If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 1 |
Opening and review of last exam |
|||||||
| 2 | 1 |
ACIDS, BASES AND SALTS
|
Effect of Solvent on Acids
|
By the end of the
lesson, the learner
should be able to:
- Explain effect of polar and non-polar solvents on hydrogen chloride -Investigate HCl behavior in water vs methylbenzene -Define polar and non-polar solvents -Explain why acids show properties only in polar solvents |
Teacher demonstration: Dissolve HCl gas in water and methylbenzene separately. Test both solutions with litmus paper, magnesium, and calcium carbonate. Compare observations. Explain polarity of water vs methylbenzene. Discuss dissociation vs molecular solution.
|
HCl gas, distilled water, methylbenzene, magnesium ribbon, calcium carbonate, litmus paper, test tubes, gas absorption apparatus
|
KLB Secondary Chemistry Form 4, Pages 7-9
|
|
| 2 | 2-3 |
ACIDS, BASES AND SALTS
|
Effect of Solvent on Bases
Amphoteric Oxides and Hydroxides Definition of Salts and Precipitation Solubility of Chlorides, Sulphates and Sulphites |
By the end of the
lesson, the learner
should be able to:
- Investigate effect of polar and non-polar solvents on ammonia gas -Compare ammonia behavior in water vs methylbenzene -Explain formation of ammonium hydroxide -Write equations for ammonia dissolution in water - Find out cations that form insoluble chlorides, sulphates and sulphites -Write ionic equations for formation of insoluble salts -Distinguish between sulphate and sulphite precipitates -Investigate effect of warming on precipitates |
Class experiment: Test dry ammonia with dry litmus. Dissolve ammonia in water and test with litmus. Dissolve ammonia in methylbenzene and test with litmus. Record observations in table. Write equation for NH₃ + H₂O reaction. Explain why only aqueous ammonia shows basic properties.
Class experiment: Add NaCl, Na₂SO₄, Na₂SO₃ to solutions of Pb²⁺, Ba²⁺, Mg²⁺, Ca²⁺, Zn²⁺, Cu²⁺, Fe²⁺, Fe³⁺, Al³⁺. Warm mixtures. Record observations in table. Test sulphite precipitates with dilute HCl. List soluble and insoluble salts. |
Dry ammonia gas, distilled water, methylbenzene, red litmus paper, test tubes, gas collection apparatus
Al₂O₃, ZnO, PbO, Zn(OH)₂, Al(OH)₃, Pb(OH)₂, 2M HNO₃, 2M NaOH, boiling tubes, heating source Na₂CO₃ solution, salt solutions containing various metal ions, test tubes, droppers 2M NaCl, 2M Na₂SO₄, 2M Na₂SO₃, 0.1M salt solutions, dilute HCl, test tubes, heating source |
KLB Secondary Chemistry Form 4, Pages 9-10
KLB Secondary Chemistry Form 4, Pages 14-16 |
|
| 2 | 4 |
ACIDS, BASES AND SALTS
|
Complex Ions Formation
|
By the end of the
lesson, the learner
should be able to:
- Explain formation of complex ions -Investigate reactions with excess sodium hydroxide and ammonia -Identify metal ions that form complex ions -Write equations for complex ion formation |
Class experiment: Add NaOH dropwise then in excess to Mg²⁺, Ca²⁺, Zn²⁺, Al³⁺, Cu²⁺, Fe²⁺, Fe³⁺, Pb²⁺ solutions. Repeat with NH₃ solution. Record observations showing precipitate formation and dissolution. Write equations for complex ion formation: [Zn(OH)₄]²⁻, [Al(OH)₄]⁻, [Pb(OH)₄]²⁻, [Zn(NH₃)₄]²⁺, [Cu(NH₃)₄]²⁺.
|
2M NaOH, 2M NH₃ solution, 0.5M salt solutions, test tubes, droppers
|
KLB Secondary Chemistry Form 4, Pages 15-16
|
|
| 2 | 5 |
ACIDS, BASES AND SALTS
|
Solubility and Saturated Solutions
Effect of Temperature on Solubility |
By the end of the
lesson, the learner
should be able to:
- Define the term solubility -Determine solubility of a given salt at room temperature -Calculate mass of solute and solvent -Express solubility in different units |
Class experiment: Weigh evaporating dish and watch glass. Measure 20cm³ saturated KNO₃ solution. Record temperature. Evaporate to dryness carefully. Calculate masses of solute, solvent, and solution. Determine solubility per 100g water and in moles per litre. Discuss definition and significance.
|
Saturated KNO₃ solution, evaporating dish, watch glass, measuring cylinder, thermometer, balance, heating source
KClO₃, measuring cylinders, thermometer, burette, boiling tubes, heating source, graph paper |
KLB Secondary Chemistry Form 4, Pages 16-18
|
|
| 3 | 1 |
ACIDS, BASES AND SALTS
|
Solubility Curves and Applications
|
By the end of the
lesson, the learner
should be able to:
- Plot solubility curves for various salts -Use solubility curves to determine mass of crystals formed -Apply solubility curves to practical problems -Compare solubility patterns of different salts |
Using data from textbook, plot solubility curves for KNO₃, KClO₃, NaCl, CaSO₄. Calculate mass of crystals deposited when saturated solutions are cooled. Work through examples: KClO₃ cooled from 70°C to 30°C. Discuss applications in salt extraction and purification.
