If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 1 | 2-3 |
Heating Effect of Electric Current
|
Introduction to heating effect
Factors affecting heat produced - current and time Factors affecting heat produced - resistance |
By the end of the
lesson, the learner
should be able to:
Define heating effect of electric current - Explain mechanism of heat production in conductors - Investigate effect of current on resistance wire - Observe temperature changes in conductors Investigate relationship between heat produced and current - Investigate relationship between heat produced and time - Plot graphs of temperature vs current² and time - State H ∝ I²t relationship |
Q/A on electric current from previous units
- Experiment investigating effect of current on coil temperature - Observation of heating in different parts of circuit - Discussion on electron collision mechanism Experiment varying current and measuring temperature change - Investigation of heating time relationship - Data collection and graph plotting - Mathematical analysis of relationships |
Battery, Resistance wire coils, Ammeter, Variable resistor, Thermometer, Stopwatch, Connecting wires
Resistance coils, Variable resistor, Ammeter, Thermometer, Stopwatch, Graph paper, Different current values Coils of different resistance, Ammeter, Thermometer, Measuring instruments, Stopwatch, Calculation worksheets |
KLB Secondary Physics Form 3, Pages 195-197
KLB Secondary Physics Form 3, Pages 197-199 |
|
| 1 | 4 |
Heating Effect of Electric Current
|
Joule's law and electrical energy
Electrical power and energy calculations |
By the end of the
lesson, the learner
should be able to:
State Joule's law of heating - Derive H = I²Rt = VIt = V²t/R - Calculate electrical energy and power - Solve numerical problems on heating calculations |
Discussion on Joule's heating law
- Mathematical derivations of heating formulas - Problem solving on energy calculations - Practical applications of heating law |
Formula charts, Calculators, Problem worksheets, Electrical devices for analysis
Calculators, Unit conversion charts, Household appliance ratings, Electricity bills, Problem sets |
KLB Secondary Physics Form 3, Pages 200-201
|
|
| 1 | 5 |
Heating Effect of Electric Current
|
Applications - electrical lighting and heating devices
Electrical safety - fuses and circuit protection Efficiency calculations and motor problems |
By the end of the
lesson, the learner
should be able to:
Describe working of filament lamp - Explain choice of tungsten for filaments - Describe working of electric iron, kettle and heaters - Compare energy saving bulbs |
Discussion on filament lamp construction
- Analysis of heating device designs - Examination of actual heating appliances - Efficiency comparisons |
Filament lamps, Electric iron, Electric kettle, Heating elements, Energy saving bulbs, Appliance diagrams
Various fuses, Fuse holders, Circuit diagrams, Safety equipment demonstrations, Rating calculations Motor specifications, Efficiency calculation worksheets, Power meters, Mechanical loading systems |
KLB Secondary Physics Form 3, Pages 202-203
|
|
| 2 | 1 |
Heating Effect of Electric Current
Quantity of Heat |
Series and parallel heating circuits
Heat capacity and specific heat capacity |
By the end of the
lesson, the learner
should be able to:
Analyze heating in series and parallel circuits - Calculate power dissipation in different configurations - Compare heating effects in different circuit arrangements - Solve complex circuit problems |
Circuit analysis of heating effects
- Comparison of series vs parallel heating - Power distribution calculations - Complex circuit problem solving |
Resistors in circuits, Ammeters, Voltmeters, Power calculation sheets, Circuit boards
Charts on heat definitions, Calculators, Simple problem worksheets, Various materials for comparison |
KLB Secondary Physics Form 3, Pages 200-204
|
|
| 2 | 2-3 |
Quantity of Heat
|
Determination of specific heat capacity - method of mixtures for solids
Determination of specific heat capacity - electrical method Specific heat capacity of liquids and continuous flow method Change of state and latent heat concepts |
By the end of the
lesson, the learner
should be able to:
Describe method of mixtures for solids - Perform experiment to determine specific heat capacity of metal - Apply heat balance principle - Calculate specific heat capacity from experimental data Determine specific heat capacity of water by electrical method - Describe continuous flow method - Explain advantages of continuous flow method - Solve problems on specific heat capacity |
