If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 2 | 3 |
Linear Motion
|
Introduction to Linear Motion and Basic Concepts
Speed and Velocity Calculations |
By the end of the
lesson, the learner
should be able to:
Define distance, displacement, speed, velocity and acceleration -Distinguish between scalar and vector quantities -State the SI units for distance, displacement, speed, velocity and acceleration -Explain the difference between distance and displacement using examples |
Q/A on types of motion students observe daily
-Demonstration of linear motion using trolley on runway -Discussion on difference between distance and displacement using school compound examples -Drawing diagrams to show distance vs displacement -Practical activity: Students walk different paths between two points to measure distance vs displacement |
Trolley
-Runway/metre rule -Chalk for marking -Charts showing motion types -School compound map -Measuring tape Speedometer (if available) -Stopwatches -Calculator -Worked examples charts -School field for practical work |
KLB Secondary Physics Form 3, Pages 1-4
|
|
| 2 | 4 |
Linear Motion
|
Acceleration and Equations of Motion
|
By the end of the
lesson, the learner
should be able to:
Define acceleration and deceleration -Calculate acceleration using change in velocity and time -Apply the three equations of linear motion -Solve problems involving uniformly accelerated motion |
Q/A review on speed and velocity
-Demonstration of accelerated motion using trolley on inclined plane -Derivation of three equations of motion: v=u+at, s=ut+½at², v²=u²+2as -Worked examples using each equation -Problem-solving practice with real scenarios -Safety discussion for practical work |
Trolley
-Inclined plane -Stopwatch -Metre rules -Chart showing equation derivations -Calculator -Worked examples |
KLB Secondary Physics Form 3, Pages 4-5, 19-22
|
|
| 2 | 5 |
Linear Motion
|
Motion-Time Graphs (Distance-Time and Speed-Time)
|
By the end of the
lesson, the learner
should be able to:
Plot distance-time graphs for different types of motion -Interpret distance-time and speed-time graphs -Calculate speed from distance-time graphs -Determine distance travelled from speed-time graphs using area under curve |
Review equations of motion through Q/A
-Demonstration using trolley with different speeds -Plotting distance-time graphs for: stationary body, uniform speed, variable speed -Plotting speed-time graphs for different motions -Students practice graph plotting and interpretation -Calculating areas under graphs |
Graph paper
-Rulers -Trolley -Stopwatch -Metre rules -Charts showing different graph types -Data tables for plotting |
KLB Secondary Physics Form 3, Pages 5-13
|
|
| 2 | 6 |
Linear Motion
|
Velocity-Time Graphs and Acceleration
Measuring Speed, Velocity and Acceleration Using Ticker-Timer |
By the end of the
lesson, the learner
should be able to:
Plot and interpret velocity-time graphs -Calculate acceleration from gradient of velocity-time graph -Determine displacement from area under velocity-time graph -Distinguish between uniform and non-uniform acceleration from graphs |
Review of previous graphs through Q/A
-Demonstration of changing velocity using trolley -Plotting velocity-time graphs for: uniform velocity, uniform acceleration, variable acceleration -Calculating gradients to find acceleration -Calculating areas to find displacement -Interpretation of curved velocity-time graphs |
Graph paper
-Rulers -Trolley -Stopwatch -Inclined plane -Charts showing v-t graphs -Calculator -Sample data sets Ticker-timer -Ticker-tape -Runway -Power supply -Scissors -Cellotape -Graph paper |
KLB Secondary Physics Form 3, Pages 8-13
|
|
| 2 | 7 |
Linear Motion
|
Motion Under Gravity - Free Fall
|
By the end of the
lesson, the learner
should be able to:
Define acceleration due to gravity -Apply equations of motion to free fall problems -Calculate time of flight and maximum height for vertical projection -Solve problems involving objects dropped or thrown vertically |
Q/A review on ticker-timer experiments
-Discussion on gravitational force and free fall -Demonstration using dropping different objects (in absence of air resistance) -Application of g = 9.8 m/s² in motion equations -Worked examples: free fall, vertical projection upward -Problem-solving session with vertical motion scenarios |