|
Graph paper, ruler, pencil, calculator, data tables from textbook
|
KLB Secondary Chemistry Form 4, Pages 20-21
|
|
| 3 | 2-3 |
ACIDS, BASES AND SALTS
|
Fractional Crystallization
Hardness of Water - Investigation Types and Causes of Water Hardness |
By the end of the
lesson, the learner
should be able to:
- Define fractional crystallization -Apply knowledge of solubility curves in separation of salts -Calculate masses of salts that crystallize -Explain separation of salt mixtures - Determine the effects of various salt solutions on soap -Identify cations that cause hardness -Distinguish between hard and soft water -Investigate effect of boiling on water hardness |
Work through separation problems using solubility data for KNO₃ and KClO₃ mixtures. Calculate which salt crystallizes first when cooled from 50°C to 20°C. Plot combined solubility curves. Discuss applications in Lake Magadi and Ngomeni salt works. Solve practice problems.
Class experiment: Test soap lathering with distilled water, tap water, rainwater, and solutions of MgCl₂, NaCl, Ca(NO₃)₂, CaHCO₃, NaHCO₃, ZnSO₄. Record volumes of soap needed. Boil some solutions and retest. Compare results and identify hardness-causing ions. |
Calculator, graph paper, data tables, worked examples from textbook
Soap solution, burette, various salt solutions, conical flasks, distilled water, tap water, rainwater, heating source Student books, examples from previous experiment, chalkboard for equations |
KLB Secondary Chemistry Form 4, Pages 21-22
KLB Secondary Chemistry Form 4, Pages 22-24 |
|
| 3 | 4 |
ACIDS, BASES AND SALTS
|
Effects of Hard Water
|
By the end of the
lesson, the learner
should be able to:
- State disadvantages of hard water -State advantages of hard water -Explain formation of scum and fur -Discuss economic and health implications |
Discussion based on practical experience: Soap wastage, scum formation on clothes, fur in kettles and pipes, pipe bursting in boilers. Advantages: calcium for bones, protection of lead pipes, use in brewing. Show examples of fur deposits. Calculate economic costs of hard water in households.
|
Samples of fur deposits, pictures of scaled pipes, calculator for cost analysis
|
KLB Secondary Chemistry Form 4, Pages 24-25
|
|
| 3 | 5 |
ACIDS, BASES AND SALTS
|
Methods of Removing Hardness I
Methods of Removing Hardness II |
By the end of the
lesson, the learner
should be able to:
- Explain removal of hardness by boiling -Explain removal by distillation -Write equations for these processes -Compare effectiveness of different methods |
Demonstrate boiling method: Boil hard water samples from previous experiments and test with soap. Write equations for Ca(HCO₃)₂ and Mg(HCO₃)₂ decomposition. Discuss distillation method using apparatus setup. Compare costs and effectiveness. Explain why boiling only removes temporary hardness.
|
Hard water samples, heating source, soap solution, distillation apparatus diagram
Na₂CO₃ solution, hard water samples, ion exchange resin diagram, Ca(OH)₂, NH₃ solution |
KLB Secondary Chemistry Form 4, Pages 25-26
|
|
| 4 | 1 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Endothermic and Exothermic Reactions
|
By the end of the
lesson, the learner
should be able to:
- Define endothermic and exothermic reactions using ΔH notation -Investigate temperature changes when ammonium nitrate and sodium hydroxide dissolve in water -Explain observations made during dissolution -Draw energy level diagrams for endothermic and exothermic reactions |
Class experiment: Wrap 250ml plastic beakers with tissue paper. Dissolve 2 spatulafuls of NH₄NO₃ in 100ml distilled water, record temperature changes. Repeat with NaOH pellets. Compare initial and final temperatures. Draw energy level diagrams showing relative energies of reactants and products.
|
250ml plastic beakers, tissue paper, rubber bands, NH₄NO₃, NaOH pellets, distilled water, thermometers, spatulas, measuring cylinders
|
KLB Secondary Chemistry Form 4, Pages 29-31
|
|
| 4 | 2-3 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Enthalpy Notation and Energy Content
Bond Breaking and Bond Formation Latent Heat of Fusion and Vaporization |
By the end of the
lesson, the learner
should be able to:
- Define enthalpy and enthalpy change -Use the symbol ΔH to represent enthalpy changes -Calculate enthalpy changes using the formula ΔH = H(products) - H(reactants) -Distinguish between positive and negative enthalpy changes - Explain that energy changes are due to bond breaking and bond formation -Describe bond breaking as endothermic and bond formation as exothermic -Investigate energy changes during melting and boiling -Plot heating curves for pure substances |
Q/A: Review previous experiment results. Introduce enthalpy symbol H and enthalpy change ΔH. Calculate enthalpy changes from previous experiments. Explain why endothermic reactions have positive ΔH and exothermic reactions have negative ΔH. Practice calculations with worked examples.