Experiment using hot metal block in cold water
- Measurement of temperatures and masses - Application of heat balance equation - Calculation of specific heat capacity from results Electrical method experiment for water - Discussion on continuous flow apparatus - Analysis of method advantages - Problem solving on specific heat calculations |
Metal blocks, Beakers, Water, Thermometers, Weighing balance, Heat source, Well-lagged calorimeter, Stirrer
Metal cylinder with heater, Voltmeter, Ammeter, Thermometer, Stopwatch, Insulating materials, Power supply Calorimeter, Electrical heater, Water, Measuring instruments, Continuous flow apparatus diagram, Problem sets Naphthalene, Test tubes, Thermometer, Stopwatch, Graph paper, Heat source, Cooling apparatus |
KLB Secondary Physics Form 3, Pages 209-212
KLB Secondary Physics Form 3, Pages 214-217 |
|
| 2 | 4 |
Quantity of Heat
|
Specific latent heat of fusion
Specific latent heat of vaporization Effects of pressure and impurities on melting and boiling points |
By the end of the
lesson, the learner
should be able to:
Define specific latent heat of fusion - Determine latent heat of ice by method of mixtures - Perform electrical method for latent heat - Calculate latent heat from experimental data |
Method of mixtures experiment using ice and warm water
- Electrical method using ice and immersion heater - Heat balance calculations - Determination of specific latent heat values |
Ice, Calorimeter, Thermometer, Electrical heater, Filter funnels, Beakers, Measuring cylinders
Steam generator, Condenser, Calorimeter, Electrical heater, Measuring instruments, Safety equipment Ice blocks, Weighted wire, Round-bottomed flask, Thermometer, Salt solutions, Pressure cooker model |
KLB Secondary Physics Form 3, Pages 220-223
|
|
| 2 | 5 |
Quantity of Heat
Gas Laws |
Evaporation and cooling effects
Introduction to gas behavior and Boyle's Law |
By the end of the
lesson, the learner
should be able to:
Define evaporation and distinguish from boiling - Investigate factors affecting evaporation rate - Demonstrate cooling effect of evaporation - Explain applications of evaporation cooling |
Experiments on evaporation rate factors
- Demonstration of cooling by evaporation using ether - Investigation of surface area, temperature and humidity effects - Discussion on natural cooling systems |
Various liquids, Beakers, Fans, Thermometers, Ether, Test tubes, Humidity measuring devices
Syringes, J-shaped tubes, Oil, Bourdon gauge, Foot pump, Metre rule, Graph paper |
KLB Secondary Physics Form 3, Pages 230-233
|
|
| 3 |
OPENER EXAMINATION |
|||||||
| 4 | 1 |
Gas Laws
|
Boyle's Law experiments and calculations
Boyle's Law applications and kinetic theory explanation |
By the end of the
lesson, the learner
should be able to:
Perform experiment to verify Boyle's Law - Record pressure and volume data - Plot graphs of P vs V, P vs 1/V, and PV vs P - Calculate pressure-volume products and verify constant relationship |
Experiment using J-shaped tube with oil and pressure measurement
- Data collection and tabulation - Graph plotting and analysis - Verification of PV = constant relationship |
Thick-walled J-shaped tube, Oil, Pressure gauge, Measuring instruments, Data tables, Graph paper, Calculators
Problem worksheets, Kinetic theory diagrams, Calculator, Gas bubble scenarios, Atmospheric pressure data |
KLB Secondary Physics Form 3, Pages 235-238
|
|
| 4 | 2-3 |
Gas Laws
|
Charles's Law
Charles's Law applications and absolute temperature scale Pressure Law (Gay-Lussac's Law) Combined gas laws and ideal gas behavior Kinetic theory of gases |
By the end of the
lesson, the learner
should be able to:
State Charles's Law for constant pressure processes - Demonstrate volume-temperature relationship - Perform experiments to verify V ∝ T relationship - Plot V vs T and V vs θ graphs Combine all three gas laws into general gas equation - Apply PV/T = constant for fixed mass of gas - Solve complex problems involving multiple variables - Explain ideal gas assumptions |
Experiment using gas column in tube with varying temperature
- Temperature and volume measurements - Graph plotting showing linear relationship - Discussion on absolute zero concept Mathematical combination of gas laws - Problem solving with changing P, V, and T - Discussion on ideal gas concept - Analysis of real gas deviations from ideal behavior |
