If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 2 | 1 |
Approximations and Errors
|
Computing using calculators
|
By the end of the
lesson, the learner
should be able to:
Solve basic operations using calculators Use calculator functions effectively Apply calculator to mathematical computations |
Q/A on calculator familiarity
Discussions on calculator operations Solving basic arithmetic problems Demonstrations of calculator functions Explaining proper calculator usage |
Calculators, operation guides
|
KLB Mathematics Book Three Pg 24-26
|
|
| 2 | 2 |
Approximations and Errors
|
Computing using calculators
Approximation |
By the end of the
lesson, the learner
should be able to:
Solve basic operations using calculators Perform complex calculations accurately Verify calculator results |
Q/A on calculator accuracy
Discussions on verification methods Solving complex computational problems Demonstrations of result checking Explaining calculation verification |
Calculators, verification worksheets
Calculators, rounding charts |
KLB Mathematics Book Three Pg 26-28
|
|
| 2 | 3 |
Approximations and Errors
|
Estimation
|
By the end of the
lesson, the learner
should be able to:
Approximate values by truncation Estimate values using appropriate methods Compare estimation techniques |
Q/A on estimation strategies
Discussions on truncation vs rounding Solving estimation problems Demonstrations of truncation methods Explaining when to use different techniques |
Calculators, estimation guides
|
KLB Mathematics Book Three Pg 30
|
|
| 2 | 4 |
Approximations and Errors
|
Accuracy and errors
|
By the end of the
lesson, the learner
should be able to:
Find the absolute error Calculate relative error Distinguish between different error types |
Q/A on error concepts
Discussions on error calculations Solving absolute and relative error problems Demonstrations of error computation Explaining error significance |
Calculators, error calculation sheets
|
KLB Mathematics Book Three Pg 31-32
|
|
| 2 | 5 |
Approximations and Errors
|
Percentage error
Rounding off error and truncation error |
By the end of the
lesson, the learner
should be able to:
Find the percentage error of a given value Calculate percentage error accurately Interpret percentage error results |
Q/A on percentage concepts
Discussions on percentage error meaning Solving percentage error problems Demonstrations of percentage calculations Explaining error interpretation |
Calculators, percentage error worksheets
Calculators, error comparison charts |
KLB Mathematics Book Three Pg 32-34
|
|
| 2 | 6 |
Approximations and Errors
|
Propagation of errors
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in addition and subtraction Calculate combined errors Apply error propagation rules |
Q/A on error propagation concepts
Discussions on addition/subtraction errors Solving error propagation problems Demonstrations of error combination Explaining propagation principles |
Calculators, error propagation guides
|
KLB Mathematics Book Three Pg 35-36
|
|
| 2 | 7 |
Approximations and Errors
|
Propagation of errors
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in addition and subtraction Apply error propagation to complex problems Verify error calculations |
Q/A on propagation mastery
Discussions on complex error scenarios Solving advanced propagation problems Demonstrations of verification methods Explaining error validation |
Calculators, verification worksheets
|
KLB Mathematics Book Three Pg 35-36
|
|
| 2 | 8 |
Approximations and Errors
|
Propagation of errors in multiplication
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in multiplication Calculate relative errors in products Apply multiplication error rules |
Q/A on multiplication error concepts
Discussions on product error calculation Solving multiplication error problems Demonstrations of relative error computation Explaining multiplication error principles |
Calculators, multiplication error guides
Calculators, method comparison charts |
KLB Mathematics Book Three Pg 36-37
|
|
| 3 | 1 |
Approximations and Errors
|
Propagation of errors in division
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in division Calculate errors in quotients Apply division error rules |
Q/A on division error concepts
Discussions on quotient error calculation Solving division error problems Demonstrations of division error methods Explaining division error principles |
Calculators, division error worksheets
|
KLB Mathematics Book Three Pg 37-38
|
|
| 3 | 2 |
Approximations and Errors
|
Propagation of errors in division
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in division Solve complex division error problems Verify division error calculations |
Q/A on division error mastery
Discussions on complex division scenarios Solving advanced division error problems Demonstrations of error verification Explaining accuracy in division errors |
Calculators, verification guides
|
KLB Mathematics Book Three Pg 37-38
|
|
| 3 | 3 |
Approximations and Errors
Trigonometry (II) |
