If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 2 | 1 |
Approximations and Errors
|
Computing using calculators
|
By the end of the
lesson, the learner
should be able to:
Solve basic operations using calculators Use calculator functions effectively Apply calculator to mathematical computations |
Q/A on calculator familiarity
Discussions on calculator operations Solving basic arithmetic problems Demonstrations of calculator functions Explaining proper calculator usage |
Calculators, operation guides
Calculators, verification worksheets |
KLB Mathematics Book Three Pg 24-26
|
|
| 2 | 2 |
Approximations and Errors
|
Approximation
|
By the end of the
lesson, the learner
should be able to:
Approximate values by rounding off Round numbers to specified decimal places Apply rounding rules correctly |
Q/A on rounding concepts
Discussions on rounding techniques Solving rounding problems Demonstrations of rounding methods Explaining rounding rules and applications |
Calculators, rounding charts
|
KLB Mathematics Book Three Pg 29-30
|
|
| 2 | 3 |
Approximations and Errors
|
Estimation
|
By the end of the
lesson, the learner
should be able to:
Approximate values by truncation Estimate values using appropriate methods Compare estimation techniques |
Q/A on estimation strategies
Discussions on truncation vs rounding Solving estimation problems Demonstrations of truncation methods Explaining when to use different techniques |
Calculators, estimation guides
|
KLB Mathematics Book Three Pg 30
|
|
| 2 | 4 |
Approximations and Errors
|
Accuracy and errors
Percentage error |
By the end of the
lesson, the learner
should be able to:
Find the absolute error Calculate relative error Distinguish between different error types |
Q/A on error concepts
Discussions on error calculations Solving absolute and relative error problems Demonstrations of error computation Explaining error significance |
Calculators, error calculation sheets
Calculators, percentage error worksheets |
KLB Mathematics Book Three Pg 31-32
|
|
| 2 | 5 |
Approximations and Errors
|
Rounding off error and truncation error
|
By the end of the
lesson, the learner
should be able to:
Find the rounding off error Calculate truncation error Compare rounding and truncation errors |
Q/A on error types
Discussions on error sources Solving rounding and truncation error problems Demonstrations of error comparison Explaining error analysis |
Calculators, error comparison charts
|
KLB Mathematics Book Three Pg 34
|
|
| 2 | 6 |
Approximations and Errors
|
Propagation of errors
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in addition and subtraction Calculate combined errors Apply error propagation rules |
Q/A on error propagation concepts
Discussions on addition/subtraction errors Solving error propagation problems Demonstrations of error combination Explaining propagation principles |
Calculators, error propagation guides
Calculators, verification worksheets |
KLB Mathematics Book Three Pg 35-36
|
|
| 2 | 7 |
Approximations and Errors
|
Propagation of errors in multiplication
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in multiplication Calculate relative errors in products Apply multiplication error rules |
Q/A on multiplication error concepts
Discussions on product error calculation Solving multiplication error problems Demonstrations of relative error computation Explaining multiplication error principles |
Calculators, multiplication error guides
|
KLB Mathematics Book Three Pg 36-37
|
|
| 2 | 8 |
Approximations and Errors
|
Propagation of errors in multiplication
Propagation of errors in division |
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in multiplication Solve complex multiplication error problems Compare different error propagation methods |
Q/A on advanced multiplication errors
Discussions on complex error scenarios Solving challenging multiplication problems Demonstrations of method comparison Explaining optimal error calculation |
Calculators, method comparison charts
Calculators, division error worksheets |
KLB Mathematics Book Three Pg 36-37
|
|
| 3 | 1 |
Approximations and Errors
|
Propagation of errors in division
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in division Solve complex division error problems Verify division error calculations |
Q/A on division error mastery
Discussions on complex division scenarios Solving advanced division error problems Demonstrations of error verification Explaining accuracy in division errors |
Calculators, verification guides
|
KLB Mathematics Book Three Pg 37-38
|
|
| 3 | 2 |
Approximations and Errors
|
Word problems
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors of a word problem Apply error analysis to real-world situations Solve comprehensive error problems |
