If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 1 | 3 |
Statistics
|
Definition
Collection and organization of data |
By the end of the
lesson, the learner
should be able to:
define statistics |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
| 1 | 4 |
Statistics
|
Frequency tables
Grouped data Mean of ungrouped data Median of ungrouped data |
By the end of the
lesson, the learner
should be able to:
draw a frequency distribution table |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
| 1 | 5 |
Statistics
|
Mean of ungrouped data
Median of a grouped data modal class Data Representation. Line graphs Bar graphs |
By the end of the
lesson, the learner
should be able to:
calculate the mean of a grouped data |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Weighing balance
Ruler Tape measure Pieces of stick Arm length Foot length Graph papers |
KLB Maths Bk2 Pg. 241-252
|
|
| 1 | 6 |
Statistics
|
Pictogram
Histograms Frequency polygons Histograms with uneven distribution |
By the end of the
lesson, the learner
should be able to:
represent data in form of pictures |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Pictures which are whole, half, quarter
Weighing balance Ruler Tape measure Pieces of stick Arm length Foot length Graph papers Histograms drawn. Data Data with uneven classes |
KLB Maths Bk2 Pg. 241-252
|
|
| 1 | 7 |
Statistics
Angle Properties of a Circle Angle Properties of a Circle |
Interpretation of data
Problem solving Arc chord segment Angles subtended by the same arc in the same segment |
By the end of the
lesson, the learner
should be able to:
interpret data from real life situation |
Collecting data
Measuring length/mass/age Drawing graphs Drawing tables Using symbols to represent data Discussion |
Real life situations
Past paper questions Chart illustrating arc chord and segment Chart illustrating Angles subtended by the same arc in same segment are equal |
KLB Maths Bk2 Pg. 241-252
|
|
| 2 | 1 |
Angle Properties of a Circle
|
Angle at the centre and at the circumference
Angles subtended by the diameter at the circumference Cyclic quadrilateral Cyclic quadrilateral |
By the end of the
lesson, the learner
should be able to:
relate and compute angle subtended by an arc of a centre and at the circumference |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Chart illustrating Angles subtended at the centre by an arc and one subtended at the circumference
Circles showing the different parts |
KLB Maths Bk2 Pg. 264-278
|
|
| 2 | 2 |
Angle Properties of a Circle
|
Exterior angle property
Problem solving Problem solving |
By the end of the
lesson, the learner
should be able to:
apply the exterior angle property |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Circles showing the
different parts different parts Past paper questions different parts Past paper questions |
KLB Maths Bk2 Pg. 264-278
|
|
| 2 | 3 |
Circles: Chords and Tangents
|
Length of an arc
|
By the end of the
lesson, the learner
should be able to:
Calculate the length of an arc Apply arc length formula Understand arc-radius relationships |
Q/A on circle properties and terminology
Discussions on arc measurement concepts Solving basic arc length problems Demonstrations of formula application Explaining arc-angle relationships |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 124-125
|
|
| 2 | 4 |
Circles: Chords and Tangents
|
Chords
Parallel chords |
By the end of the
lesson, the learner
should be able to:
Calculate the length of a chord Apply chord properties and theorems Understand chord-radius relationships |
Q/A on chord definition and properties
Discussions on chord calculation methods Solving basic chord problems Demonstrations of geometric constructions Explaining chord theorems |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 126-128
|
|
| 2 | 5 |
Circles: Chords and Tangents
|
Equal chords
Intersecting chords |
By the end of the
lesson, the learner
should be able to:
Find the length of equal chords Apply equal chord theorems Solve equal chord problems |
Q/A on equal chord properties
Discussions on chord equality conditions Solving equal chord problems Demonstrations of proof techniques Explaining theoretical foundations |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 131-132
|
|
| 2 | 6 |
Circles: Chords and Tangents
|
Intersecting chords
Chord properties |
By the end of the
lesson, the learner
should be able to:
Calculate the length of intersecting chords Solve complex intersection problems Apply advanced chord theorems |
Q/A on advanced intersection scenarios
Discussions on complex chord relationships Solving challenging intersection problems Demonstrations of advanced techniques Explaining sophisticated applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 135-139
|
|
| 2 | 7 |
Circles: Chords and Tangents
|
Tangent to a circle
|
By the end of the
lesson, the learner
should be able to:
Construct a tangent to a circle Understand tangent properties Apply tangent construction methods |
Q/A on tangent definition and properties
Discussions on tangent construction Solving basic tangent problems Demonstrations of construction techniques Explaining tangent characteristics |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 139-140