Word problems
The unit circle |
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors of a word problem Apply error analysis to real-world situations Solve comprehensive error problems |
Q/A on chapter consolidation
Discussions on real-world applications Solving comprehensive word problems Demonstrations of problem-solving strategies Explaining practical error analysis |
Calculators, word problem sets, comprehensive review sheets
Calculators, protractors, rulers, pair of compasses |
KLB Mathematics Book Three Pg 39-40
|
|
| 3 | 4 |
Trigonometry (II)
|
The unit circle
|
By the end of the
lesson, the learner
should be able to:
Solve problems using the unit circle Apply unit circle to find trigonometric values Use unit circle for angle measurement |
Q/A on unit circle mastery
Discussions on practical applications Solving trigonometric problems Demonstrations of value finding Explaining angle relationships |
Calculators, protractors, rulers, pair of compasses
|
KLB Mathematics Book Three Pg 43-44
|
|
| 3 | 5 |
Trigonometry (II)
|
Trigonometric ratios of angles greater than 90°
|
By the end of the
lesson, the learner
should be able to:
Find the trigonometric values of angles Calculate trigonometric ratios for obtuse angles Apply reference angle concepts |
Q/A on basic trigonometric ratios
Discussions on angle extensions Solving obtuse angle problems Demonstrations of reference angles Explaining quadrant relationships |
Calculators, protractors, rulers, pair of compasses
|
KLB Mathematics Book Three Pg 44-45
|
|
| 3 | 6 |
Trigonometry (II)
|
Trigonometric ratios of angles greater than 90°
Trigonometric ratios of negative angles |
By the end of the
lesson, the learner
should be able to:
Find the trigonometric values of angles Solve problems with angles in different quadrants Apply ASTC rule for sign determination |
Q/A on quadrant properties
Discussions on sign conventions Solving multi-quadrant problems Demonstrations of ASTC rule Explaining trigonometric signs |
Calculators, quadrant charts
Geoboards, graph books, calculators |
KLB Mathematics Book Three Pg 46-47
|
|
| 3 | 7 |
Trigonometry (II)
|
Trigonometric ratios of angles greater than 360°
|
By the end of the
lesson, the learner
should be able to:
Find the trigonometric values of angles greater than 360° Apply coterminal angle concepts Reduce angles to standard position |
Q/A on angle reduction concepts
Discussions on coterminal angles Solving extended angle problems Demonstrations of angle reduction Explaining periodic properties |
Geoboards, graph books, calculators
|
KLB Mathematics Book Three Pg 49-51
|
|
| 3 | 8 |
Trigonometry (II)
|
Use of mathematical tables
|
By the end of the
lesson, the learner
should be able to:
Use mathematical tables to find sine and cosine Read trigonometric tables accurately Apply table interpolation methods |
Q/A on table reading skills
Discussions on table structure Solving problems using tables Demonstrations of interpolation Explaining table accuracy |
Mathematical tables, calculators
|
KLB Mathematics Book Three Pg 51-55
|
|
| 4 | 1 |
Trigonometry (II)
|
Use of mathematical tables
Use of calculators |
By the end of the
lesson, the learner
should be able to:
Use mathematical tables to find tan Apply tables for all trigonometric functions Compare table and calculator results |
Q/A on tangent table usage
Discussions on function relationships Solving comprehensive table problems Demonstrations of result verification Explaining table limitations |
Mathematical tables, calculators
Calculators, function guides |
KLB Mathematics Book Three Pg 55-56
|
|
| 4 | 2 |
Trigonometry (II)
|
Radian measure
|
By the end of the
lesson, the learner
should be able to:
Convert degrees to radians and vice versa Apply radian measure in calculations Understand radian-degree relationships |
Q/A on angle measurement systems
Discussions on radian concepts Solving conversion problems Demonstrations of conversion methods Explaining radian applications |
Calculators, conversion charts
|
KLB Mathematics Book Three Pg 58-61
|
|
| 4 | 3 |
Trigonometry (II)
|
Simple trigonometric graphs
|
By the end of the
lesson, the learner
should be able to:
Draw tables for sine of values Plot graphs of sine functions Identify sine graph properties |
Q/A on coordinate graphing
Discussions on periodic functions Solving graphing problems Demonstrations of sine plotting Explaining graph characteristics |
Calculators, graph papers, plotting guides
|
KLB Mathematics Book Three Pg 62-63
|
|
| 4 | 4 |
Trigonometry (II)
|
Graphs of cosines
Graphs of tan |
By the end of the
lesson, the learner
should be able to:
Draw tables for cosine of values Plot graphs of cosine functions Compare sine and cosine graphs |
Q/A on cosine properties
Discussions on graph relationships Solving cosine graphing problems Demonstrations of cosine plotting Explaining phase relationships |
Calculators, graph papers, plotting guides
|
KLB Mathematics Book Three Pg 63-64
|
|
| 4 | 5 |
Trigonometry (II)
|
The sine rule
|
By the end of the