Class experiment: Heat crushed ice while stirring with thermometer. Record temperature every minute until ice melts completely, then continue until water boils. Plot temperature-time graph. Explain constant temperature during melting and boiling in terms of bond breaking. Discuss latent heat of fusion and vaporization. |
Student books, calculators, worked examples from textbook, chalkboard for calculations
Crushed pure ice, 250ml glass beakers, thermometers, heating source, stopwatch, graph paper, stirring rods Data tables showing molar heats of fusion/vaporization, calculators, heating curves from previous lesson |
KLB Secondary Chemistry Form 4, Pages 31-32
KLB Secondary Chemistry Form 4, Pages 32-35 |
|
| 4 | 4 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Bond Energy Calculations
|
By the end of the
lesson, the learner
should be able to:
- Calculate energy changes in reactions using bond energies -Apply the formula: Heat of reaction = Bond breaking energy + Bond formation energy -Determine whether reactions are exothermic or endothermic -Use bond energy data to solve problems |
Work through formation of HCl from H₂ and Cl₂ using bond energies. Calculate energy required to break H-H and Cl-Cl bonds. Calculate energy released when H-Cl bonds form. Apply formula: ΔH = Energy absorbed - Energy released. Practice with additional examples. Discuss why calculated values may differ from experimental values.
|
Bond energy data tables, calculators, worked examples, practice problems
|
KLB Secondary Chemistry Form 4, Pages 35-36
|
|
| 4 | 5 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Determination of Enthalpy of Solution I
|
By the end of the
lesson, the learner
should be able to:
- Determine the enthalpy changes of solution of ammonium nitrate and sodium hydroxide -Calculate enthalpy change using ΔH = mcΔT -Calculate number of moles of solute dissolved -Determine molar heat of solution |
Class experiment: Dissolve exactly 2.0g NH₄NO₃ in 100ml distilled water in plastic beaker. Record temperature change. Repeat with 2.0g NaOH. Calculate enthalpy changes using ΔH = mcΔT where m = 100g, c = 4.2 kJ kg⁻¹K⁻¹. Calculate moles dissolved and molar heat of solution.
|
250ml plastic beakers, 2.0g samples of NH₄NO₃ and NaOH, distilled water, thermometers, measuring cylinders, analytical balance, calculators
|
KLB Secondary Chemistry Form 4, Pages 36-38
|
|
| 5 | 1 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Thermochemical Equations
Enthalpy of Solution of Concentrated Sulphuric Acid |
By the end of the
lesson, the learner
should be able to:
- Write thermochemical equations including enthalpy changes -Define molar heat of solution -Draw energy level diagrams for dissolution reactions -Interpret thermochemical equations correctly |
Using data from previous experiment, write thermochemical equations for NH₄NO₃ and NaOH dissolution. Show proper notation with state symbols and ΔH values. Draw corresponding energy level diagrams. Practice writing thermochemical equations for various reactions. Explain significance of molar quantities in equations.
|
Results from previous experiment, graph paper for energy level diagrams, practice examples
Concentrated H₂SO₄, distilled water, 250ml plastic beaker, tissue paper, measuring cylinders, thermometer, safety equipment |
KLB Secondary Chemistry Form 4, Pages 38-39
|
|
| 5 | 2-3 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Enthalpy of Combustion
Enthalpy of Displacement |
By the end of the
lesson, the learner
should be able to:
- Define molar heat of combustion -Determine enthalpy of combustion of ethanol experimentally -Explain why experimental values differ from theoretical values -Calculate molar enthalpy of combustion from experimental data - Define molar heat of displacement -Investigate displacement of copper(II) ions by zinc -Calculate molar heat of displacement -Explain relationship between position in reactivity series and heat of displacement |
Class experiment: Burn ethanol in small bottle with wick to heat 100cm³ water in glass beaker. Record initial and final masses of bottle+ethanol and temperature change. Calculate moles of ethanol burned and heat evolved. Determine molar enthalpy of combustion. Compare with theoretical value (-1368 kJ/mol). Discuss sources of error.
Class experiment: Add 4.0g zinc powder to 100cm³ of 0.5M CuSO₄ solution in wrapped plastic beaker. Record temperature change and observations. Calculate moles of Zn used and Cu²⁺ displaced. Determine molar heat of displacement. Write ionic equation. Discuss why excess zinc is used. Compare with theoretical value. |
Ethanol, small bottles with wicks, 250ml glass beakers, tripod stands, wire gauze, thermometers, analytical balance, measuring cylinders
Zinc powder, 0.5M CuSO₄ solution, 250ml plastic beakers, tissue paper, thermometers, analytical balance, stirring rods |
KLB Secondary Chemistry Form 4, Pages 41-44
KLB Secondary Chemistry Form 4, Pages 44-47 |
|
| 5 | 4 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Enthalpy of Neutralization
Standard Conditions and Standard Enthalpy Changes |
By the end of the
lesson, the learner
should be able to:
- Define molar heat of neutralization -Determine heat of neutralization of HCl with NaOH -Compare neutralization enthalpies of strong and weak acids/bases -Write ionic equations for neutralization reactions |
Class experiment: Mix 50cm³ of 2M HCl with 50cm³ of 2M NaOH in wrapped beaker. Record temperature changes. Calculate molar heat of neutralization. Repeat with weak acid (ethanoic) and weak base (ammonia). Compare values. Write ionic equations. Explain why strong acid + strong base gives ~57.2 kJ/mol.