Various objects for dropping
-Stopwatch -Measuring tape -Calculator -Safety equipment -Charts showing free fall -Worked examples on board |
KLB Secondary Physics Form 3, Pages 22-25
|
|
| 2 | 8 |
Linear Motion
Refraction of Light |
Horizontal Projection and Determining g Using Simple Pendulum
Introduction to Refraction and Basic Phenomena |
By the end of the
lesson, the learner
should be able to:
Analyze motion of horizontally projected objects -Calculate range and time of flight for horizontal projection -Determine acceleration due to gravity using simple pendulum -Apply pendulum formula T = 2π√(l/g) |
Review free fall concepts through Q/A
-Demonstration of horizontal projection using ball rolling off table -Analysis of projectile motion: horizontal and vertical components -Setup and timing of simple pendulum -Multiple readings for different pendulum lengths -Calculating g using T² vs l graph -Discussion on experimental errors and precautions |
Ball
-Table -Measuring tape -Stopwatch -Simple pendulum setup -Strings of different lengths -Masses -Clamp and stand -Graph paper -Calculator Glass blocks -Beakers -Water -Coins -Sticks/pencils -Pins -White paper -Ray box (if available) -Charts showing refraction examples |
KLB Secondary Physics Form 3, Pages 25-27
|
|
| 3 | 1 |
Refraction of Light
|
Laws of Refraction and Snell's Law
|
By the end of the
lesson, the learner
should be able to:
State the two laws of refraction -Define refractive index and state its symbol -Apply Snell's law: sin i/sin r = constant -Understand that incident ray, refracted ray and normal lie in same plane -Calculate refractive index from experimental data |
Review refraction phenomena through Q/A
-Experiment: investigating refraction through glass block -Measuring angles of incidence and refraction -Plotting graph of sin i against sin r -Derivation and application of Snell's law -Worked examples calculating refractive index -Discussion on significance of constant ratio |
Glass blocks
-Pins -Protractor -Ruler -White paper -Graph paper -Calculator -Ray box -Soft board -Drawing pins |
KLB Secondary Physics Form 3, Pages 35-39
|
|
| 3 | 2 |
Refraction of Light
|
Laws of Refraction and Snell's Law
|
By the end of the
lesson, the learner
should be able to:
State the two laws of refraction -Define refractive index and state its symbol -Apply Snell's law: sin i/sin r = constant -Understand that incident ray, refracted ray and normal lie in same plane -Calculate refractive index from experimental data |
Review refraction phenomena through Q/A
-Experiment: investigating refraction through glass block -Measuring angles of incidence and refraction -Plotting graph of sin i against sin r -Derivation and application of Snell's law -Worked examples calculating refractive index -Discussion on significance of constant ratio |
Glass blocks
-Pins -Protractor -Ruler -White paper -Graph paper -Calculator -Ray box -Soft board -Drawing pins |
KLB Secondary Physics Form 3, Pages 35-39
|
|
| 3 | 3 |
Refraction of Light
|
Absolute and Relative Refractive Index
|
By the end of the
lesson, the learner
should be able to:
Define absolute and relative refractive index -Relate refractive index to speed of light in different media -Apply the relationship n = c/v -Calculate relative refractive index between two media -Solve problems involving refractive indices |
Q/A review on Snell's law and calculations
-Discussion on light speed in different media -Derivation of n = c/v relationship -Explanation of absolute vs relative refractive index -Worked examples with multiple media -Problem-solving session with real materials -Group work on refractive index calculations |
Calculator
-Charts showing refractive indices -Worked examples -Reference tables -Graph paper -Different transparent materials -Speed of light reference chart |
KLB Secondary Physics Form 3, Pages 39-43
|
|
| 3 | 4 |
Refraction of Light
|
Real and Apparent Depth
|
By the end of the
lesson, the learner
should be able to:
Explain why objects under water appear nearer than actual position -Define real depth, apparent depth and vertical displacement -Derive the relationship n = real depth/apparent depth -Calculate apparent depth and vertical displacement -Apply concepts to practical situations |