lesson, the learner
should be able to:
State the sine rule Apply sine rule to find solution of triangles Solve triangles using sine rule |
Q/A on triangle properties
Discussions on sine rule applications Solving triangle problems Demonstrations of rule application Explaining ambiguous case |
Calculators, triangle worksheets
|
KLB Mathematics Book Three Pg 65-70
|
|
| 4 | 6 |
Trigonometry (II)
|
Cosine rule
|
By the end of the
lesson, the learner
should be able to:
State the cosine rule Apply cosine rule to find solution of triangles Choose appropriate rule for triangle solving |
Q/A on cosine rule concepts
Discussions on rule selection Solving complex triangle problems Demonstrations of cosine rule Explaining when to use each rule |
Calculators, triangle worksheets
|
KLB Mathematics Book Three Pg 71-75
|
|
| 4 | 7 |
Trigonometry (II)
Surds |
Problem solving
Rational and irrational numbers |
By the end of the
lesson, the learner
should be able to:
Solve problems on cosines, sines and tan Apply trigonometry to real-world situations Integrate all trigonometric concepts |
Q/A on chapter consolidation
Discussions on practical applications Solving comprehensive problems Demonstrations of problem-solving strategies Explaining real-world trigonometry |
Calculators, comprehensive problem sets, real-world examples
Calculators, number classification charts |
KLB Mathematics Book Three Pg 76-77
|
|
| 4 | 8 |
Surds
|
Order of surds and simplification
|
By the end of the
lesson, the learner
should be able to:
State the order of surds Identify surd orders correctly Simplify surds to lowest terms |
Q/A on surd definition and properties
Discussions on surd order concepts Solving order identification problems Demonstrations of surd simplification Explaining simplification techniques |
Calculators, surd order examples
|
KLB Mathematics Book Three Pg 78-79
|
|
| 5 | 1 |
Surds
|
Simplification of surds practice
|
By the end of the
lesson, the learner
should be able to:
Simplify surds using factorization Express surds in simplest form Apply systematic simplification methods |
Q/A on factorization techniques
Discussions on factor identification Solving extensive simplification problems Demonstrations of step-by-step methods Explaining perfect square extraction |
Calculators, factor trees, simplification worksheets
|
KLB Mathematics Book Three Pg 79-80
|
|
| 5 | 2 |
Surds
|
Addition of surds
Subtraction of surds |
By the end of the
lesson, the learner
should be able to:
Add surds with like terms Combine surds of the same order Simplify surd addition expressions |
Q/A on like term concepts
Discussions on surd addition rules Solving addition problems systematically Demonstrations of combining techniques Explaining when surds can be added |
Calculators, addition rule charts
Calculators, subtraction worksheets |
KLB Mathematics Book Three Pg 79-80
|
|
| 5 | 3 |
Surds
|
Multiplication of surds
|
By the end of the
lesson, the learner
should be able to:
Multiply surds of the same order Apply multiplication rules to surds Simplify products of surds |
Q/A on multiplication concepts
Discussions on surd multiplication laws Solving multiplication problems Demonstrations of product simplification Explaining multiplication principles |
Calculators, multiplication rule guides
|
KLB Mathematics Book Three Pg 80-82
|
|
| 5 | 4 |
Surds
|
Division of surds
|
By the end of the
lesson, the learner
should be able to:
Divide surds of the same order Apply division rules to surds Simplify quotients of surds |
Q/A on division concepts
Discussions on surd division methods Solving division problems systematically Demonstrations of quotient simplification Explaining division techniques |
Calculators, division worksheets
|
KLB Mathematics Book Three Pg 81-82
|
|
| 5 | 5 |
Surds
|
Rationalizing the denominator
Advanced rationalization techniques |
By the end of the
lesson, the learner
should be able to:
Rationalize the denominator of fractions Apply rationalization techniques Simplify expressions with surd denominators |
Q/A on rationalization concepts
Discussions on denominator clearing Solving rationalization problems Demonstrations of conjugate methods Explaining rationalization importance |
Calculators, rationalization guides
Calculators, advanced technique sheets |
KLB Mathematics Book Three Pg 85-87
|
|
| 5 | 6 |
Further Logarithms
|
Introduction
|
By the end of the
lesson, the learner
should be able to:
Use calculators to find the logarithm of numbers Understand logarithmic notation and concepts Apply basic logarithmic principles |
Q/A on exponential and logarithmic relationships
Discussions on logarithm definition and properties Solving basic logarithm problems Demonstrations of calculator usage Explaining logarithm-exponential connections |
Calculators, logarithm definition charts
|
KLB Mathematics Book Three Pg 89
|
|
| 5 | 7 |
Further Logarithms
|
Laws of logarithms
|
By the end of the
lesson, the learner
should be able to:
State the laws of logarithms Apply basic logarithmic laws Use logarithm laws for simple calculations |