Q/A on chapter consolidation
Discussions on real-world applications Solving comprehensive word problems Demonstrations of problem-solving strategies Explaining practical error analysis |
Calculators, word problem sets, comprehensive review sheets
|
KLB Mathematics Book Three Pg 39-40
|
|
| 3 | 3 |
Trigonometry (II)
|
The unit circle
|
By the end of the
lesson, the learner
should be able to:
Draw the unit circle Identify coordinates on the unit circle Understand the unit circle concept |
Q/A on basic circle properties
Discussions on unit circle construction Solving problems using unit circle Demonstrations of circle drawing Explaining unit circle applications |
Calculators, protractors, rulers, pair of compasses
|
KLB Mathematics Book Three Pg 41-42
|
|
| 3 | 4 |
Trigonometry (II)
|
Trigonometric ratios of angles greater than 90°
|
By the end of the
lesson, the learner
should be able to:
Find the trigonometric values of angles Calculate trigonometric ratios for obtuse angles Apply reference angle concepts |
Q/A on basic trigonometric ratios
Discussions on angle extensions Solving obtuse angle problems Demonstrations of reference angles Explaining quadrant relationships |
Calculators, protractors, rulers, pair of compasses
|
KLB Mathematics Book Three Pg 44-45
|
|
| 3 | 5 |
Trigonometry (II)
|
Trigonometric ratios of angles greater than 90°
Trigonometric ratios of negative angles |
By the end of the
lesson, the learner
should be able to:
Find the trigonometric values of angles Solve problems with angles in different quadrants Apply ASTC rule for sign determination |
Q/A on quadrant properties
Discussions on sign conventions Solving multi-quadrant problems Demonstrations of ASTC rule Explaining trigonometric signs |
Calculators, quadrant charts
Geoboards, graph books, calculators |
KLB Mathematics Book Three Pg 46-47
|
|
| 3 | 6 |
Trigonometry (II)
|
Trigonometric ratios of angles greater than 360°
|
By the end of the
lesson, the learner
should be able to:
Find the trigonometric values of angles greater than 360° Apply coterminal angle concepts Reduce angles to standard position |
Q/A on angle reduction concepts
Discussions on coterminal angles Solving extended angle problems Demonstrations of angle reduction Explaining periodic properties |
Geoboards, graph books, calculators
|
KLB Mathematics Book Three Pg 49-51
|
|
| 3 | 7 |
Trigonometry (II)
|
Use of mathematical tables
|
By the end of the
lesson, the learner
should be able to:
Use mathematical tables to find sine and cosine Read trigonometric tables accurately Apply table interpolation methods |
Q/A on table reading skills
Discussions on table structure Solving problems using tables Demonstrations of interpolation Explaining table accuracy |
Mathematical tables, calculators
|
KLB Mathematics Book Three Pg 51-55
|
|
| 3 | 8 |
Trigonometry (II)
|
Use of mathematical tables
Use of calculators |
By the end of the
lesson, the learner
should be able to:
Use mathematical tables to find tan Apply tables for all trigonometric functions Compare table and calculator results |
Q/A on tangent table usage
Discussions on function relationships Solving comprehensive table problems Demonstrations of result verification Explaining table limitations |
Mathematical tables, calculators
Calculators, function guides |
KLB Mathematics Book Three Pg 55-56
|
|
| 4 | 1 |
Trigonometry (II)
|
Radian measure
|
By the end of the
lesson, the learner
should be able to:
Convert degrees to radians and vice versa Apply radian measure in calculations Understand radian-degree relationships |
Q/A on angle measurement systems
Discussions on radian concepts Solving conversion problems Demonstrations of conversion methods Explaining radian applications |
Calculators, conversion charts
|
KLB Mathematics Book Three Pg 58-61
|
|
| 4 | 2 |
Trigonometry (II)
|
Simple trigonometric graphs
Graphs of cosines |
By the end of the
lesson, the learner
should be able to:
Draw tables for sine of values Plot graphs of sine functions Identify sine graph properties |
Q/A on coordinate graphing
Discussions on periodic functions Solving graphing problems Demonstrations of sine plotting Explaining graph characteristics |
Calculators, graph papers, plotting guides
|
KLB Mathematics Book Three Pg 62-63
|
|
| 4 | 3 |
Trigonometry (II)
|
Graphs of tan
|
By the end of the
lesson, the learner
should be able to:
Draw tables for tan of values Plot graphs of tan functions Identify asymptotes and discontinuities |
Q/A on tangent behavior
Discussions on function domains Solving tangent graphing problems Demonstrations of asymptote identification Explaining discontinuous functions |
Calculators, graph papers, plotting guides
|
KLB Mathematics Book Three Pg 64-65
|
|
| 4 | 4 |