Review refractive index through Q/A
-Demonstration: coin at bottom of beaker appears raised -Experiment: measuring real and apparent depth -Derivation of n = real depth/apparent depth -Worked examples on swimming pools, tanks -Practical: determining apparent depth using travelling microscope method -Discussion on viewing angle effects |
Beakers
-Water -Coins -Rulers -Pins -Travelling microscope (if available) -Glass blocks -Colored chalk dust -Calculator -Measuring cylinders |
KLB Secondary Physics Form 3, Pages 44-48
|
|
| 3 | 5 |
Refraction of Light
|
Real and Apparent Depth
|
By the end of the
lesson, the learner
should be able to:
Explain why objects under water appear nearer than actual position -Define real depth, apparent depth and vertical displacement -Derive the relationship n = real depth/apparent depth -Calculate apparent depth and vertical displacement -Apply concepts to practical situations |
Review refractive index through Q/A
-Demonstration: coin at bottom of beaker appears raised -Experiment: measuring real and apparent depth -Derivation of n = real depth/apparent depth -Worked examples on swimming pools, tanks -Practical: determining apparent depth using travelling microscope method -Discussion on viewing angle effects |
Beakers
-Water -Coins -Rulers -Pins -Travelling microscope (if available) -Glass blocks -Colored chalk dust -Calculator -Measuring cylinders |
KLB Secondary Physics Form 3, Pages 44-48
|
|
| 3 | 6 |
Refraction of Light
|
Experimental Determination of Refractive Index
|
By the end of the
lesson, the learner
should be able to:
Describe methods to determine refractive index experimentally -Use real and apparent depth method -Apply pin method for refractive index determination -Use no-parallax method -Calculate refractive index from experimental data -Discuss sources of error and precautions |
Q/A on real and apparent depth concepts
-Experiment 1: Real and apparent depth using pins -Experiment 2: Glass block method using pins -Experiment 3: No-parallax method with water -Data collection and analysis -Plotting graphs where applicable -Discussion on experimental errors and improvements |
Glass blocks
-Pins -Cork holders -Beakers -Water -Rulers -White paper -Clamp and stand -Graph paper -Calculator -Measuring tape |
KLB Secondary Physics Form 3, Pages 48-51
|
|
| 3 | 7 |
Refraction of Light
|
Critical Angle and Total Internal Reflection
|
By the end of the
lesson, the learner
should be able to:
Define critical angle -State conditions for total internal reflection -Derive relationship between critical angle and refractive index -Calculate critical angle for different materials -Explain total internal reflection using ray diagrams |
Review experimental methods through Q/A
-Demonstration: increasing angle of incidence in glass-air interface -Observation of critical angle and total internal reflection -Derivation of sin c = 1/n relationship -Worked examples calculating critical angles -Investigation using semi-circular glass block -Discussion on applications of total internal reflection |
Semi-circular glass block
-Ray box -White paper -Protractor -Pins -Calculator -Charts showing TIR -Water -Different transparent blocks |
KLB Secondary Physics Form 3, Pages 51-55
|
|
| 3 | 8 |
Refraction of Light
|
Applications of Total Internal Reflection - Optical Devices
|
By the end of the
lesson, the learner
should be able to:
Explain working of periscope using total internal reflection -Describe use of prisms in optical instruments -Understand principle of optical fibers -Explain advantages of prisms over mirrors -Analyze light paths in prism binoculars and pentaprism |
Q/A review on critical angle and TIR
-Demonstration: 45° prisms turning light through 90° and 180° -Construction of simple periscope model -Explanation of optical fiber principle -Discussion on prism binoculars and pentaprism -Comparison of prisms vs mirrors advantages -Practical: observing TIR in water-filled apparatus |
45° prisms
-Periscope model -Optical fiber samples -Mirrors for comparison -Ray box -Water -Transparent containers -Charts showing optical instruments -Binoculars (if available) |
KLB Secondary Physics Form 3, Pages 55-58
|
|
| 4 | 1 |
Refraction of Light
|
Mirage and Atmospheric Refraction
|
By the end of the
lesson, the learner