Gas tubes, Water baths, Thermometers, Measuring cylinders, Heating apparatus, Graph paper, Temperature control equipment
Temperature conversion charts, Problem sets, Calculators, Hot air balloon examples, Gas heating scenarios Constant volume gas apparatus, Pressure gauges, Temperature control, Water baths, Thermometers, Graph materials Combined law worksheets, Complex problem sets, Calculators, Ideal gas assumption charts Kinetic theory diagrams, Molecular motion animations, Temperature-energy relationship charts, Theoretical discussion materials |
KLB Secondary Physics Form 3, Pages 238-241
KLB Secondary Physics Form 3, Pages 243-245 |
|
| 4 | 4 |
Gas Laws
|
Absolute zero and temperature scales
|
By the end of the
lesson, the learner
should be able to:
Explain concept of absolute zero temperature - Extrapolate gas law graphs to find absolute zero - Convert between temperature scales - Analyze relationship between Celsius and Kelvin scales |
Graph extrapolation to determine absolute zero
- Mathematical analysis of temperature scale relationships - Problem solving with temperature conversions - Discussion on theoretical and practical aspects of absolute zero |
Graph paper, Extrapolation exercises, Temperature scale diagrams, Conversion worksheets, Scientific calculators
|
KLB Secondary Physics Form 3, Pages 241-245
|
|
| 4 | 5 |
Gas Laws
Thin Lenses Thin Lenses |
Comprehensive applications and problem solving
Types of Lenses and Effects on Light Definition of Terms and Ray Diagrams |
By the end of the
lesson, the learner
should be able to:
Solve complex multi-step gas law problems - Apply gas laws to real-world situations - Analyze atmospheric and weather-related phenomena - Review all gas law concepts and applications |
Comprehensive problem solving session
- Analysis of weather balloons, scuba diving, and atmospheric pressure effects - Review of all gas laws - Preparation for examinations with complex scenarios |
Past examination papers, Multi-step problem sets, Real-world scenario worksheets, Summary charts, Calculators
Ray box; Various convex and concave lenses; White screen; Plane mirror; Card with parallel slits; Sunlight or strong lamp Various lenses; Rulers; Graph paper; Ray boxes; Charts showing lens terminology; Drawing materials; Laser pointers (if available) |
KLB Secondary Physics Form 3, Pages 235-245
|
|
| 5 | 1 |
Thin Lenses
|
Image Formation by Converging Lenses
Image Formation by Diverging Lenses and Linear Magnification |
By the end of the
lesson, the learner
should be able to:
Locate images for different object positions using ray diagrams; Describe image characteristics (real/virtual, erect/inverted, magnified/diminished); Explain applications in telescope, camera, projector and magnifying glass; Understand relationship between object position and image properties |
Review of ray construction rules; Systematic ray diagram construction for objects at infinity, beyond 2F, at 2F, between F and 2F, at F, and between F and lens; Analysis of image characteristics for each position; Discussion of practical applications; Demonstration using lens, object and screen
|
Converging lenses; Objects; White screen; Metre rule; Candle; Graph paper; Charts showing applications; Camera (if available)
Diverging lenses; Graph paper; Rulers; Calculators; Examples from textbook; Objects of known heights; Measuring equipment |
KLB Secondary Physics Form 4, Pages 8-12
|
|
| 5 | 2-3 |
Thin Lenses
|
The Lens Formula
Determination of Focal Length I Determination of Focal Length II Power of Lens and Simple Microscope Compound Microscope |
By the end of the
lesson, the learner
should be able to:
Derive the lens formula using similar triangles; Understand and apply the Real-is-positive sign convention; Use the lens formula to solve problems involving object distance, image distance and focal length; Solve Examples 4, 5, 6, and 7 from textbook Determine focal length using lens formula method (Experiment 1.4); Plot and analyze 1/u vs 1/v graphs; Determine focal length from displacement method (Experiment 1.5); Solve Examples 8, 9, and 10 involving graphical methods |
Review of magnification concepts; Mathematical derivation of lens formula from similar triangles; Introduction to sign convention rules; Step-by-step solution of Examples 4-7; Practice problems applying lens formula to various situations; Group work on formula applications