|
|
| 3 |
OPENER EXAMINATION |
|||||||
| 4 | 1 |
Circles: Chords and Tangents
|
Properties of tangents to a circle from an external point
Tangent properties |
By the end of the
lesson, the learner
should be able to:
State the properties of tangents to a circle from an external point Apply external tangent properties Solve external tangent problems |
Q/A on external tangent concepts
Discussions on tangent properties Solving external tangent problems Demonstrations of property applications Explaining theoretical foundations |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 142-144
|
|
| 4 | 2 |
Circles: Chords and Tangents
|
Tangents to two circles
|
By the end of the
lesson, the learner
should be able to:
Calculate the tangents of direct common tangents Find direct common tangent properties Apply two-circle tangent concepts |
Q/A on two-circle tangent concepts
Discussions on direct tangent properties Solving direct tangent problems Demonstrations of construction methods Explaining geometric relationships |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 148-149
|
|
| 4 | 3 |
Circles: Chords and Tangents
|
Contact of circles
|
By the end of the
lesson, the learner
should be able to:
Calculate the radii of contact circles Understand internal contact properties Apply contact circle concepts |
Q/A on circle contact concepts
Discussions on internal contact properties Solving internal contact problems Demonstrations of contact relationships Explaining geometric principles |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 151-153
|
|
| 4 | 4 |
Circles: Chords and Tangents
|
Circle contact
Angle in alternate segment |
By the end of the
lesson, the learner
should be able to:
Solve problems involving chords, tangents and contact circles Integrate all contact concepts Apply comprehensive contact knowledge |
Q/A on comprehensive contact understanding
Discussions on integrated problem-solving Solving complex contact problems Demonstrations of systematic approaches Explaining complete contact mastery |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 154-157
|
|
| 4 | 5 |
Circles: Chords and Tangents
|
Angle in alternate segment
Circumscribed circle |
By the end of the
lesson, the learner
should be able to:
Calculate the angles in alternate segments Solve complex segment problems Apply advanced segment theorems |
Q/A on advanced segment applications
Discussions on complex angle relationships Solving challenging segment problems Demonstrations of sophisticated techniques Explaining advanced applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 160-161
|
|
| 4 | 6 |
Circles: Chords and Tangents
|
Escribed circles
Centroid |
By the end of the
lesson, the learner
should be able to:
Construct escribed circles Find escribed circle properties Apply escription concepts |
Q/A on escription concepts
Discussions on escribed circle construction Solving escription problems Demonstrations of construction methods Explaining escription applications |
Geometrical set, calculators
|
KLB Mathematics Book Three Pg 165-166
|
|
| 4 | 7 |
Circles: Chords and Tangents
Vectors |
Orthocenter
Circle and triangle relationships Definition and Representation of vectors |
By the end of the
lesson, the learner
should be able to:
Construct orthocenter Find orthocenter properties Apply orthocenter concepts |
Q/A on orthocenter concepts
Discussions on orthocenter construction Solving orthocenter problems Demonstrations of construction methods Explaining orthocenter applications |
Geometrical set, calculators
1x2 matrices Graph papers Square boards Ruler |
KLB Mathematics Book Three Pg 167
|
|
| 5 | 1 |
Vectors
|
Equivalent vectors
Addition of vectors Multiplication of vectors Position vectors |
By the end of the
lesson, the learner
should be able to:
identify equivalent vectors |
Writing position vectors
Adding/subtracting numbers Squaring and getting the square root of numbers |
1x2 matrices
Graph papers Square boards Ruler |
KLB Maths Bk2 Pg. 285
|
|
| 5 | 2 |
Vectors
|
Column vector
Magnitude of a vector Mid - point Translation vector |
By the end of the
lesson, the learner
should be able to:
write a vector as a column vector |
Writing position vectors
Adding/subtracting numbers Squaring and getting the square root of numbers |
1x2 matrices
Graph papers Square boards Ruler |
KLB Maths Bk2 Pg. 296-297
|
|
| 5 | 3 |
Vectors (II)
|
Coordinates in two dimensions
Coordinates in three dimensions |
By the end of the
lesson, the learner
should be able to:
Identify the coordinates of a point in two dimensions Plot points on coordinate planes accurately Understand position representation using coordinates Apply coordinate concepts to practical situations |
Q/A on coordinate identification using grid references
Discussions on map reading and location finding Solving coordinate plotting problems using systematic methods Demonstrations using classroom grid systems and floor patterns Explaining coordinate applications using local maps and directions |
Chalk and blackboard, squared paper or grid drawn on ground, exercise books