Trigonometry (II)
|
The sine rule
Cosine rule |
By the end of the
lesson, the learner
should be able to:
State the sine rule Apply sine rule to find solution of triangles Solve triangles using sine rule |
Q/A on triangle properties
Discussions on sine rule applications Solving triangle problems Demonstrations of rule application Explaining ambiguous case |
Calculators, triangle worksheets
|
KLB Mathematics Book Three Pg 65-70
|
|
| 4 | 5 |
Trigonometry (II)
|
Problem solving
|
By the end of the
lesson, the learner
should be able to:
Solve problems on cosines, sines and tan Apply trigonometry to real-world situations Integrate all trigonometric concepts |
Q/A on chapter consolidation
Discussions on practical applications Solving comprehensive problems Demonstrations of problem-solving strategies Explaining real-world trigonometry |
Calculators, comprehensive problem sets, real-world examples
|
KLB Mathematics Book Three Pg 76-77
|
|
| 4 | 6 |
Surds
|
Rational and irrational numbers
|
By the end of the
lesson, the learner
should be able to:
Classify numbers as rational and irrational numbers Identify rational and irrational numbers Distinguish between rational and irrational forms |
Q/A on number classification concepts
Discussions on rational vs irrational properties Solving classification problems Demonstrations of number identification Explaining decimal representations |
Calculators, number classification charts
|
KLB Mathematics Book Three Pg 78
|
|
| 4 | 7 |
Surds
|
Order of surds and simplification
Simplification of surds practice |
By the end of the
lesson, the learner
should be able to:
State the order of surds Identify surd orders correctly Simplify surds to lowest terms |
Q/A on surd definition and properties
Discussions on surd order concepts Solving order identification problems Demonstrations of surd simplification Explaining simplification techniques |
Calculators, surd order examples
Calculators, factor trees, simplification worksheets |
KLB Mathematics Book Three Pg 78-79
|
|
| 4 | 8 |
Surds
|
Addition of surds
|
By the end of the
lesson, the learner
should be able to:
Add surds with like terms Combine surds of the same order Simplify surd addition expressions |
Q/A on like term concepts
Discussions on surd addition rules Solving addition problems systematically Demonstrations of combining techniques Explaining when surds can be added |
Calculators, addition rule charts
|
KLB Mathematics Book Three Pg 79-80
|
|
| 5 | 1 |
Surds
|
Subtraction of surds
Multiplication of surds |
By the end of the
lesson, the learner
should be able to:
Subtract surds with like terms Apply subtraction rules to surds Simplify surd subtraction expressions |
Q/A on subtraction principles
Discussions on surd subtraction methods Solving subtraction problems Demonstrations of systematic approaches Explaining subtraction verification |
Calculators, subtraction worksheets
Calculators, multiplication rule guides |
KLB Mathematics Book Three Pg 80
|
|
| 5 | 2 |
Surds
|
Division of surds
|
By the end of the
lesson, the learner
should be able to:
Divide surds of the same order Apply division rules to surds Simplify quotients of surds |
Q/A on division concepts
Discussions on surd division methods Solving division problems systematically Demonstrations of quotient simplification Explaining division techniques |
Calculators, division worksheets
|
KLB Mathematics Book Three Pg 81-82
|
|
| 5 | 3 |
Surds
|
Rationalizing the denominator
|
By the end of the
lesson, the learner
should be able to:
Rationalize the denominator of fractions Apply rationalization techniques Simplify expressions with surd denominators |
Q/A on rationalization concepts
Discussions on denominator clearing Solving rationalization problems Demonstrations of conjugate methods Explaining rationalization importance |
Calculators, rationalization guides
|
KLB Mathematics Book Three Pg 85-87
|
|
| 5 | 4 |
Surds
Further Logarithms |
Advanced rationalization techniques
Introduction |
By the end of the
lesson, the learner
should be able to:
Rationalize complex expressions Apply advanced rationalization methods Handle multiple term denominators |
Q/A on complex rationalization
Discussions on advanced techniques Solving challenging rationalization problems Demonstrations of sophisticated methods Explaining complex denominator handling |
Calculators, advanced technique sheets
Calculators, logarithm definition charts |
KLB Mathematics Book Three Pg 85-87
|
|
| 5 | 5 |
Further Logarithms
|
Laws of logarithms
|
By the end of the
lesson, the learner
should be able to:
State the laws of logarithms Apply basic logarithmic laws Use logarithm laws for simple calculations |
Q/A on logarithmic law foundations