Review of previous focal length methods; Setup and performance of Experiment 1.4; Data collection and graph plotting; Analysis of Examples 8-10; Introduction to displacement method and conjugate points; Practical work with different graphical approaches |
Mathematical instruments; Charts showing derivation; Calculators; Worked examples; Sign convention chart; Practice worksheets
Converging lenses; Lens holders; Metre rule; White screen; Distant objects; Plane mirror; Pins; Cork; Glass rod; Light source; Cardboard with cross-wires Experimental setup materials; Graph paper; Calculators; Data tables; Examples 8-10 from textbook; Materials for displacement method Various lenses of different focal lengths; Magnifying glasses; Small objects; Calculators; Power calculation charts; Small print materials; Biological specimens Compound microscope; Charts showing microscope structure; Lenses representing objective and eyepiece; Calculators; Example 11 from textbook; Ray tracing materials |
KLB Secondary Physics Form 4, Pages 14-20
KLB Secondary Physics Form 4, Pages 19-25 |
|
| 5 | 4 |
Thin Lenses
|
The Human Eye
|
By the end of the
lesson, the learner
should be able to:
Describe structure of human eye and functions of each part; Explain accommodation process and role of ciliary muscles; Define near point and far point; Understand how eye focuses at different distances; Compare eye structure with camera |
Introduction to human eye as natural optical instrument; Detailed study of eye structure using charts/models; Demonstration of accommodation using flexible lens model; Practical measurement of near and far points; Comparison table of eye vs camera similarities and differences
|
Charts/models of human eye; Torch for demonstrations; Eye model with flexible lens; Objects at various distances; Measuring equipment; Camera comparison charts
|
KLB Secondary Physics Form 4, Pages 30-32
|
|
| 5 | 5 |
Thin Lenses
|
Defects of Vision
|
By the end of the
lesson, the learner
should be able to:
Describe short sight (myopia) and its causes; Explain correction of myopia using diverging lenses; Describe long sight (hypermetropia) and its causes; Explain correction of hypermetropia using converging lenses; Draw ray diagrams showing defects and their corrections |
Q/A on normal vision and accommodation; Analysis of myopia - causes, effects, and correction; Ray diagrams for uncorrected and corrected myopia; Study of hypermetropia - causes, effects, and correction; Ray diagrams for uncorrected and corrected hypermetropia; Demonstration using appropriate lenses
|
Charts showing vision defects; Converging and diverging lenses; Eye models; Spectacles with different lenses; Vision test materials; Ray diagram materials
|
KLB Secondary Physics Form 4, Pages 32-33
|
|
| 6 | 1 |
Thin Lenses
|
The Camera and Applications Review
|
By the end of the
lesson, the learner
should be able to:
Describe camera structure and working principles; Explain functions of camera lens, shutter, aperture, and film; Compare camera with human eye highlighting similarities and differences; Review all applications of lenses in optical instruments |
Review of optical instruments studied; Analysis of camera components and their functions; Detailed comparison of camera and eye; Discussion of focusing mechanisms; Comprehensive review of lens applications in telescope, microscope, camera, spectacles, and magnifying glass
|
Camera (if available); Charts showing camera structure; Comparison tables; Review charts of all applications; Summary materials; Demonstration equipment
|
KLB Secondary Physics Form 4, Pages 33-35
|
|
| 6 | 2-3 |
Uniform Circular Motion
|
Introduction and Angular Displacement
Angular Velocity and Linear Velocity |
By the end of the
lesson, the learner
should be able to:
Define uniform circular motion and give examples; Define angular displacement and its unit (radian); Convert between degrees and radians; Derive the relationship s = rθ; Solve Example 1 from textbook Define angular velocity (ω) and its units; Derive the relationship v = rω; Calculate period (T) and frequency (f) of circular motion; Solve Examples 2(a) and 2(b) from textbook; Relate linear and angular quantities |
Q/A on linear motion concepts; Introduction to circular motion using real-life examples (merry-go-round, wheels, planets); Definition and demonstration of angular displacement; Mathematical relationship between arc length, radius and angle; Practical measurement of angles in radians; Solution of Example 1