Chalk and blackboard, 3D models made from sticks and clay, exercise books |
KLB Mathematics Book Three Pg 221-222
|
|
| 5 | 4 |
Vectors (II)
|
Column and position vectors in three dimensions
Position vectors and applications |
By the end of the
lesson, the learner
should be able to:
Find a displacement and represent it in column vector Calculate the position vector Express vectors in column form Apply column vector notation systematically |
Q/A on displacement representation using movement examples
Discussions on vector notation using organized column format Solving column vector problems using systematic methods Demonstrations using physical movement and direction examples Explaining vector components using practical displacement |
Chalk and blackboard, movement demonstration space, exercise books
Chalk and blackboard, origin marking systems, exercise books |
KLB Mathematics Book Three Pg 223-224
|
|
| 5 | 5 |
Vectors (II)
|
Column vectors in terms of unit vectors i, j, k
Vector operations using unit vectors |
By the end of the
lesson, the learner
should be able to:
Express vectors in terms of unit vectors Convert between column and unit vector notation Understand the standard basis vector system Apply unit vector representation systematically |
Q/A on unit vector concepts using direction examples
Discussions on component representation using organized methods Solving unit vector problems using systematic conversion Demonstrations using perpendicular direction examples Explaining basis vector concepts using coordinate axes |
Chalk and blackboard, direction indicators, unit vector reference charts, exercise books
Chalk and blackboard, component calculation aids, exercise books |
KLB Mathematics Book Three Pg 226-228
|
|
| 5 | 6 |
Vectors (II)
|
Magnitude of a vector in three dimensions
Magnitude applications and unit vectors |
By the end of the
lesson, the learner
should be able to:
Calculate the magnitude of a vector in three dimensions Apply the 3D magnitude formula systematically Find vector lengths in spatial contexts Solve magnitude problems accurately |
Q/A on 3D magnitude using extended Pythagorean methods
Discussions on spatial distance calculation using 3D techniques Solving 3D magnitude problems using systematic calculation Demonstrations using 3D distance examples Explaining 3D magnitude using practical spatial examples |
Chalk and blackboard, 3D measurement aids, exercise books
Chalk and blackboard, direction finding aids, exercise books |
KLB Mathematics Book Three Pg 229-230
|
|
| 5 | 7 |
Vectors (II)
|
Parallel vectors
Collinearity |
By the end of the
lesson, the learner
should be able to:
Identify parallel vectors Determine when vectors are parallel Apply parallel vector properties Use scalar multiples in parallel relationships |
Q/A on parallel identification using scalar multiple methods
Discussions on parallel relationships using geometric examples Solving parallel vector problems using systematic testing Demonstrations using parallel line and direction examples Explaining parallel concepts using geometric reasoning |
Chalk and blackboard, parallel line demonstrations, exercise books
Chalk and blackboard, straight-line demonstrations, exercise books |
KLB Mathematics Book Three Pg 231-232
|
|
| 6 | 1 |
Vectors (II)
|
Advanced collinearity applications
Proportional division of a line |
By the end of the
lesson, the learner
should be able to:
Show that points are collinear Apply collinearity to complex geometric problems Integrate parallel and collinearity concepts Solve advanced alignment problems |
Q/A on advanced collinearity using complex scenarios
Discussions on geometric proof using vector methods Solving challenging collinearity problems Demonstrations using complex geometric constructions Explaining advanced applications using comprehensive examples |
Chalk and blackboard, complex geometric aids, exercise books
Chalk and blackboard, internal division models, exercise books |
KLB Mathematics Book Three Pg 232-234
|
|
| 6 | 2 |
Vectors (II)
|
External division of a line
Combined internal and external division |
By the end of the
lesson, the learner
should be able to:
Divide a line externally in the given ratio Apply the external division formula Distinguish between internal and external division Solve external division problems accurately |
Q/A on external division using systematic formula application
Discussions on external point calculation using vector methods Solving external division problems using careful approaches Demonstrations using external point construction examples Explaining external division using extended line concepts |
Chalk and blackboard, external division models, exercise books
Chalk and blackboard, combined division models, exercise books |
KLB Mathematics Book Three Pg 238-239
|
|
| 6 | 3 |
Vectors (II)
|
Ratio theorem
Advanced ratio theorem applications |
By the end of the
lesson, the learner
should be able to:
Express position vectors Apply the ratio theorem to geometric problems Use ratio theorem in complex calculations Find position vectors using ratio relationships |
Q/A on ratio theorem application using systematic methods