|
2M HCl, 2M NaOH, 2M ethanoic acid, 2M ammonia solution, measuring cylinders, thermometers, 250ml plastic beakers, tissue paper
Student books, examples of standard enthalpy data, notation practice exercises |
KLB Secondary Chemistry Form 4, Pages 47-49
|
|
| 5 | 5 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Hess's Law - Introduction and Theory
|
By the end of the
lesson, the learner
should be able to:
- State Hess's Law -Explain the principle of energy conservation in chemical reactions -Understand that enthalpy change is independent of reaction route -Apply Hess's Law to simple examples |
Introduce Hess's Law: "The energy change in converting reactants to products is the same regardless of the route by which the chemical change occurs." Use methane formation example to show two routes giving same overall energy change. Draw energy cycle diagrams. Explain law of conservation of energy application.
|
Energy cycle diagrams for methane formation, chalkboard illustrations, worked examples from textbook
|
KLB Secondary Chemistry Form 4, Pages 49-52
|
|
| 6 | 1 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Energy Cycle Diagrams
Hess's Law Calculations |
By the end of the
lesson, the learner
should be able to:
- Draw energy cycle diagrams -Link enthalpy of formation with enthalpy of combustion -Calculate unknown enthalpy changes using energy cycles -Apply Hess's Law to determine enthalpy of formation |
Work through energy cycle for formation of CO from carbon and oxygen using combustion data. Draw cycle showing Route 1 (direct combustion) and Route 2 (formation then combustion). Calculate ΔH°f(CO) = ΔH°c(C) - ΔH°c(CO). Practice with additional examples including ethanol formation.
|
Graph paper, energy cycle templates, combustion data tables, calculators
Worked examples, combustion data, calculators, step-by-step calculation sheets |
KLB Secondary Chemistry Form 4, Pages 52-54
|
|
| 6 | 2-3 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Lattice Energy and Hydration Energy
Factors Affecting Lattice and Hydration Energies |
By the end of the
lesson, the learner
should be able to:
- Define lattice energy and hydration energy -Explain relationship between heat of solution, lattice energy and hydration energy -Draw energy cycles for dissolution of ionic compounds -Calculate heat of solution using Born-Haber type cycles - Explain factors affecting lattice energy -Explain factors affecting hydration energy -Use data tables to identify trends -Calculate enthalpies of solution for various ionic compounds |
Explain dissolution of NaCl: first lattice breaks (endothermic), then ions hydrate (exothermic). Define lattice energy as energy to form ionic solid from gaseous ions. Define hydration energy as energy when gaseous ions become hydrated. Draw energy cycle: ΔH(solution) = ΔH(lattice) + ΔH(hydration). Calculate for NaCl.
Analyze data tables showing lattice energies (Table 2.7) and hydration energies (Table 2.6). Identify trends: smaller ions and higher charges give larger lattice energies and hydration energies. Calculate heat of solution for MgCl₂ using: ΔH(solution) = +2489 + (-1891 + 2×(-384)) = -170 kJ/mol. Practice with other compounds. |
Energy cycle diagrams, lattice energy and hydration energy data tables, calculators
Data tables from textbook, calculators, trend analysis exercises |
KLB Secondary Chemistry Form 4, Pages 54-56
|
|
| 6 | 4 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Definition and Types of Fuels
Heating Values of Fuels |
By the end of the
lesson, the learner
should be able to:
- Define a fuel -Classify fuels as solid, liquid, or gaseous -State examples of each type of fuel -Explain energy conversion in fuel combustion |
Q/A: List fuels used at home and school. Define fuel as "substance that produces useful energy when it undergoes chemical or nuclear reaction." Classify examples: solids (coal, charcoal, wood), liquids (petrol, kerosene, diesel), gases (natural gas, biogas, LPG). Discuss energy conversions during combustion.
|
Examples of different fuels, classification charts, pictures of fuel types
Heating value data table, calculators, fuel comparison charts |
KLB Secondary Chemistry Form 4, Pages 56
|
|
| 6 | 5 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Factors in Fuel Selection
|
By the end of the
lesson, the learner
should be able to:
- State factors that influence choice of fuel -Explain why different fuels are chosen for different purposes -Compare advantages and disadvantages of various fuels -Apply selection criteria to real situations |
Discuss seven factors: heating value, ease of combustion, availability, transportation, storage, environmental effects, cost. Compare wood/charcoal for domestic use vs methylhydrazine for rockets. Analyze why each is suitable for its purpose. Students suggest best fuels for cooking, heating, transport in their area.