Q/A on logarithmic law foundations
Discussions on multiplication and division laws Solving problems using basic laws Demonstrations of law applications Explaining law derivations |
Calculators, logarithm law charts
|
KLB Mathematics Book Three Pg 90-93
|
|
| 5 | 8 |
Further Logarithms
|
Laws of logarithms
|
By the end of the
lesson, the learner
should be able to:
Use laws of logarithms to solve problems Apply advanced logarithmic laws Combine multiple laws in calculations |
Q/A on law mastery and applications
Discussions on power and root laws Solving complex law-based problems Demonstrations of combined law usage Explaining advanced law techniques |
Calculators, advanced law worksheets
|
KLB Mathematics Book Three Pg 90-93
|
|
| 6 | 1 |
Further Logarithms
|
Laws of logarithms
Logarithmic equations and expressions |
By the end of the
lesson, the learner
should be able to:
Use laws of logarithms to solve problems Master all logarithmic laws comprehensively Apply laws to challenging mathematical problems |
Q/A on comprehensive law understanding
Discussions on law selection strategies Solving challenging logarithmic problems Demonstrations of optimal law application Explaining problem-solving approaches |
Calculators, challenging problem sets
Calculators, equation-solving guides |
KLB Mathematics Book Three Pg 90-93
|
|
| 6 | 2 |
Further Logarithms
|
Logarithmic equations and expressions
|
By the end of the
lesson, the learner
should be able to:
Solve the logarithmic equations and expressions Handle complex logarithmic equations Apply advanced solution techniques |
Q/A on advanced equation methods
Discussions on complex equation structures Solving challenging logarithmic equations Demonstrations of sophisticated techniques Explaining advanced solution strategies |
Calculators, advanced equation worksheets
|
KLB Mathematics Book Three Pg 93-95
|
|
| 6 | 3 |
Further Logarithms
|
Further computation using logarithms
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Apply logarithms to numerical computations Use logarithms for complex calculations |
Q/A on computational applications
Discussions on numerical problem-solving Solving computation-based problems Demonstrations of logarithmic calculations Explaining computational advantages |
Calculators, computation worksheets
|
KLB Mathematics Book Three Pg 95-96
|
|
| 6 | 4 |
Further Logarithms
|
Further computation using logarithms
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Apply logarithms to intermediate calculations Handle multi-step logarithmic computations |
Q/A on intermediate computational skills
Discussions on multi-step processes Solving intermediate computation problems Demonstrations of systematic approaches Explaining step-by-step methods |
Calculators, intermediate problem sets
Calculators, advanced computation guides |
KLB Mathematics Book Three Pg 95-96
|
|
| 6 | 5 |
Further Logarithms
|
Problem solving
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Apply logarithms to computational applications Integrate logarithmic concepts systematically |
Q/A on integrated problem-solving
Discussions on application strategies Solving comprehensive computational problems Demonstrations of integrated approaches Explaining systematic problem-solving |
Calculators, comprehensive problem sets
|
KLB Mathematics Book Three Pg 97
|
|
| 6 | 6 |
Further Logarithms
|
Problem solving
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Apply logarithmic concepts to real-world situations Handle practical logarithmic applications |
Q/A on real-world applications
Discussions on practical problem contexts Solving real-world logarithmic problems Demonstrations of practical applications Explaining everyday logarithm usage |
Calculators, real-world application examples
|
KLB Mathematics Book Three Pg 97
|
|
| 6 | 7 |
Commercial Arithmetic
|
Simple interest
|
By the end of the
lesson, the learner
should be able to:
Calculate simple interest Apply simple interest formula Solve basic interest problems |
Q/A on interest concepts and terminology
Discussions on principal, rate, and time Solving basic simple interest problems Demonstrations of formula application Explaining interest calculations |
Calculators, simple interest charts
Calculators, real-world problem sets |
KLB Mathematics Book Three Pg 98-99
|
|
| 6 | 8 |
Commercial Arithmetic
|
Compound interest
|
By the end of the
lesson, the learner
should be able to:
Calculate the compound interest Apply compound interest formula Understand compounding concepts |
Q/A on compound interest principles
Discussions on compounding frequency Solving basic compound interest problems Demonstrations of compound calculations Explaining compounding effects |
Calculators, compound interest tables
|
KLB Mathematics Book Three Pg 102-106
|
|
| 7 | 1 |
Commercial Arithmetic
|
Compound interest
|
By the end of the
lesson, the learner
should be able to:
Calculate the compound interest Solve advanced compound interest problems Compare simple and compound interest |