Review of angular displacement through Q/A; Introduction to angular velocity concept; Mathematical derivation of v = rω relationship; Exploration of period and frequency relationships; Step-by-step solution of Examples 2(a) and 2(b); Practical demonstration using rotating objects; Group calculations involving different circular motions |
Merry-go-round model or pictures; String and objects for circular motion; Protractors; Calculators; Charts showing degree-radian conversion; Measuring wheels
Stopwatch; Rotating objects (turntables, wheels); String and masses; Calculators; Formula charts; Examples from textbook; Measuring equipment |
KLB Secondary Physics Form 4, Pages 37-39
KLB Secondary Physics Form 4, Pages 38-40 |
|
| 6 | 4 |
Uniform Circular Motion
|
Centripetal Acceleration
|
By the end of the
lesson, the learner
should be able to:
Explain why circular motion involves acceleration despite constant speed; Derive centripetal acceleration formula a = v²/r = rω²; Understand direction of centripetal acceleration; Solve Example 3 from textbook; Apply acceleration concepts to circular motion problems |
Q/A review of velocity and acceleration concepts; Explanation of acceleration in circular motion using vector analysis; Mathematical derivation of centripetal acceleration; Discussion of acceleration direction (toward center); Step-by-step solution of Example 3; Practical demonstration of centripetal acceleration effects
|
Vector diagrams; Rotating objects; Calculators; Charts showing acceleration derivation; Example 3 materials; Demonstration of circular motion with varying speeds
|
KLB Secondary Physics Form 4, Pages 40-42
|
|
| 6 | 5 |
Uniform Circular Motion
|
Centripetal Force and Factors Affecting It
Experimental Investigation of Centripetal Force |
By the end of the
lesson, the learner
should be able to:
Explain the need for centripetal force in circular motion; State factors affecting centripetal force (mass, speed, radius); Derive centripetal force formula F = mv²/r = mrω²; Perform Experiment 2.1 investigating F vs ω²; Solve Example 4 from textbook |
Review of Newton's laws and centripetal acceleration; Introduction to centripetal force concept; Experimental investigation of factors affecting centripetal force; Performance of Experiment 2.1 - relationship between F and ω²; Data collection and analysis; Solution of Example 4; Discussion of practical implications
|
Metal pegs; Turntable and motor; Variable resistor; Dry cell; Metal ball and string; Spring balance; Clock; Graph paper; Calculators
Same apparatus as Experiment 2.1; Graph paper; Additional measuring equipment; Data recording tables; Calculators; Analysis worksheets |
KLB Secondary Physics Form 4, Pages 42-47
|
|
| 7 |
Midterm examination |
|||||||
| 8 |
Midterm Break |
|||||||
| 9 | 1 |
Uniform Circular Motion
|
Case Examples - Cars and Banking
|
By the end of the
lesson, the learner
should be able to:
Explain circular motion of cars on level roads; Understand role of friction in providing centripetal force; Describe banking of roads and its advantages; Derive critical speed for banked tracks; Explain aircraft banking principles |
Review of centripetal force concepts; Analysis of car motion on circular bends; Discussion of friction as centripetal force; Introduction to banked roads and critical speed; Mathematical analysis of banking angles; Explanation of aircraft banking mechanisms; Problem-solving involving banking situations
|
Model cars and tracks; Inclined plane demonstrations; Charts showing banking principles; Calculators; Friction demonstration materials; Pictures of banked roads and aircraft
|
KLB Secondary Physics Form 4, Pages 47-50
|
|
| 9 | 2-3 |
Uniform Circular Motion
|
Case Examples - Cyclists and Conical Pendulum
Motion in Vertical Circle |
By the end of the
lesson, the learner
should be able to:
Analyze forces on cyclists moving in circular tracks; Explain cyclist leaning and conditions for no skidding; Describe conical pendulum motion; Derive equations for conical pendulum; Solve Example 5 from textbook Analyze forces in vertical circular motion; Understand variation of tension at different positions; Derive expressions for tension at top and bottom positions; Calculate minimum speed for vertical circular motion; Apply concepts to practical examples (bucket of water, loop-the-loop) |