Discussions on multiplication and division laws Solving problems using basic laws Demonstrations of law applications Explaining law derivations |
Calculators, logarithm law charts
|
KLB Mathematics Book Three Pg 90-93
|
|
| 5 | 6 |
Further Logarithms
|
Laws of logarithms
|
By the end of the
lesson, the learner
should be able to:
Use laws of logarithms to solve problems Apply advanced logarithmic laws Combine multiple laws in calculations |
Q/A on law mastery and applications
Discussions on power and root laws Solving complex law-based problems Demonstrations of combined law usage Explaining advanced law techniques |
Calculators, advanced law worksheets
Calculators, challenging problem sets |
KLB Mathematics Book Three Pg 90-93
|
|
| 5 | 7 |
Further Logarithms
|
Logarithmic equations and expressions
|
By the end of the
lesson, the learner
should be able to:
Solve the logarithmic equations and expressions Apply algebraic methods to logarithmic equations Verify solutions of logarithmic equations |
Q/A on equation-solving techniques
Discussions on logarithmic equation types Solving basic logarithmic equations Demonstrations of solution methods Explaining verification techniques |
Calculators, equation-solving guides
|
KLB Mathematics Book Three Pg 93-95
|
|
| 5 | 8 |
Further Logarithms
|
Logarithmic equations and expressions
Further computation using logarithms |
By the end of the
lesson, the learner
should be able to:
Solve the logarithmic equations and expressions Handle complex logarithmic equations Apply advanced solution techniques |
Q/A on advanced equation methods
Discussions on complex equation structures Solving challenging logarithmic equations Demonstrations of sophisticated techniques Explaining advanced solution strategies |
Calculators, advanced equation worksheets
Calculators, computation worksheets |
KLB Mathematics Book Three Pg 93-95
|
|
| 6 | 1 |
Further Logarithms
|
Further computation using logarithms
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Apply logarithms to intermediate calculations Handle multi-step logarithmic computations |
Q/A on intermediate computational skills
Discussions on multi-step processes Solving intermediate computation problems Demonstrations of systematic approaches Explaining step-by-step methods |
Calculators, intermediate problem sets
|
KLB Mathematics Book Three Pg 95-96
|
|
| 6 | 2 |
Further Logarithms
|
Further computation using logarithms
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Master advanced logarithmic computations Apply logarithms to complex mathematical scenarios |
Q/A on advanced computational mastery
Discussions on complex calculation strategies Solving advanced computation problems Demonstrations of sophisticated methods Explaining optimal computational approaches |
Calculators, advanced computation guides
|
KLB Mathematics Book Three Pg 95-96
|
|
| 6 | 3 |
Further Logarithms
|
Problem solving
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Apply logarithms to computational applications Integrate logarithmic concepts systematically |
Q/A on integrated problem-solving
Discussions on application strategies Solving comprehensive computational problems Demonstrations of integrated approaches Explaining systematic problem-solving |
Calculators, comprehensive problem sets
Calculators, real-world application examples |
KLB Mathematics Book Three Pg 97
|
|
| 6 | 4 |
Commercial Arithmetic
|
Simple interest
|
By the end of the
lesson, the learner
should be able to:
Calculate simple interest Apply simple interest formula Solve basic interest problems |
Q/A on interest concepts and terminology
Discussions on principal, rate, and time Solving basic simple interest problems Demonstrations of formula application Explaining interest calculations |
Calculators, simple interest charts
|
KLB Mathematics Book Three Pg 98-99
|
|
| 6 | 5 |
Commercial Arithmetic
|
Simple interest
Compound interest |
By the end of the
lesson, the learner
should be able to:
Calculate simple interest Solve complex simple interest problems Apply simple interest to real-world situations |
Q/A on advanced simple interest concepts
Discussions on practical applications Solving complex interest problems Demonstrations of real-world scenarios Explaining business applications |
Calculators, real-world problem sets
Calculators, compound interest tables |
KLB Mathematics Book Three Pg 98-101
|
|
| 6 | 6 |
Commercial Arithmetic
|
Compound interest
|
By the end of the
lesson, the learner
should be able to:
Calculate the compound interest Solve advanced compound interest problems Compare simple and compound interest |
Q/A on advanced compounding scenarios
Discussions on investment comparisons Solving complex compound problems Demonstrations of comparison methods Explaining investment decisions |