Q/A on advanced compounding scenarios
Discussions on investment comparisons Solving complex compound problems Demonstrations of comparison methods Explaining investment decisions |
Calculators, comparison worksheets
|
KLB Mathematics Book Three Pg 102-107
|
|
| 7 | 2 |
Commercial Arithmetic
|
Appreciation
Depreciation |
By the end of the
lesson, the learner
should be able to:
Calculate the appreciation value of items Apply appreciation concepts Solve appreciation problems |
Q/A on appreciation concepts
Discussions on asset value increases Solving appreciation calculation problems Demonstrations of value growth Explaining appreciation applications |
Calculators, appreciation examples
Calculators, depreciation charts |
KLB Mathematics Book Three Pg 108
|
|
| 7 | 3 |
Commercial Arithmetic
|
Hire purchase
|
By the end of the
lesson, the learner
should be able to:
Find the hire purchase Calculate hire purchase terms Understand hire purchase concepts |
Q/A on hire purchase principles
Discussions on installment buying Solving basic hire purchase problems Demonstrations of payment calculations Explaining hire purchase benefits |
Calculators, hire purchase examples
|
KLB Mathematics Book Three Pg 110-112
|
|
| 7 | 4 |
Commercial Arithmetic
|
Hire purchase
|
By the end of the
lesson, the learner
should be able to:
Find the hire purchase Solve complex hire purchase problems Calculate total costs and interest charges |
Q/A on advanced hire purchase scenarios
Discussions on complex payment structures Solving challenging hire purchase problems Demonstrations of cost analysis Explaining consumer finance decisions |
Calculators, complex hire purchase worksheets
|
KLB Mathematics Book Three Pg 110-112
|
|
| 7 | 5 |
Commercial Arithmetic
Circles: Chords and Tangents |
Income tax and P.A.Y.E
Length of an arc |
By the end of the
lesson, the learner
should be able to:
Calculate the income tax Calculate the P.A.Y.E Apply tax calculation methods |
Q/A on tax system concepts
Discussions on income tax and P.A.Y.E systems Solving tax calculation problems Demonstrations of tax computation Explaining taxation principles |
Income tax tables, calculators
Geometrical set, calculators |
KLB Mathematics Book Three Pg 112-117
|
|
| 7 | 6 |
Circles: Chords and Tangents
|
Length of an arc
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of an arc Solve complex arc length problems Apply arc concepts to real situations |
Q/A on advanced arc applications
Discussions on practical arc measurements Solving complex arc problems Demonstrations of real-world applications Explaining engineering and design uses |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 124-125
|
|
| 7 | 7 |
Circles: Chords and Tangents
|
Chords
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of a chord Apply chord properties and theorems Understand chord-radius relationships |
Q/A on chord definition and properties
Discussions on chord calculation methods Solving basic chord problems Demonstrations of geometric constructions Explaining chord theorems |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 126-128
|
|
| 7 | 8 |
Circles: Chords and Tangents
|
Parallel chords
Equal chords |
By the end of the
lesson, the learner
should be able to:
Calculate the perpendicular bisector Find the value of parallel chords Apply parallel chord properties |
Q/A on parallel chord concepts
Discussions on perpendicular bisector properties Solving parallel chord problems Demonstrations of construction techniques Explaining geometric relationships |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 129-131
|
|
| 8 | 1 |
Circles: Chords and Tangents
|
Intersecting chords
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of intersecting chords Apply intersecting chord theorem Understand chord intersection properties |
Q/A on chord intersection concepts
Discussions on intersection theorem Solving basic intersection problems Demonstrations of theorem application Explaining geometric proofs |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 132-135
|
|
| 8 | 2 |
Circles: Chords and Tangents
|
Intersecting chords
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of intersecting chords Solve complex intersection problems Apply advanced chord theorems |
Q/A on advanced intersection scenarios
Discussions on complex chord relationships Solving challenging intersection problems Demonstrations of advanced techniques Explaining sophisticated applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 135-139
|
|
| 8 | 3 |
Circles: Chords and Tangents
|
Chord properties
Tangent to a circle |
By the end of the
lesson, the learner
should be able to:
Solve comprehensive chord problems Integrate all chord concepts Apply chord knowledge systematically |
Q/A on comprehensive chord understanding
Discussions on integrated problem-solving Solving mixed chord problems Demonstrations of systematic approaches Explaining complete chord mastery |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 126-139
|
|