Q/A on banking concepts; Analysis of cyclist motion on circular tracks; Force analysis and conditions for stability; Introduction to conical pendulum; Mathematical analysis of pendulum motion; Step-by-step solution of Example 5; Practical demonstration of conical pendulum
Review of circular motion in horizontal plane; Introduction to vertical circular motion; Force analysis at different positions in vertical circle; Mathematical derivation of tension variations; Discussion of minimum speed requirements; Practical examples and safety considerations; Problem-solving involving vertical motion |
Model cyclists; Pendulum apparatus; String and masses; Force diagrams; Calculators; Example 5 materials; Protractors for angle measurement
String and masses for vertical motion; Bucket and water (demonstration); Model loop-the-loop track; Force analysis charts; Safety equipment; Calculators |
KLB Secondary Physics Form 4, Pages 50-52
KLB Secondary Physics Form 4, Pages 52-54 |
|
| 9 | 4 |
Uniform Circular Motion
|
Applications - Centrifuges and Satellites
|
By the end of the
lesson, the learner
should be able to:
Explain working principles of centrifuges; Describe separation of particles using centripetal force; Understand satellite motion and gravitational force; Apply Newton's law of gravitation to satellite orbits; Explain parking orbits and their applications |
Q/A on centripetal force applications; Detailed study of centrifuge operation; Analysis of particle separation mechanisms; Introduction to satellite motion; Application of universal gravitation law; Discussion of geostationary satellites; Analysis of satellite velocities and orbital periods
|
Centrifuge model or pictures; Separation demonstration materials; Satellite orbit charts; Calculators; Newton's gravitation materials; Model solar system
|
KLB Secondary Physics Form 4, Pages 54-55
|
|
| 9 | 5 |
Floating and Sinking
|
Introduction and Cause of Upthrust
|
By the end of the
lesson, the learner
should be able to:
Explain why objects feel lighter in fluids; Define upthrust and identify its effects; Perform Experiment 3.1 investigating upthrust and weight of fluid displaced; Derive mathematical expression for upthrust using pressure concepts; Verify Archimedes' principle experimentally |
Q/A on pressure in liquids; Introduction using steel ferry floating on water; Performance of Experiment 3.1 - relationship between upthrust and weight of displaced fluid; Mathematical derivation of upthrust U = ρVg; Analysis of experimental results; Discussion of pressure differences causing upthrust
|
Spring balance; Objects (stones); String; Eureka can; Beaker; Water; Measuring cylinder; Beam balance; Dense objects; Charts showing pressure variation
|
KLB Secondary Physics Form 4, Pages 58-63
|
|
| 10 | 1 |
Floating and Sinking
|
Upthrust in Gases and Archimedes' Principle
Law of Flotation and Applications |
By the end of the
lesson, the learner
should be able to:
Explain upthrust in gases with examples; State Archimedes' principle clearly; Apply Archimedes' principle to solve problems; Solve Examples 1, 2, and 3 from textbook; Calculate apparent weight and upthrust in different fluids |
Review of upthrust in liquids through Q/A; Discussion of upthrust in gases using balloon examples; Statement and explanation of Archimedes' principle; Step-by-step solution of Examples 1-3; Problem-solving involving apparent weight calculations; Group work on upthrust calculations
|
Balloons; Helium or hydrogen (if available); Objects of known density; Calculators; Examples from textbook; Different liquids for demonstration; Measuring equipment
Test tubes; Sand; Measuring cylinder; Water; Balance; Floating objects; Examples from textbook; Calculators; Model boats; Balloon demonstrations |
KLB Secondary Physics Form 4, Pages 60-66
|
|
| 10 | 2-3 |
Floating and Sinking
|
Relative Density Determination
Archimedes' Principle and Moments |
By the end of the
lesson, the learner
should be able to:
Define relative density of solids and liquids; Use Archimedes' principle to determine relative density; Apply the formula: RD = Weight in air/(Weight in air - Weight in fluid); Solve Examples 8, 9, 10, 11, and 12 from textbook; Calculate relative density using different methods Perform Experiment 3.3 determining relative density using moments; Understand the principle of moments in relative density determination; Plot graphs of d₁ against d₂ and determine slopes; Apply moments method to determine relative density of liquids; Explain advantages of moments method over direct weighing |