|
Fuel comparison tables, local fuel availability data, cost analysis sheets
|
KLB Secondary Chemistry Form 4, Pages 57
|
|
| 7 | 1 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Environmental Effects of Fuels
|
By the end of the
lesson, the learner
should be able to:
- Identify environmental effects of burning fuels -Explain formation and effects of acid rain -Describe contribution to global warming -State measures to reduce pollution from fuels |
Discuss pollutants from fossil fuels: SO₂, SO₃, CO, NO₂ causing acid rain. Effects: damage to buildings, corrosion, acidification of lakes, soil leaching. CO₂ and hydrocarbons cause global warming leading to ice melting, climate change. Pollution reduction measures: catalytic converters, unleaded petrol, zero emission vehicles, alternative fuels.
|
Pictures of environmental damage, pollution data, examples of clean technology
|
KLB Secondary Chemistry Form 4, Pages 57-58
|
|
| 7 | 2-3 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Fuel Safety and Precautions
Endothermic and Exothermic Reactions Bond Breaking, Formation and Phase Changes |
By the end of the
lesson, the learner
should be able to:
- State precautions necessary when using fuels -Explain safety measures for different fuel types -Identify hazards associated with improper fuel handling -Apply safety principles to local situations - Explain that energy changes are due to bond breaking and bond formation -Investigate energy changes when solids and liquids are heated -Define latent heat of fusion and vaporization -Calculate energy changes using bond energies |
Discuss safety precautions: ventilation for charcoal stoves (CO poisoning), not running engines in closed garages, proper gas cylinder storage, fuel storage away from populated areas, keeping away from fuel spills. Relate to local situations and accidents. Students identify potential hazards in their environment.
Class experiment: Heat ice to melting then boiling, record temperature every minute. Plot heating curve. Explain constant temperature periods. Define latent heat of fusion/vaporization. Calculate energy changes in H₂ + Cl₂ → 2HCl using bond energies. Apply formula: ΔH = Energy absorbed - Energy released. |
Safety guideline charts, examples of fuel accidents, local safety case studies
250ml plastic beakers, tissue paper, NH₄NO₃, NaOH pellets, distilled water, thermometers, calculators Ice, glass beakers, thermometers, heating source, graph paper, bond energy data tables |
KLB Secondary Chemistry Form 4, Pages 57-58
KLB Secondary Chemistry Form 4, Pages 32-36 |
|
| 7 | 4 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
REACTION RATES AND REVERSIBLE REACTIONS |
Determination of Enthalpy of Solution
Definition of Reaction Rate and Collision Theory |
By the end of the
lesson, the learner
should be able to:
- Carry out experiments to determine enthalpy changes of solution -Calculate enthalpy change using ΔH = mcΔT -Write correct thermochemical equations -Define molar heat of solution |
Class experiment: Dissolve exactly 2.0g NH₄NO₃ and 2.0g NaOH separately in 100ml water. Record temperature changes. Calculate enthalpy changes using ΔH = mcΔT. Calculate moles and molar heat of solution. Write thermochemical equations: NH₄NO₃(s) + aq → NH₄NO₃(aq) ΔH = +25.2 kJ mol⁻¹.
|
2.0g samples of NH₄NO₃ and NaOH, plastic beakers, thermometers, analytical balance, calculators
Examples of fast/slow reactions, energy diagram templates, chalk/markers for diagrams |
KLB Secondary Chemistry Form 4, Pages 36-39
|
|
| 7 | 5 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Effect of Concentration on Reaction Rate
|
By the end of the
lesson, the learner
should be able to:
- Explain the effect of concentration on reaction rates -Investigate reaction of magnesium with different concentrations of sulphuric acid -Illustrate reaction rates graphically and interpret experimental data -Calculate concentrations and plot graphs of concentration vs time |
Class experiment: Label 4 conical flasks A-D. Add 40cm³ of 2M H₂SO₄ to A, dilute others with water (30+10, 20+20, 10+30 cm³). Drop 2cm magnesium ribbon into each, time complete dissolution. Record in Table 3.1. Calculate concentrations, plot graph. Explain: higher concentration → more collisions → faster reaction.
|
4 conical flasks, 2M H₂SO₄, distilled water, magnesium ribbon, stopwatch, measuring cylinders, graph paper
|
KLB Secondary Chemistry Form 4, Pages 65-67
|
|
| 8 |
Midterm exam and half term break |
|||||||
| 9 | 1 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Change of Reaction Rate with Time
|
By the end of the
lesson, the learner
should be able to:
- Describe methods used to measure rate of reaction -Investigate how reaction rate changes as reaction proceeds -Plot graphs of volume of gas vs time -Calculate average rates at different time intervals |
Class experiment: React 2cm magnesium ribbon with 100cm³ of 0.5M HCl in conical flask. Collect H₂ gas in graduated syringe as in Fig 3.4. Record gas volume every 30 seconds for 5 minutes in Table 3.2. Plot volume vs time graph. Calculate average rates between time intervals. Explain why rate decreases as reactants are consumed.