| 8-9 |
MID TERM BREAK |
|||||||
| 9 | 5 |
Circles: Chords and Tangents
|
Tangent to a circle
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of tangent Calculate the angle between tangents Apply tangent measurement techniques |
Q/A on tangent calculations
Discussions on tangent measurement Solving tangent calculation problems Demonstrations of measurement methods Explaining tangent applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 141-142
|
|
| 9 | 6 |
Circles: Chords and Tangents
|
Properties of tangents to a circle from an external point
|
By the end of the
lesson, the learner
should be able to:
State the properties of tangents to a circle from an external point Apply external tangent properties Solve external tangent problems |
Q/A on external tangent concepts
Discussions on tangent properties Solving external tangent problems Demonstrations of property applications Explaining theoretical foundations |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 142-144
|
|
| 9 | 7 |
Circles: Chords and Tangents
|
Tangent properties
Tangents to two circles |
By the end of the
lesson, the learner
should be able to:
Solve comprehensive tangent problems Apply all tangent concepts Integrate tangent knowledge systematically |
Q/A on comprehensive tangent mastery
Discussions on integrated applications Solving mixed tangent problems Demonstrations of complete understanding Explaining systematic problem-solving |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 139-147
|
|
| 9 | 8 |
Circles: Chords and Tangents
|
Tangents to two circles
|
By the end of the
lesson, the learner
should be able to:
Calculate the tangents of transverse common tangents Find transverse tangent properties Compare direct and transverse tangents |
Q/A on transverse tangent concepts
Discussions on tangent type differences Solving transverse tangent problems Demonstrations of comparison methods Explaining tangent classifications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 150-151
|
|
| 10 | 1 |
Circles: Chords and Tangents
|
Contact of circles
|
By the end of the
lesson, the learner
should be able to:
Calculate the radii of contact circles Understand internal contact properties Apply contact circle concepts |
Q/A on circle contact concepts
Discussions on internal contact properties Solving internal contact problems Demonstrations of contact relationships Explaining geometric principles |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 151-153
|
|
| 10 | 2 |
Circles: Chords and Tangents
|
Contact of circles
Circle contact |
By the end of the
lesson, the learner
should be able to:
Calculate the radii of contact circles Understand external contact properties Compare internal and external contact |
Q/A on external contact concepts
Discussions on contact type differences Solving external contact problems Demonstrations of contact analysis Explaining contact applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 153-154
|
|
| 10 | 3 |
Circles: Chords and Tangents
|
Angle in alternate segment
|
By the end of the
lesson, the learner
should be able to:
Calculate the angles in alternate segments Apply alternate segment theorem Understand segment angle properties |
Q/A on alternate segment concepts
Discussions on segment angle relationships Solving basic segment problems Demonstrations of theorem application Explaining geometric proofs |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 157-160
|
|
| 10 | 4 |
Circles: Chords and Tangents
|
Angle in alternate segment
|
By the end of the
lesson, the learner
should be able to:
Calculate the angles in alternate segments Solve complex segment problems Apply advanced segment theorems |
Q/A on advanced segment applications
Discussions on complex angle relationships Solving challenging segment problems Demonstrations of sophisticated techniques Explaining advanced applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 160-161
|
|
| 10 | 5 |
Circles: Chords and Tangents
|
Circumscribed circle
Escribed circles |
By the end of the
lesson, the learner
should be able to:
Construct circumscribed circles Find circumscribed circle properties Apply circumscription concepts |
Q/A on circumscription concepts
Discussions on circumscribed circle construction Solving circumscription problems Demonstrations of construction techniques Explaining circumscription applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 165
|
|
| 10 | 6 |
Circles: Chords and Tangents
|
Centroid
|
By the end of the
lesson, the learner
should be able to:
Construct centroid Find centroid properties Apply centroid concepts |
Q/A on centroid definition and properties
Discussions on centroid construction Solving centroid problems Demonstrations of construction techniques Explaining centroid applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 166
|
|
| 10 | 7 |
Circles: Chords and Tangents
|
Orthocenter
|
By the end of the
lesson, the learner
should be able to:
Construct orthocenter Find orthocenter properties Apply orthocenter concepts |