Review of density concepts through Q/A; Introduction to relative density using practical examples; Mathematical derivation of relative density formulae; Step-by-step solution of Examples 8-12; Practical determination of relative density for various materials; Group calculations and comparisons
Q/A on relative density calculations; Setup and performance of Experiment 3.3 - relative density using moments; Data collection and graph plotting; Analysis of graph slopes and their significance; Application to liquids determination; Discussion of method advantages and accuracy |
Spring balance; Various solid objects; Different liquids; Measuring cylinders; Calculators; Examples from textbook; Objects of unknown density; Data recording sheets
Metre rule; Clamps and stands; Solid objects; Metal blocks; Water and other liquids; Graph paper; Calculators; Data recording tables; Balance setup materials |
KLB Secondary Physics Form 4, Pages 69-74
KLB Secondary Physics Form 4, Pages 71-74 |
|
| 10 | 4 |
Floating and Sinking
|
Applications - Hydrometer and Practical Instruments
|
By the end of the
lesson, the learner
should be able to:
Explain the working principle of hydrometers; Describe structure and features of practical hydrometers; Solve Examples 12 and 13 involving hydrometer calculations; Understand applications in measuring density of milk, battery acid, and beer; Calculate hydrometer dimensions and floating positions |
Review of law of flotation through Q/A; Detailed study of hydrometer structure and operation; Analysis of hydrometer sensitivity and design features; Step-by-step solution of Examples 12-13; Discussion of specialized hydrometers (lactometer, battery acid hydrometer); Practical calculations involving hydrometer floating
|
Hydrometer (if available); Different density liquids; Measuring cylinders; Calculators; Examples from textbook; Charts showing hydrometer types; Battery acid hydrometer demonstration
|
KLB Secondary Physics Form 4, Pages 74-77
|
|
| 10 | 5 |
Floating and Sinking
|
Applications - Ships, Submarines, and Balloons
|
By the end of the
lesson, the learner
should be able to:
Explain how steel ships float on water; Describe working principle of submarines; Understand how balloons achieve lift and control altitude; Analyze the role of displaced fluid in each application; Apply principles to solve practical problems involving floating vessels |
Q/A on hydrometer applications; Analysis of ship design and floating principles; Detailed study of submarine operation and ballast tanks; Exploration of balloon physics and gas density effects; Discussion of load limits and stability; Problem-solving involving practical floating applications
|
Model ships and submarines; Balloon demonstrations; Charts showing ship cross-sections; Submarine ballast tank models; Different density materials; Calculators; Application examples
|
KLB Secondary Physics Form 4, Pages 77
|
|
| 11 | 1 |
Electromagnetic Spectrum
|
Introduction and Properties of Electromagnetic Waves
|
By the end of the
lesson, the learner
should be able to:
Define electromagnetic waves and identify their nature; State properties common to all electromagnetic waves; Arrange electromagnetic radiations in order of wavelength and frequency; Calculate wave properties using c = fλ; Solve Examples 1 and 2 from textbook |
Q/A on wave concepts from previous studies; Introduction to electromagnetic waves using everyday examples; Study of electromagnetic spectrum chart; Discussion of wave properties (speed, frequency, wavelength); Mathematical relationship between wave parameters; Solution of Examples 1 and 2 involving calculations
|
Electromagnetic spectrum charts; Wave demonstration materials; Calculators; Radio; Mobile phone; Examples from textbook; Charts showing wave properties
|
KLB Secondary Physics Form 4, Pages 79-81
|
|
| 11 | 2-3 |
Electromagnetic Spectrum
|
Production and Detection of Electromagnetic Waves I
Production and Detection of Electromagnetic Waves II Applications of Electromagnetic Waves I |
By the end of the
lesson, the learner
should be able to:
Explain production of gamma rays, X-rays, and ultraviolet radiation; Describe detection methods for high-energy radiations; Understand energy transitions in atoms and nuclei; Relate wave energy to frequency using E = hf; Solve Example 3 involving X-ray calculations Explain production of visible light, infrared, microwaves, and radio waves; Describe detection methods for each radiation type; Understand role of oscillating circuits in radio wave production; Compare detection mechanisms across the spectrum; Demonstrate detection of some radiations |
Review of electromagnetic properties through Q/A; Study of high-energy radiation production mechanisms; Analysis of detection methods (photographic plates, G-M tubes, fluorescent materials); Discussion of atomic and nuclear energy changes; Step-by-step solution of Example 3; Safety considerations for high-energy radiations
Q/A on high-energy radiations; Study of lower-energy radiation production (thermal, electronic oscillations); Analysis of detection methods (eyes, thermopiles, crystal detectors, radio receivers); Practical demonstrations of infrared detection; Discussion of antenna and oscillating circuit principles; Group identification of sources and detectors |
Charts showing radiation production; Photographic film; Fluorescent materials; UV lamp (if available); Geiger counter (if available); Example 3 materials; Safety equipment demonstrations
Infrared sources (heaters); Thermometer with blackened bulb; Radio receivers; Microwave oven (demonstration); Oscillating circuit models; Various electromagnetic sources X-ray photographs; Medical imaging examples; Industrial radiography charts; Cancer treatment information; Sterilization process diagrams; Safety protocol charts |
KLB Secondary Physics Form 4, Pages 81-82
|
|
| 11 | 4 |
Electromagnetic Spectrum
|
Applications of Electromagnetic Waves II
|
By the end of the
lesson, the learner
should be able to:
Explain applications of ultraviolet radiation; Describe uses of visible light in technology; Understand infrared applications in heating and imaging; Analyze microwave applications in cooking and radar; Discuss radio wave applications in communication |
Q/A on high-energy radiation applications; Study of UV applications (fluorescence, sterilization, vitamin D, forgery detection); Analysis of visible light uses (photography, optical fibers, lasers); Exploration of infrared applications (heating, night vision, remote controls); Discussion of microwave and radio wave technologies
|
UV lamp demonstrations; Optical fiber samples; Infrared thermometer; Microwave oven (demonstration); Radio equipment; Remote controls; Radar images; Communication devices
|
KLB Secondary Physics Form 4, Pages 82-85
|
|
| 11 | 5 |
Electromagnetic Spectrum
|
Specific Applications - Radar and Microwave Cooking
|
By the end of the
lesson, the learner
should be able to:
Explain principles of radar (radio detection and ranging); Describe microwave oven operation and safety features; Understand reflection and detection in radar systems; Explain how microwaves heat food molecules; Apply wave principles to practical technologies |
Review of microwave and radio wave properties; Detailed analysis of radar operation and applications; Study of microwave oven components (magnetron, stirrer, safety features); Discussion of wave reflection and detection principles; Analysis of molecular heating mechanisms; Safety considerations and precautions
|
Radar system diagrams; Microwave oven cross-section charts; Wave reflection demonstrations; Safety instruction materials; Magnetron information; Aircraft/ship tracking examples
|
KLB Secondary Physics Form 4, Pages 84-85
|
|
| 12 |
Endterm Examination, making and closing |
|||||||
| 13 | 1 |
Electromagnetic Spectrum
|
Hazards and Safety Considerations
|
By the end of the
lesson, the learner
should be able to:
Identify hazards of high-energy electromagnetic radiations; Explain biological effects of UV, X-rays, and gamma rays; Describe safety measures for radiation protection; Understand delayed effects like cancer and genetic damage; Apply safety principles in radiation use |
Q/A on electromagnetic applications; Study of radiation hazards and biological effects; Analysis of skin damage, cell destruction, and genetic effects; Discussion of Chernobyl disaster and radiation accidents; Exploration of safety measures (shielding, distance, time limits); Application of ALARA principle (As Low As Reasonably Achievable)
|
Radiation hazard charts; Safety equipment demonstrations; Chernobyl disaster information; Biological effect diagrams; Safety protocol materials; Radiation protection examples
|
KLB Secondary Physics Form 4, Pages 85
|
|
Your Name Comes Here