|
0.5M HCl, magnesium ribbon, conical flask, gas collection apparatus, graduated syringe, stopwatch, graph paper
|
KLB Secondary Chemistry Form 4, Pages 67-70
|
|
| 9 | 2-3 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Effect of Temperature on Reaction Rate
Effect of Surface Area on Reaction Rate Effect of Catalysts on Reaction Rate |
By the end of the
lesson, the learner
should be able to:
- Explain the effect of temperature on reaction rates -Investigate temperature effects using sodium thiosulphate and HCl -Plot graphs of time vs temperature and 1/time vs temperature -Apply collision theory to explain temperature effects - Explain effects of suitable catalysts on reaction rates -Investigate decomposition of hydrogen peroxide with and without catalyst -Define catalyst and explain how catalysts work -Compare activation energies in catalyzed vs uncatalyzed reactions |
Class experiment: Place 30cm³ of 0.15M Na₂S₂O₃ in flasks at room temp, 30°C, 40°C, 50°C, 60°C. Mark cross on paper under flask. Add 5cm³ of 2M HCl, time until cross disappears. Record in Table 3.4. Plot time vs temperature and 1/time vs temperature graphs. Explain: higher temperature → more kinetic energy → more effective collisions.
Class experiment: Decompose 5cm³ of 20-volume H₂O₂ in 45cm³ water without catalyst, collect O₂ gas. Repeat adding 2g MnO₂ powder. Record gas volumes as in Fig 3.12. Compare rates and final mass of MnO₂. Write equation: 2H₂O₂ → 2H₂O + O₂. Define catalyst and explain how it lowers activation energy. Show energy diagrams for both pathways. |
0.15M Na₂S₂O₃, 2M HCl, conical flasks, water baths at different temperatures, paper with cross marked, stopwatch, thermometers
Marble chips, marble powder, 1M HCl, gas collection apparatus, balance, conical flasks, measuring cylinders, graph paper 20-volume H₂O₂, MnO₂ powder, gas collection apparatus, balance, conical flasks, filter paper, measuring cylinders |
KLB Secondary Chemistry Form 4, Pages 70-73
KLB Secondary Chemistry Form 4, Pages 76-78 |
|
| 9 | 4 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Effect of Light and Pressure on Reaction Rate
|
By the end of the
lesson, the learner
should be able to:
- Identify reactions affected by light -Investigate effect of light on silver bromide decomposition -Explain effect of pressure on gaseous reactions -Give examples of photochemical reactions |
Teacher demonstration: Mix KBr and AgNO₃ solutions to form AgBr precipitate. Divide into 3 test tubes: place one in dark cupboard, one on bench, one in direct sunlight. Observe color changes after 10 minutes. Write equations. Discuss photochemical reactions: photography, Cl₂ + H₂, photosynthesis. Explain pressure effects on gaseous reactions through compression.
|
0.1M KBr, 0.05M AgNO₃, test tubes, dark cupboard, direct light source, examples of photochemical reactions
|
KLB Secondary Chemistry Form 4, Pages 78-80
|
|
| 9 | 5 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Reversible Reactions
Chemical Equilibrium |
By the end of the
lesson, the learner
should be able to:
- State examples of simple reversible reactions -Investigate heating of hydrated copper(II) sulphate -Write equations for reversible reactions using double arrows -Distinguish between reversible and irreversible reactions |
Class experiment: Heat CuSO₄·5H₂O crystals in boiling tube A, collect liquid in tube B as in Fig 3.15. Observe color changes: blue → white + colorless liquid. Pour liquid back into tube A, observe return to blue. Write equation with double arrows: CuSO₄·5H₂O ⇌ CuSO₄ + 5H₂O. Give other examples: NH₄Cl ⇌ NH₃ + HCl. Compare with irreversible reactions.
|
CuSO₄·5H₂O crystals, boiling tubes, delivery tube, heating source, test tube holder
0.5M NaOH, 0.5M HCl, universal indicator, boiling tubes, droppers, examples of equilibrium systems |
KLB Secondary Chemistry Form 4, Pages 78-80
|
|
| 10 | 1 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Le Chatelier's Principle and Effect of Concentration
|
By the end of the
lesson, the learner
should be able to:
- State Le Chatelier's Principle -Explain effect of concentration changes on equilibrium position -Investigate bromine water equilibrium with acid/base addition -Apply Le Chatelier's Principle to predict equilibrium shifts |
Experiment: Add 2M NaOH dropwise to 20cm³ bromine water until colorless. Then add 2M HCl until excess, observe color return. Write equation: Br₂ + H₂O ⇌ HBr + HBrO. Explain Le Chatelier's Principle: "When change applied to system at equilibrium, system moves to oppose that change." Demonstrate with chromate/dichromate equilibrium: CrO₄²⁻ + H⁺ ⇌ Cr₂O₇²⁻ + H₂O.
|
Bromine water, 2M NaOH, 2M HCl, beakers, chromate/dichromate solutions for demonstration
|
KLB Secondary Chemistry Form 4, Pages 82-84
|
|
| 10 | 2-3 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Effect of Pressure and Temperature on Equilibrium
Industrial Applications - Haber Process Industrial Applications - Contact Process |
By the end of the
lesson, the learner
should be able to:
- Explain effect of pressure changes on equilibrium -Explain effect of temperature changes on equilibrium -Investigate NO₂/N₂O₄ equilibrium with temperature -Apply Le Chatelier's Principle to industrial processes - Apply equilibrium principles to Contact Process -Explain optimum conditions for sulphuric acid manufacture -Compare different industrial equilibrium processes -Evaluate economic factors in industrial chemistry |
Teacher demonstration: React copper turnings with concentrated HNO₃ to produce NO₂ gas in test tube. Heat and cool the tube, observe color changes: brown ⇌ pale yellow representing 2NO₂ ⇌ N₂O₄. Explain pressure effects using molecule count. Show Table 3.7 with pressure effects. Discuss temperature effects: heating favors endothermic direction, cooling favors exothermic direction. Use Table 3.8.