Calculators, comparison worksheets
|
KLB Mathematics Book Three Pg 102-107
|
|
| 6 | 7 |
Commercial Arithmetic
|
Appreciation
|
By the end of the
lesson, the learner
should be able to:
Calculate the appreciation value of items Apply appreciation concepts Solve appreciation problems |
Q/A on appreciation concepts
Discussions on asset value increases Solving appreciation calculation problems Demonstrations of value growth Explaining appreciation applications |
Calculators, appreciation examples
|
KLB Mathematics Book Three Pg 108
|
|
| 6 | 8 |
Commercial Arithmetic
|
Depreciation
Hire purchase |
By the end of the
lesson, the learner
should be able to:
Calculate the depreciation value of items Apply depreciation methods Solve depreciation problems |
Q/A on depreciation concepts and methods
Discussions on asset value decreases Solving depreciation calculation problems Demonstrations of depreciation methods Explaining business depreciation |
Calculators, depreciation charts
Calculators, hire purchase examples |
KLB Mathematics Book Three Pg 109
|
|
| 7 | 1 |
Commercial Arithmetic
|
Hire purchase
|
By the end of the
lesson, the learner
should be able to:
Find the hire purchase Solve complex hire purchase problems Calculate total costs and interest charges |
Q/A on advanced hire purchase scenarios
Discussions on complex payment structures Solving challenging hire purchase problems Demonstrations of cost analysis Explaining consumer finance decisions |
Calculators, complex hire purchase worksheets
|
KLB Mathematics Book Three Pg 110-112
|
|
| 7 | 2 |
Commercial Arithmetic
Circles: Chords and Tangents |
Income tax and P.A.Y.E
Length of an arc |
By the end of the
lesson, the learner
should be able to:
Calculate the income tax Calculate the P.A.Y.E Apply tax calculation methods |
Q/A on tax system concepts
Discussions on income tax and P.A.Y.E systems Solving tax calculation problems Demonstrations of tax computation Explaining taxation principles |
Income tax tables, calculators
Geometrical set, calculators |
KLB Mathematics Book Three Pg 112-117
|
|
| 7 | 3 |
Circles: Chords and Tangents
|
Length of an arc
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of an arc Solve complex arc length problems Apply arc concepts to real situations |
Q/A on advanced arc applications
Discussions on practical arc measurements Solving complex arc problems Demonstrations of real-world applications Explaining engineering and design uses |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 124-125
|
|
| 7 | 4 |
Circles: Chords and Tangents
|
Chords
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of a chord Apply chord properties and theorems Understand chord-radius relationships |
Q/A on chord definition and properties
Discussions on chord calculation methods Solving basic chord problems Demonstrations of geometric constructions Explaining chord theorems |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 126-128
|
|
| 7 | 5 |
Circles: Chords and Tangents
|
Parallel chords
Equal chords |
By the end of the
lesson, the learner
should be able to:
Calculate the perpendicular bisector Find the value of parallel chords Apply parallel chord properties |
Q/A on parallel chord concepts
Discussions on perpendicular bisector properties Solving parallel chord problems Demonstrations of construction techniques Explaining geometric relationships |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 129-131
|
|
| 7 | 6 |
Circles: Chords and Tangents
|
Intersecting chords
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of intersecting chords Apply intersecting chord theorem Understand chord intersection properties |
Q/A on chord intersection concepts
Discussions on intersection theorem Solving basic intersection problems Demonstrations of theorem application Explaining geometric proofs |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 132-135
|
|
| 7 | 7 |
Circles: Chords and Tangents
|
Intersecting chords
Chord properties |
By the end of the
lesson, the learner
should be able to:
Calculate the length of intersecting chords Solve complex intersection problems Apply advanced chord theorems |
Q/A on advanced intersection scenarios
Discussions on complex chord relationships Solving challenging intersection problems Demonstrations of advanced techniques Explaining sophisticated applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 135-139
|
|
| 7 | 8 |
Circles: Chords and Tangents
|
Tangent to a circle
|
By the end of the
lesson, the learner
should be able to:
Construct a tangent to a circle Understand tangent properties Apply tangent construction methods |
Q/A on tangent definition and properties