Q/A on orthocenter concepts
Discussions on orthocenter construction Solving orthocenter problems Demonstrations of construction methods Explaining orthocenter applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 167
|
|
| 10 | 8 |
Circles: Chords and Tangents
Matrices |
Circle and triangle relationships
Introduction and real-life applications |
By the end of the
lesson, the learner
should be able to:
Solve comprehensive circle-triangle problems Integrate all circle and triangle concepts Apply advanced geometric relationships |
Q/A on comprehensive geometric understanding
Discussions on integrated relationships Solving complex geometric problems Demonstrations of advanced applications Explaining sophisticated geometric principles |
Geometrical set, calculators
Old newspapers with league tables, chalk and blackboard, exercise books |
KLB Mathematics Book Three Pg 164-167
|
|
| 11 | 1 |
Matrices
|
Order of a matrix and elements
Square matrices, row and column matrices Addition of matrices |
By the end of the
lesson, the learner
should be able to:
Determine the order of given matrices Identify matrix elements by position Use correct notation for matrix elements Distinguish between different matrix types |
Q/A on matrix structure using grid drawings
Discussions on rows and columns using classroom seating Solving element location using coordinate games Demonstrations using drawn grids on blackboard Explaining position notation using class register |
Chalk and blackboard, ruled exercise books, class register
Paper cutouts, chalk and blackboard, counters or bottle tops Counters or stones, chalk and blackboard, exercise books |
KLB Mathematics Book Three Pg 169-170
|
|
| 11 | 2 |
Matrices
|
Subtraction of matrices
Combined addition and subtraction Scalar multiplication |
By the end of the
lesson, the learner
should be able to:
Subtract matrices of the same order Apply matrix subtraction rules correctly Understand order requirements for subtraction Solve complex matrix subtraction problems |
Q/A on matrix subtraction using simple numbers
Discussions on element-wise subtraction using examples Solving subtraction problems on blackboard Demonstrations using number line concepts Explaining sign changes using practical examples |
Chalk and blackboard, exercise books, number cards made from cardboard
Chalk and blackboard, exercise books, locally made operation cards Beans or stones for grouping, chalk and blackboard, exercise books |
KLB Mathematics Book Three Pg 170-171
|
|
| 11 | 3 |
Matrices
|
Introduction to matrix multiplication
Matrix multiplication (2×2 matrices) |
By the end of the
lesson, the learner
should be able to:
Understand matrix multiplication prerequisites Learn compatibility requirements for multiplication Apply row-by-column multiplication method Calculate simple matrix products |
Q/A on multiplication compatibility using dimensions
Discussions on row-column method using finger tracing Solving basic multiplication using dot product method Demonstrations using physical row-column matching Explaining order requirements using practical examples |
Chalk and blackboard, rulers for tracing, exercise books
Chalk and blackboard, exercise books, homemade grid templates |
KLB Mathematics Book Three Pg 174-176
|
|
| 11 | 4 |
Matrices
|
Matrix multiplication (larger matrices)
|
By the end of the
lesson, the learner
should be able to:
Multiply matrices of various orders Apply multiplication to 3×3 and larger matrices Determine when multiplication is possible Calculate products efficiently |
Q/A on larger matrix multiplication using patterns
Discussions on efficiency techniques using shortcuts Solving advanced problems using systematic methods Demonstrations using organized calculation procedures Explaining general principles using examples |
Chalk and blackboard, large sheets of paper for working, exercise books
|
KLB Mathematics Book Three Pg 176-179
|
|
| 11 | 5 |
Matrices
|
Properties of matrix multiplication
Real-world matrix multiplication applications |
By the end of the
lesson, the learner
should be able to:
Understand non-commutativity of matrix multiplication Apply associative and distributive properties Distinguish between pre and post multiplication Solve problems involving multiplication properties |
Q/A on multiplication properties using counterexamples
Discussions on order importance using practical examples Solving property-based problems using verification Demonstrations using concrete examples Explaining distributive law using expansion |
Chalk and blackboard, exercise books, cardboard for property cards
Chalk and blackboard, local price lists, exercise books |
KLB Mathematics Book Three Pg 174-179
|
|
| 11 | 6 |
Matrices
|
Identity matrix
|
By the end of the
lesson, the learner
should be able to:
Define and identify identity matrices Understand identity matrix properties Apply identity matrices in multiplication Recognize the multiplicative identity role |
Q/A on identity concepts using number 1 analogy