Analyze Contact Process: 2SO₂ + O₂ ⇌ 2SO₃ ΔH = -197 kJ/mol. Apply principles: high pressure favors forward reaction (3 molecules → 2 molecules), low temperature favors exothermic reaction. Explain optimum conditions: 450°C, atmospheric pressure, V₂O₅ catalyst, 96% conversion. Compare with Haber Process. Discuss catalyst choice and economic factors. |
Copper turnings, concentrated HNO₃, test tubes, heating source, ice bath, gas collection apparatus, safety equipment
Haber Process flow diagram, equilibrium data showing temperature/pressure effects on NH₃ yield, industrial catalyst information Contact Process flow diagram, comparison table with Haber Process, catalyst effectiveness data |
KLB Secondary Chemistry Form 4, Pages 84-87
KLB Secondary Chemistry Form 4, Pages 89 |
|
| 10 | 4 |
ELECTROCHEMISTRY
|
Redox Reactions and Oxidation Numbers
Oxidation Numbers in Naming and Redox Identification Displacement Reactions - Metals and Halogens |
By the end of the
lesson, the learner
should be able to:
Define redox reactions in terms of electron transfer - State rules for assigning oxidation numbers - Calculate oxidation numbers in compounds - Identify oxidation and reduction processes |
Q/A: Review previous knowledge
- Experiment 4.1: Iron filings + copper(II) sulphate - Experiment 4.2: Iron(II) ions + hydrogen peroxide - Discussion on oxidation number rules with examples |
Iron filings, 1M CuSO₄, 1M FeSO₄, 2M NaOH, 20V H₂O₂, test tubes
Compound charts, calculators, student books, practice exercises Various metals (Ca, Mg, Zn, Fe, Pb, Cu), metal salt solutions, halogens (Cl₂, Br₂, I₂), halide solutions |
KLB Secondary Chemistry Form 4, Pages 108-116
|
|
| 10 | 5 |
ELECTROCHEMISTRY
|
Electrochemical Cells and Cell Diagrams
Standard Electrode Potentials Calculating Cell EMF and Predicting Reactions |
By the end of the
lesson, the learner
should be able to:
Define electrode potential and EMF - Describe electrochemical cell components - Draw cell diagrams using correct notation - Explain electron flow and salt bridge function |
Experiment 4.5: Set up Zn/Cu cell and other metal combinations
- Measure EMF values - Practice writing cell notation - Learn conventional representation methods |
Metal electrodes, 1M metal salt solutions, voltmeters, salt bridges, connecting wires
Standard electrode potential table, diagrams, charts showing standard conditions Calculators, electrode potential data, worked examples, practice problems |
KLB Secondary Chemistry Form 4, Pages 123-128
|
|
| 11 | 1 |
ELECTROCHEMISTRY
|
Types of Electrochemical Cells
Electrolysis of Aqueous Solutions I |
By the end of the
lesson, the learner
should be able to:
Describe functioning of primary and secondary cells - Compare different cell types - Explain fuel cell operation - State applications of electrochemical cells |
Study dry cell (Le Clanche) and lead-acid accumulator
- Hydrogen-oxygen fuel cell operation - Compare cell types and applications - Discussion on advantages/disadvantages |
Cell diagrams, sample batteries, charts showing cell applications
Dilute and concentrated NaCl solutions, carbon electrodes, gas collection tubes, test equipment |
KLB Secondary Chemistry Form 4, Pages 138-141
|
|
| 11 | 2-3 |
ELECTROCHEMISTRY
|
Electrolysis of Aqueous Solutions II
Effect of Electrode Material on Electrolysis Factors Affecting Electrolysis |
By the end of the
lesson, the learner
should be able to:
Analyze electrolysis of dilute sulphuric acid - Investigate electrolysis of metal salt solutions - Measure gas volumes and ratios - Apply theoretical predictions Identify factors affecting preferential discharge - Explain electrochemical series influence - Discuss concentration and electrode effects - Predict electrolysis products |
Experiment 4.7: Electrolysis of dilute H₂SO₄ using U-tube
- Experiment 4.8: Electrolysis of MgSO₄ solution - Collect and measure gases - Analyze volume ratios Review electrochemical series and discharge order - Analysis of concentration effects on product formation - Summary of all factors affecting electrolysis - Practice prediction problems |
U-tube apparatus, 2M H₂SO₄, 0.5M MgSO₄, platinum/carbon electrodes, gas syringes
Copper and carbon electrodes, 3M CuSO₄ solution, accurate balance, beakers, connecting wires Electrochemical series chart, summary tables, practice exercises, student books |
KLB Secondary Chemistry Form 4, Pages 146-148
KLB Secondary Chemistry Form 4, Pages 153-155 |
|
| 11 | 4 |
ELECTROCHEMISTRY
|
Applications of Electrolysis I
Applications of Electrolysis II |
By the end of the
lesson, the learner
should be able to:
Describe electrolytic extraction of reactive metals - Explain electroplating process - Apply electrolysis principles to metal coating - Design electroplating setup |
Discussion: Extraction of Na, Mg, Al by electrolysis
- Practical: Electroplate iron nail with copper - Calculate plating requirements - Industrial applications |
Iron nails, copper electrodes, CuSO₄ solution, power supply, industrial process diagrams
Flow charts, mercury cell diagrams, environmental impact data, industrial case studies |
KLB Secondary Chemistry Form 4, Pages 155-157
|
|
| 11 | 5 |
ELECTROCHEMISTRY
|
Faraday's Laws and Quantitative Electrolysis
|
By the end of the
lesson, the learner
should be able to:
State Faraday's laws of electrolysis - Define Faraday constant - Calculate mass deposited in electrolysis - Relate electricity to amount of substance |
Experiment 4.10: Quantitative electrolysis of CuSO₄
- Measure mass vs electricity passed - Calculate Faraday constant - Verify Faraday's laws |
Accurate balance, copper electrodes, CuSO₄ solution, ammeter, timer, calculators
|
KLB Secondary Chemistry Form 4, Pages 161-164
|
|
| 12 | 1 |
ELECTROCHEMISTRY
|
Electrolysis Calculations I
|
By the end of the
lesson, the learner
should be able to:
Calculate mass of products from electrolysis - Determine volumes of gases evolved - Apply Faraday's laws to numerical problems - Solve basic electrolysis calculations |
Worked examples: Mass and volume calculations
- Problems involving different ions - Practice with Faraday constant - Basic numerical problems |
Calculators, worked examples, practice problems, gas volume data, Faraday constant
|
KLB Secondary Chemistry Form 4, Pages 161-164
|
|
| 12 | 2-3 |
ELECTROCHEMISTRY
REVISION Chemistry Paper 1 Revision Chemistry Paper 1 Revision Chemistry Paper 1 Revision |
Electrolysis Calculations II
Advanced Applications and Problem Solving Section A: Short Answer Questions Integrated Short Answer Practice |
By the end of the
lesson, the learner
should be able to:
Determine charge on ions from electrolysis data - Calculate current-time relationships - Solve complex multi-step problems - Apply concepts to industrial situations – attempt compulsory short-answer questions – recall and explain key chemistry concepts clearly – apply correct working in simple chemical calculations |
Complex problems: Determine ionic charges
- Current-time-mass relationships - Multi-step calculations - Industrial calculation examples Students attempt selected short-answer questions individually Peer-marking and teacher correction through discussion |
Calculators, complex problem sets, industrial data, student books
Past papers, comprehensive problem sets, industrial case studies, calculators Past Chemistry Paper 1 exams, Marking Schemes Past Papers, Chalkboard, Chemistry Charts Full Past Paper 1, Answer Booklets, Marking Schemes |
KLB Secondary Chemistry Form 4, Pages 161-164
KLB Chemistry Bk 1–4, KCSE Past Papers |
|
| 12 | 4 |
Chemistry Paper 2 Revision
|
Structured Questions: Analysis & Explanations
Structured Questions: Calculations & Reactions |
By the end of the
lesson, the learner
should be able to:
- attempt structured questions systematically - interpret and explain concepts from the Periodic Table, gases, and bonding - apply scientific reasoning to short-answer questions |
Learners attempt selected structured questions Teacher guides marking and discusses common errors Class shares strategies for improving explanations
|
Past Chemistry Paper 2 exams, Marking Schemes, Whiteboard
Calculators, Revision Exercises, Charts |
KLB Chem Bk 2–4, KCSE Past Papers
|
|
| 12 | 5 |
Chemistry Paper 2 Revision
Chemistry Paper 3 Revision Chemistry Paper 3 Revision Chemistry Paper 1 Revision Chemistry Paper 1 Revision |
Integrated Exam Practice
Quantitative Practical Skills Qualitative Practical Skills Section A: Short Answer Questions Section A: Short Answer Questions |
By the end of the
lesson, the learner
should be able to:
- integrate knowledge across topics (organic, industrial, acids/bases, gases) - apply time management in answering compulsory Paper 2 questions - self-assess answers against marking scheme |
Learners sit for a timed mock (selected Paper 2 questions) Peer marking guided by marking scheme Teacher highlights answering techniques and improvement areas
|
Past Papers, Marking Schemes, Exam Answer Sheets
Laboratory apparatus, Past Papers Laboratory apparatus, Reagents, Past Papers Past Chemistry Paper 1 exams, Marking Schemes Past Papers, Chalkboard, Chemistry Charts |
KLB Chem Bk 1–4, KCSE Past Papers
|
|
Your Name Comes Here