Discussions on tangent construction Solving basic tangent problems Demonstrations of construction techniques Explaining tangent characteristics |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 139-140
|
|
| 8-9 |
MID TERM BREAK |
|||||||
| 9 | 5 |
Circles: Chords and Tangents
|
Tangent to a circle
Properties of tangents to a circle from an external point |
By the end of the
lesson, the learner
should be able to:
Calculate the length of tangent Calculate the angle between tangents Apply tangent measurement techniques |
Q/A on tangent calculations
Discussions on tangent measurement Solving tangent calculation problems Demonstrations of measurement methods Explaining tangent applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 141-142
|
|
| 9 | 6 |
Circles: Chords and Tangents
|
Tangent properties
|
By the end of the
lesson, the learner
should be able to:
Solve comprehensive tangent problems Apply all tangent concepts Integrate tangent knowledge systematically |
Q/A on comprehensive tangent mastery
Discussions on integrated applications Solving mixed tangent problems Demonstrations of complete understanding Explaining systematic problem-solving |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 139-147
|
|
| 9 | 7 |
Circles: Chords and Tangents
|
Tangents to two circles
|
By the end of the
lesson, the learner
should be able to:
Calculate the tangents of direct common tangents Find direct common tangent properties Apply two-circle tangent concepts |
Q/A on two-circle tangent concepts
Discussions on direct tangent properties Solving direct tangent problems Demonstrations of construction methods Explaining geometric relationships |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 148-149
|
|
| 9 | 8 |
Circles: Chords and Tangents
|
Tangents to two circles
Contact of circles |
By the end of the
lesson, the learner
should be able to:
Calculate the tangents of transverse common tangents Find transverse tangent properties Compare direct and transverse tangents |
Q/A on transverse tangent concepts
Discussions on tangent type differences Solving transverse tangent problems Demonstrations of comparison methods Explaining tangent classifications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 150-151
|
|
| 10 | 1 |
Circles: Chords and Tangents
|
Contact of circles
|
By the end of the
lesson, the learner
should be able to:
Calculate the radii of contact circles Understand external contact properties Compare internal and external contact |
Q/A on external contact concepts
Discussions on contact type differences Solving external contact problems Demonstrations of contact analysis Explaining contact applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 153-154
|
|
| 10 | 2 |
Circles: Chords and Tangents
|
Circle contact
Angle in alternate segment |
By the end of the
lesson, the learner
should be able to:
Solve problems involving chords, tangents and contact circles Integrate all contact concepts Apply comprehensive contact knowledge |
Q/A on comprehensive contact understanding
Discussions on integrated problem-solving Solving complex contact problems Demonstrations of systematic approaches Explaining complete contact mastery |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 154-157
|
|
| 10 | 3 |
Circles: Chords and Tangents
|
Angle in alternate segment
|
By the end of the
lesson, the learner
should be able to:
Calculate the angles in alternate segments Solve complex segment problems Apply advanced segment theorems |
Q/A on advanced segment applications
Discussions on complex angle relationships Solving challenging segment problems Demonstrations of sophisticated techniques Explaining advanced applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 160-161
|
|
| 10 | 4 |
Circles: Chords and Tangents
|
Circumscribed circle
|
By the end of the
lesson, the learner
should be able to:
Construct circumscribed circles Find circumscribed circle properties Apply circumscription concepts |
Q/A on circumscription concepts
Discussions on circumscribed circle construction Solving circumscription problems Demonstrations of construction techniques Explaining circumscription applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 165
|
|
| 10 | 5 |
Circles: Chords and Tangents
|
Escribed circles
Centroid |
By the end of the
lesson, the learner
should be able to:
Construct escribed circles Find escribed circle properties Apply escription concepts |
Q/A on escription concepts
Discussions on escribed circle construction Solving escription problems Demonstrations of construction methods Explaining escription applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 165-166
|
|
| 10 | 6 |
Circles: Chords and Tangents
|
Orthocenter
|
By the end of the
lesson, the learner
should be able to:
Construct orthocenter Find orthocenter properties Apply orthocenter concepts |