Discussions on multiplicative identity using examples Solving identity problems using pattern recognition Demonstrations using multiplication by 1 concept Explaining diagonal properties using visual patterns |
Chalk and blackboard, exercise books, pattern cards made from paper
|
KLB Mathematics Book Three Pg 182-183
|
|
| 11 | 7 |
Matrices
|
Determinant of 2×2 matrices
|
By the end of the
lesson, the learner
should be able to:
Calculate determinants of 2×2 matrices Apply the determinant formula correctly Understand geometric interpretation of determinants Use determinants to classify matrices |
Q/A on determinant calculation using cross multiplication
Discussions on formula application using memory aids Solving determinant problems using systematic approach Demonstrations using cross pattern method Explaining geometric meaning using area concepts |
Chalk and blackboard, exercise books, crossed sticks for demonstration
|
KLB Mathematics Book Three Pg 183
|
|
| 11 | 8 |
Matrices
|
Inverse of 2×2 matrices - theory
Inverse of 2×2 matrices - practice |
By the end of the
lesson, the learner
should be able to:
Understand the concept of matrix inverse Identify conditions for matrix invertibility Apply the inverse formula for 2×2 matrices Understand singular matrices |
Q/A on inverse concepts using reciprocal analogy
Discussions on invertibility using determinant conditions Solving basic inverse problems using formula Demonstrations using step-by-step method Explaining singular matrices using zero determinant |
Chalk and blackboard, exercise books, fraction examples
Chalk and blackboard, exercise books, scrap paper for verification |
KLB Mathematics Book Three Pg 183-185
|
|
| 12 | 1 |
Matrices
|
Introduction to solving simultaneous equations
|
By the end of the
lesson, the learner
should be able to:
Understand matrix representation of simultaneous equations Identify coefficient and constant matrices Set up matrix equations correctly Recognize the structure of linear systems |
Q/A on equation representation using familiar equations
Discussions on coefficient identification using examples Solving setup problems using systematic approach Demonstrations using equation breakdown method Explaining structure using organized layout |
Chalk and blackboard, exercise books, equation examples from previous topics
|
KLB Mathematics Book Three Pg 188-189
|
|
| 12 | 2 |
Matrices
|
Solving 2×2 simultaneous equations using matrices
|
By the end of the
lesson, the learner
should be able to:
Solve 2×2 simultaneous equations using matrix methods Apply inverse matrix techniques Verify solutions by substitution Compare matrix method with other techniques |
Q/A on matrix solution methods using step-by-step approach
Discussions on solution verification using substitution Solving 2×2 systems using complete method Demonstrations using organized solution process Explaining method advantages using comparisons |
Chalk and blackboard, exercise books, previous elimination method examples
|
KLB Mathematics Book Three Pg 188-190
|
|
| 12-13 |
END TERM EXAMS AND CLOSING |
|||||||
| 13 | 2 |
Matrices
|
Advanced simultaneous equation problems
Matrix applications in real-world problems |
By the end of the
lesson, the learner
should be able to:
Solve complex simultaneous equation systems Handle systems with no solution or infinite solutions Interpret determinant values in solution context Apply matrix methods to word problems |
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation Solving challenging problems using complete analysis Demonstrations using classification methods Explaining geometric meaning using line concepts |
Chalk and blackboard, exercise books, graph paper if available
Chalk and blackboard, local business examples, exercise books |
KLB Mathematics Book Three Pg 188-190
|
|
| 13 | 3 |
Matrices
|
Transpose of matrices
|
By the end of the
lesson, the learner
should be able to:
Define and calculate matrix transpose Understand transpose properties Apply transpose operations correctly Solve problems involving transpose |
Q/A on transpose concepts using reflection ideas
Discussions on row-column interchange using visual methods Solving transpose problems using systematic approach Demonstrations using flip and rotate concepts Explaining properties using symmetry ideas |
Chalk and blackboard, exercise books, paper cutouts for demonstration
|
KLB Mathematics Book Three Pg 170-174
|
|
| 13 | 4 |
Matrices
|
Matrix equation solving
|
By the end of the
lesson, the learner
should be able to:
Solve matrix equations systematically Find unknown matrices in equations Apply inverse operations to solve equations Verify matrix equation solutions |
Q/A on equation solving using algebraic analogy
Discussions on unknown determination using systematic methods Solving matrix equations using step-by-step approach Demonstrations using organized solution procedures Explaining verification using checking methods |
Chalk and blackboard, exercise books, algebra reference examples
|
KLB Mathematics Book Three Pg 183-190
|
|
Your Name Comes Here