens, shutter, aperture, and film; Compare camera with human eye highlighting similarities and differences; Review all applications of lenses in optical instruments
Review of optical instruments studied; Analysis of camera components and their functions; Detailed comparison of camera and eye; Discussion of focusing mechanisms; Comprehensive review of lens applications in telescope, microscope, camera, spectacles, and magnifying glass
Camera (if available); Charts showing camera structure; Comparison tables; Review charts of all applications; Summary materials; Demonstration equipment
Merry-go-round model or pictures; String and objects for circular motion; Protractors; Calculators; Charts showing degree-radian conversion; Measuring wheels
KLB Secondary Physics Form 4, Pages 33-35
6 2
Uniform Circular Motion
Angular Velocity and Linear Velocity
Centripetal Acceleration
By the end of the lesson, the learner should be able to:
Define angular velocity (ω) and its units; Derive the relationship v = rω; Calculate period (T) and frequency (f) of circular motion; Solve Examples 2(a) and 2(b) from textbook; Relate linear and angular quantities
Review of angular displacement through Q/A; Introduction to angular velocity concept; Mathematical derivation of v = rω relationship; Exploration of period and frequency relationships; Step-by-step solution of Examples 2(a) and 2(b); Practical demonstration using rotating objects; Group calculations involving different circular motions
Stopwatch; Rotating objects (turntables, wheels); String and masses; Calculators; Formula charts; Examples from textbook; Measuring equipment
Vector diagrams; Rotating objects; Calculators; Charts showing acceleration derivation; Example 3 materials; Demonstration of circular motion with varying speeds
KLB Secondary Physics Form 4, Pages 38-40
6 3
Uniform Circular Motion
Centripetal Force and Factors Affecting It
Experimental Investigation of Centripetal Force
Case Examples - Cars and Banking
By the end of the lesson, the learner should be able to:
Explain the need for centripetal force in circular motion; State factors affecting centripetal force (mass, speed, radius); Derive centripetal force formula F = mv²/r = mrω²; Perform Experiment 2.1 investigating F vs ω²; Solve Example 4 from textbook
Review of Newton's laws and centripetal acceleration; Introduction to centripetal force concept; Experimental investigation of factors affecting centripetal force; Performance of Experiment 2.1 - relationship between F and ω²; Data collection and analysis; Solution of Example 4; Discussion of practical implications
Metal pegs; Turntable and motor; Variable resistor; Dry cell; Metal ball and string; Spring balance; Clock; Graph paper; Calculators
Same apparatus as Experiment 2.1; Graph paper; Additional measuring equipment; Data recording tables; Calculators; Analysis worksheets
Model cars and tracks; Inclined plane demonstrations; Charts showing banking principles; Calculators; Friction demonstration materials; Pictures of banked roads and aircraft
KLB Secondary Physics Form 4, Pages 42-47
7 1
Uniform Circular Motion
Case Examples - Cyclists and Conical Pendulum
Motion in Vertical Circle
By the end of the lesson, the learner should be able to:
Analyze forces on cyclists moving in circular tracks; Explain cyclist leaning and conditions for no skidding; Describe conical pendulum motion; Derive equations for conical pendulum; Solve Example 5 from textbook
Q/A on banking concepts; Analysis of cyclist motion on circular tracks; Force analysis and conditions for stability; Introduction to conical pendulum; Mathematical analysis of pendulum motion; Step-by-step solution of Example 5; Practical demonstration of conical pendulum
Model cyclists; Pendulum apparatus; String and masses; Force diagrams; Calculators; Example 5 materials; Protractors for angle measurement
String and masses for vertical motion; Bucket and water (demonstration); Model loop-the-loop track; Force analysis charts; Safety equipment; Calculators
KLB Secondary Physics Form 4, Pages 50-52
7 2
Uniform Circular Motion
Floating and Sinking
Applications - Centrifuges and Satellites
Introduction and Cause of Upthrust
By the end of the lesson, the learner should be able to:
Explain working principles of centrifuges; Describe separation of particles using centripetal force; Understand satellite motion and gravitational force; Apply Newton's law of gravitation to satellite orbits; Explain parking orbits and their applications
Q/A on centripetal force applications; Detailed study of centrifuge operation; Analysis of particle separation mechanisms; Introduction to satellite motion; Application of universal gravitation law; Discussion of geostationary satellites; Analysis of satellite velocities and orbital periods
Centrifuge model or pictures; Separation demonstration materials; Satellite orbit charts; Calculators; Newton's gravitation materials; Model solar system
Spring balance; Objects (stones); String; Eureka can; Beaker; Water; Measuring cylinder; Beam balance; Dense objects; Charts showing pressure variation
KLB Secondary Physics Form 4, Pages 54-55
7 3
Floating and Sinking
Upthrust in Gases and Archimedes' Principle
Law of Flotation and Applications
By the end of the lesson, the learner should be able to:
Explain upthrust in gases with examples; State Archimedes' principle clearly; Apply Archimedes' principle to solve problems; Solve Examples 1, 2, and 3 from textbook; Calculate apparent weight and upthrust in different fluids
Review of upthrust in liquids through Q/A; Discussion of upthrust in gases using balloon examples; Statement and explanation of Archimedes' principle; Step-by-step solution of Examples 1-3; Problem-solving involving apparent weight calculations; Group work on upthrust calculations
Balloons; Helium or hydrogen (if available); Objects of known density; Calculators; Examples from textbook; Different liquids for demonstration; Measuring equipment
Test tubes; Sand; Measuring cylinder; Water; Balance; Floating objects; Examples from textbook; Calculators; Model boats; Balloon demonstrations
KLB Secondary Physics Form 4, Pages 60-66
8