Q/A on orthocenter concepts
Discussions on orthocenter construction Solving orthocenter problems Demonstrations of construction methods Explaining orthocenter applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 167
|
|
| 10 | 7 |
Circles: Chords and Tangents
Matrices Matrices |
Circle and triangle relationships
Introduction and real-life applications Order of a matrix and elements |
By the end of the
lesson, the learner
should be able to:
Solve comprehensive circle-triangle problems Integrate all circle and triangle concepts Apply advanced geometric relationships |
Q/A on comprehensive geometric understanding
Discussions on integrated relationships Solving complex geometric problems Demonstrations of advanced applications Explaining sophisticated geometric principles |
Geometrical set, calculators
Old newspapers with league tables, chalk and blackboard, exercise books Chalk and blackboard, ruled exercise books, class register |
KLB Mathematics Book Three Pg 164-167
|
|
| 10 | 8 |
Matrices
|
Square matrices, row and column matrices
Addition of matrices Subtraction of matrices |
By the end of the
lesson, the learner
should be able to:
Classify matrices by their dimensions Identify square, row, and column matrices Understand zero and null matrices Apply matrix equality conditions |
Q/A on matrix classification using drawn examples
Discussions on special matrix types using patterns Solving matrix identification using cutout papers Demonstrations using classroom objects arrangement Explaining matrix comparison using simple examples |
Paper cutouts, chalk and blackboard, counters or bottle tops
Counters or stones, chalk and blackboard, exercise books Chalk and blackboard, exercise books, number cards made from cardboard |
KLB Mathematics Book Three Pg 169-170
|
|
| 11 | 1 |
Matrices
|
Combined addition and subtraction
Scalar multiplication Introduction to matrix multiplication |
By the end of the
lesson, the learner
should be able to:
Perform multiple matrix operations Apply order of operations in matrix calculations Solve complex combined problems Demonstrate systematic problem-solving |
Q/A on operation order using BODMAS rules
Discussions on complex expressions using step-by-step approach Solving multi-step problems using organized methods Demonstrations using systematic blackboard work Explaining operation sequencing using flowcharts |
Chalk and blackboard, exercise books, locally made operation cards
Beans or stones for grouping, chalk and blackboard, exercise books Chalk and blackboard, rulers for tracing, exercise books |
KLB Mathematics Book Three Pg 171-174
|
|
| 11 | 2 |
Matrices
|
Matrix multiplication (2×2 matrices)
|
By the end of the
lesson, the learner
should be able to:
Multiply 2×2 matrices systematically Apply correct multiplication procedures Calculate matrix products accurately Understand result matrix dimensions |
Q/A on 2×2 matrix multiplication using simple numbers
Discussions on systematic calculation methods Solving 2×2 problems using step-by-step approach Demonstrations using organized blackboard layout Explaining product formation using grid method |
Chalk and blackboard, exercise books, homemade grid templates
|
KLB Mathematics Book Three Pg 176-179
|
|
| 11 | 3 |
Matrices
|
Matrix multiplication (larger matrices)
Properties of matrix multiplication |
By the end of the
lesson, the learner
should be able to:
Multiply matrices of various orders Apply multiplication to 3×3 and larger matrices Determine when multiplication is possible Calculate products efficiently |
Q/A on larger matrix multiplication using patterns
Discussions on efficiency techniques using shortcuts Solving advanced problems using systematic methods Demonstrations using organized calculation procedures Explaining general principles using examples |
Chalk and blackboard, large sheets of paper for working, exercise books
Chalk and blackboard, exercise books, cardboard for property cards |
KLB Mathematics Book Three Pg 176-179
|
|
| 11 | 4 |
Matrices
|
Real-world matrix multiplication applications
|
By the end of the
lesson, the learner
should be able to:
Apply matrix multiplication to practical problems Solve business and economic applications Calculate costs, revenues, and quantities Interpret matrix multiplication results |
Q/A on practical applications using local business examples
Discussions on market problems using familiar contexts Solving real-world problems using matrix methods Demonstrations using shop keeper scenarios Explaining result interpretation using meaningful contexts |
Chalk and blackboard, local price lists, exercise books
|
KLB Mathematics Book Three Pg 176-179
|
|
| 11 | 5 |
Matrices
|
Identity matrix
Determinant of 2×2 matrices |
By the end of the