should be able to:
Explain formation of mirage using refraction principles -Describe atmospheric refraction effects -Understand continuous refraction in varying density media -Explain why sun appears above horizon after sunset -Discuss polar mirages and their formation |
Review TIR applications through Q/A
-Demonstration of refraction in liquids of different densities -Explanation of hot air effects on light path -Discussion on desert mirages and road mirages -Atmospheric refraction effects on sun position -Analysis of continuous refraction in varying media -Drawing ray diagrams for mirage formation |
Liquids of different densities
-Transparent containers -Heat source (safe) -Charts showing mirage formation -Diagrams of atmospheric refraction -Pictures of mirages -Ray diagrams |
KLB Secondary Physics Form 3, Pages 55-56
|
|
| 4 | 2 |
Refraction of Light
|
Mirage and Atmospheric Refraction
|
By the end of the
lesson, the learner
should be able to:
Explain formation of mirage using refraction principles -Describe atmospheric refraction effects -Understand continuous refraction in varying density media -Explain why sun appears above horizon after sunset -Discuss polar mirages and their formation |
Review TIR applications through Q/A
-Demonstration of refraction in liquids of different densities -Explanation of hot air effects on light path -Discussion on desert mirages and road mirages -Atmospheric refraction effects on sun position -Analysis of continuous refraction in varying media -Drawing ray diagrams for mirage formation |
Liquids of different densities
-Transparent containers -Heat source (safe) -Charts showing mirage formation -Diagrams of atmospheric refraction -Pictures of mirages -Ray diagrams |
KLB Secondary Physics Form 3, Pages 55-56
|
|
| 4 | 3 |
Refraction of Light
|
Dispersion of White Light
|
By the end of the
lesson, the learner
should be able to:
Define dispersion of white light -Explain why white light splits into colors -Identify colors of visible spectrum in order -Understand that different colors have different refractive indices -Describe formation of rainbow |
Q/A on atmospheric effects and TIR
-Experiment: dispersion using triangular prism -Observation of spectrum formation -Discussion on why different colors bend differently -Explanation of rainbow formation -Identification of ROYGBIV sequence -Investigation of spectrum using CD/DVD |
Triangular glass prism
-White light source -Screen -Ray box -CD/DVD -White paper -Ruler -Charts showing spectrum -Pictures of rainbows |
KLB Secondary Physics Form 3, Pages 58-60
|
|
| 4 | 4 |
Refraction of Light
|
Dispersion of White Light
|
By the end of the
lesson, the learner
should be able to:
Define dispersion of white light -Explain why white light splits into colors -Identify colors of visible spectrum in order -Understand that different colors have different refractive indices -Describe formation of rainbow |
Q/A on atmospheric effects and TIR
-Experiment: dispersion using triangular prism -Observation of spectrum formation -Discussion on why different colors bend differently -Explanation of rainbow formation -Identification of ROYGBIV sequence -Investigation of spectrum using CD/DVD |
Triangular glass prism
-White light source -Screen -Ray box -CD/DVD -White paper -Ruler -Charts showing spectrum -Pictures of rainbows |
KLB Secondary Physics Form 3, Pages 58-60
|
|
| 4 | 5 |
Refraction of Light
|
Recombination of Spectrum and Problem Solving
|
By the end of the
lesson, the learner
should be able to:
Demonstrate recombination of dispersed light -Explain Newton's disc experiment -Use concave mirror to recombine spectrum -Solve complex problems involving refraction -Apply all refraction concepts to examination-type questions |
Review dispersion concepts through Q/A
-Experiment: recombining spectrum using second prism -Demonstration of Newton's disc -Using concave mirror to focus spectrum -Comprehensive problem-solving session covering all topics -Practice with past examination questions -Review and consolidation of entire unit |
Second triangular prism
-Concave mirror -Newton's disc -Motor (for spinning disc) -Calculator -Past exam papers -Comprehensive problem sets -Review charts -All previous apparatus for revision |
KLB Secondary Physics Form 3, Pages 58-60
|
Your Name Comes Here