MIDTERM EXAMINATION

8

MIDTERM BREAK

9 1
Floating and Sinking
Relative Density Determination
Archimedes' Principle and Moments
Applications - Hydrometer and Practical Instruments
By the end of the lesson, the learner should be able to:
Define relative density of solids and liquids; Use Archimedes' principle to determine relative density; Apply the formula: RD = Weight in air/(Weight in air - Weight in fluid); Solve Examples 8, 9, 10, 11, and 12 from textbook; Calculate relative density using different methods
Review of density concepts through Q/A; Introduction to relative density using practical examples; Mathematical derivation of relative density formulae; Step-by-step solution of Examples 8-12; Practical determination of relative density for various materials; Group calculations and comparisons
Spring balance; Various solid objects; Different liquids; Measuring cylinders; Calculators; Examples from textbook; Objects of unknown density; Data recording sheets
Metre rule; Clamps and stands; Solid objects; Metal blocks; Water and other liquids; Graph paper; Calculators; Data recording tables; Balance setup materials
Hydrometer (if available); Different density liquids; Measuring cylinders; Calculators; Examples from textbook; Charts showing hydrometer types; Battery acid hydrometer demonstration
KLB Secondary Physics Form 4, Pages 69-74
9 2
Floating and Sinking
Electromagnetic Spectrum
Applications - Ships, Submarines, and Balloons
Introduction and Properties of Electromagnetic Waves
By the end of the lesson, the learner should be able to:
Explain how steel ships float on water; Describe working principle of submarines; Understand how balloons achieve lift and control altitude; Analyze the role of displaced fluid in each application; Apply principles to solve practical problems involving floating vessels
Q/A on hydrometer applications; Analysis of ship design and floating principles; Detailed study of submarine operation and ballast tanks; Exploration of balloon physics and gas density effects; Discussion of load limits and stability; Problem-solving involving practical floating applications
Model ships and submarines; Balloon demonstrations; Charts showing ship cross-sections; Submarine ballast tank models; Different density materials; Calculators; Application examples
Electromagnetic spectrum charts; Wave demonstration materials; Calculators; Radio; Mobile phone; Examples from textbook; Charts showing wave properties
KLB Secondary Physics Form 4, Pages 77
9 3
Electromagnetic Spectrum
Production and Detection of Electromagnetic Waves I
Production and Detection of Electromagnetic Waves II
By the end of the lesson, the learner should be able to:
Explain production of gamma rays, X-rays, and ultraviolet radiation; Describe detection methods for high-energy radiations; Understand energy transitions in atoms and nuclei; Relate wave energy to frequency using E = hf; Solve Example 3 involving X-ray calculations
Review of electromagnetic properties through Q/A; Study of high-energy radiation production mechanisms; Analysis of detection methods (photographic plates, G-M tubes, fluorescent materials); Discussion of atomic and nuclear energy changes; Step-by-step solution of Example 3; Safety considerations for high-energy radiations
Charts showing radiation production; Photographic film; Fluorescent materials; UV lamp (if available); Geiger counter (if available); Example 3 materials; Safety equipment demonstrations
Infrared sources (heaters); Thermometer with blackened bulb; Radio receivers; Microwave oven (demonstration); Oscillating circuit models; Various electromagnetic sources
KLB Secondary Physics Form 4, Pages 81-82
10 1
Electromagnetic Spectrum
Applications of Electromagnetic Waves I
Applications of Electromagnetic Waves II
By the end of the lesson, the learner should be able to:
Describe medical applications of gamma rays and X-rays; Explain industrial uses of high-energy radiations; Understand applications in sterilization and cancer therapy; Discuss X-ray photography and crystallography; Analyze benefits and limitations of high-energy radiation applications
Review of radiation properties and production; Detailed study of gamma ray applications (sterilization, cancer treatment, flaw detection); Analysis of X-ray applications (medical photography, security, crystallography); Discussion of controlled radiation exposure; Examination of X-ray photographs and medical applications
X-ray photographs; Medical imaging examples; Industrial radiography charts; Cancer treatment information; Sterilization process diagrams; Safety protocol charts
UV lamp demonstrations; Optical fiber samples; Infrared thermometer; Microwave oven (demonstration); Radio equipment; Remote controls; Radar images; Communication devices
KLB Secondary Physics Form 4, Pages 82-84
10 2
Electromagnetic Spectrum
Specific Applications - Radar and Microwave Cooking
Hazards and Safety Considerations
By the end of the lesson, the learner should be able to:
Explain principles of radar (radio detection and ranging); Describe microwave oven operation and safety features; Understand reflection and detection in radar systems; Explain how microwaves heat food molecules; Apply wave principles to practical technologies
Review of microwave and radio wave properties; Detailed analysis of radar operation and applications; Study of microwave oven components (magnetron, stirrer, safety features); Discussion of wave reflection and detection principles; Analysis of molecular heating mechanisms; Safety considerations and precautions
Radar system diagrams; Microwave oven cross-section charts; Wave reflection demonstrations; Safety instruction materials; Magnetron information; Aircraft/ship tracking examples
Radiation hazard charts; Safety equipment demonstrations; Chernobyl disaster information; Biological effect diagrams; Safety protocol materials; Radiation protection examples
KLB Secondary Physics Form 4, Pages 84-85
11

Eid Holiday

12-13

ENDTERM EXAMINATION, MARKING AND CLOSING


Your Name Comes Here


Download

Feedback