lesson, the learner
should be able to:
Define and identify identity matrices Understand identity matrix properties Apply identity matrices in multiplication Recognize the multiplicative identity role |
Q/A on identity concepts using number 1 analogy
Discussions on multiplicative identity using examples Solving identity problems using pattern recognition Demonstrations using multiplication by 1 concept Explaining diagonal properties using visual patterns |
Chalk and blackboard, exercise books, pattern cards made from paper
Chalk and blackboard, exercise books, crossed sticks for demonstration |
KLB Mathematics Book Three Pg 182-183
|
|
| 11 | 6 |
Matrices
|
Inverse of 2×2 matrices - theory
|
By the end of the
lesson, the learner
should be able to:
Understand the concept of matrix inverse Identify conditions for matrix invertibility Apply the inverse formula for 2×2 matrices Understand singular matrices |
Q/A on inverse concepts using reciprocal analogy
Discussions on invertibility using determinant conditions Solving basic inverse problems using formula Demonstrations using step-by-step method Explaining singular matrices using zero determinant |
Chalk and blackboard, exercise books, fraction examples
|
KLB Mathematics Book Three Pg 183-185
|
|
| 11 | 7 |
Matrices
|
Inverse of 2×2 matrices - practice
Introduction to solving simultaneous equations |
By the end of the
lesson, the learner
should be able to:
Calculate inverses of 2×2 matrices systematically Verify inverse calculations through multiplication Apply inverse properties correctly Solve complex inverse problems |
Q/A on inverse calculation verification methods
Discussions on accuracy checking using multiplication Solving advanced inverse problems using practice Demonstrations using verification procedures Explaining checking methods using examples |
Chalk and blackboard, exercise books, scrap paper for verification
Chalk and blackboard, exercise books, equation examples from previous topics |
KLB Mathematics Book Three Pg 185-187
|
|
| 11 | 8 |
Matrices
|
Solving 2×2 simultaneous equations using matrices
|
By the end of the
lesson, the learner
should be able to:
Solve 2×2 simultaneous equations using matrix methods Apply inverse matrix techniques Verify solutions by substitution Compare matrix method with other techniques |
Q/A on matrix solution methods using step-by-step approach
Discussions on solution verification using substitution Solving 2×2 systems using complete method Demonstrations using organized solution process Explaining method advantages using comparisons |
Chalk and blackboard, exercise books, previous elimination method examples
|
KLB Mathematics Book Three Pg 188-190
|
|
| 12-13 |
END TERM EXAMS AND CLOSING |
|||||||
| 13 | 2 |
Matrices
|
Advanced simultaneous equation problems
|
By the end of the
lesson, the learner
should be able to:
Solve complex simultaneous equation systems Handle systems with no solution or infinite solutions Interpret determinant values in solution context Apply matrix methods to word problems |
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation Solving challenging problems using complete analysis Demonstrations using classification methods Explaining geometric meaning using line concepts |
Chalk and blackboard, exercise books, graph paper if available
|
KLB Mathematics Book Three Pg 188-190
|
|
| 13 | 3 |
Matrices
|
Matrix applications in real-world problems
Transpose of matrices |
By the end of the
lesson, the learner
should be able to:
Apply matrix operations to practical scenarios Solve business, engineering, and scientific problems Model real situations using matrices Interpret matrix solutions in context |
Q/A on practical applications using local examples
Discussions on modeling using familiar situations Solving comprehensive problems using matrix tools Demonstrations using community-based scenarios Explaining solution interpretation using meaningful contexts |
Chalk and blackboard, local business examples, exercise books
Chalk and blackboard, exercise books, paper cutouts for demonstration |
KLB Mathematics Book Three Pg 168-190
|
|
| 13 | 4 |
Matrices
|
Matrix equation solving
|
By the end of the
lesson, the learner
should be able to:
Solve matrix equations systematically Find unknown matrices in equations Apply inverse operations to solve equations Verify matrix equation solutions |
Q/A on equation solving using algebraic analogy
Discussions on unknown determination using systematic methods Solving matrix equations using step-by-step approach Demonstrations using organized solution procedures Explaining verification using checking methods |
Chalk and blackboard, exercise books, algebra reference examples
|
KLB Mathematics Book Three Pg 183-190
|
|
Your Name Comes Here