Discussions on position vector calculation using ratio methods Solving ratio theorem problems using organized approaches Demonstrations using ratio-based position finding Explaining theorem applications using logical reasoning |
Chalk and blackboard, ratio theorem aids, exercise books
Chalk and blackboard, advanced ratio models, exercise books |
KLB Mathematics Book Three Pg 240-242
|
|
| 6 | 4 |
Vectors (II)
|
Mid-point
Ratio theorem and midpoint integration |
By the end of the
lesson, the learner
should be able to:
Find the mid-points of the given vectors Apply midpoint formulas in vector contexts Use midpoint concepts in geometric problems Calculate midpoints systematically |
Q/A on midpoint calculation using vector averaging methods
Discussions on midpoint applications using geometric examples Solving midpoint problems using systematic approaches Demonstrations using midpoint construction and calculation Explaining midpoint concepts using practical examples |
Chalk and blackboard, midpoint demonstration aids, exercise books
Chalk and blackboard, complex problem materials, exercise books |
KLB Mathematics Book Three Pg 243
|
|
| 6 | 5 |
Vectors (II)
|
Advanced ratio theorem applications
Applications of vectors in geometry |
By the end of the
lesson, the learner
should be able to:
Use ratio theorem to find the given vectors Apply ratio theorem to challenging problems Handle complex geometric applications Demonstrate comprehensive ratio mastery |
Q/A on comprehensive ratio understanding using advanced problems
Discussions on complex ratio relationships Solving advanced ratio problems using systematic methods Demonstrations using sophisticated geometric constructions Explaining mastery using challenging applications |
Chalk and blackboard, advanced geometric aids, exercise books
Chalk and blackboard, parallelogram models, exercise books |
KLB Mathematics Book Three Pg 246-248
|
|
| 6 | 6 |
Vectors (II)
|
Rectangle diagonal applications
Advanced geometric applications |
By the end of the
lesson, the learner
should be able to:
Use vectors to show the diagonals of a rectangle Apply vector methods to rectangle properties Prove rectangle theorems using vectors Compare parallelogram and rectangle diagonal properties |
Q/A on rectangle properties using vector analysis
Discussions on diagonal relationships using vector methods Solving rectangle problems using systematic approaches Demonstrations using rectangle constructions and vector proofs Explaining rectangle properties using vector reasoning |
Chalk and blackboard, rectangle models, exercise books
Chalk and blackboard, advanced geometric models, exercise books |
KLB Mathematics Book Three Pg 248-250
|
|
| 6 | 7 |
Quadratic Expressions and Equations
|
Factorisation of quadratic expressions
Completing squares Completing squares |
By the end of the
lesson, the learner
should be able to:
Factorize quadratic expressions Write the perfect squares Apply factorization methods to solve problems |
Q/A on revision of linear expressions
Discussions on quadratic expression patterns Solving problems using factorization Demonstrations on factorization techniques Explaining step-by-step methods |
Calculators, charts showing factorization patterns
Calculators, factorization method charts Calculators, perfect square charts Calculators, vertex form examples |
KLB Mathematics Book Three Pg 1
|
|
| 7 |
MIDTERM EXAMINATION |
|||||||
| 8 |
MIDTERM BREAK |
|||||||
| 9 | 1 |
Quadratic Expressions and Equations
|
Solving quadratic expressions by completing square
Solving quadratic expressions by factorization The quadratic formula The quadratic formula |
By the end of the
lesson, the learner
should be able to:
Solve quadratic expressions by completing square Apply completing square method to equations Verify solutions by substitution |
Q/A on equation solving methods
Discussions on systematic solving approach Solving equations step-by-step Demonstrations of verification methods Explaining solution processes |
Calculators, equation solving guides
Calculators, method selection charts Calculators, formula derivation charts Calculators, discriminant interpretation guides |
KLB Mathematics Book Three Pg 5-6
|
|
| 9 | 2 |
Quadratic Expressions and Equations
|
Formation of quadratic equations
Graphs of quadratic functions |
By the end of the
lesson, the learner
should be able to:
Form a quadratic equation from word problem Create equations from given roots Apply sum and product of roots |
Q/A on roots and coefficients relationship
Discussions on equation formation Solving word problems leading to equations Demonstrations of equation creation Explaining formation processes |
Calculators, word problem templates
Graph papers, calculators, plotting guides |
KLB Mathematics Book Three Pg 9-10
|
|
| 9 | 3 |
Quadratic Expressions and Equations
|
Graphs of quadratic functions
Graphical solutions of quadratic equation |
By the end of the
lesson, the learner
should be able to:
Draw graphs of quadratic functions Identify vertex and axis of symmetry Find intercepts from graphs |
Q/A on graph plotting techniques
Discussions on graph features Solving graphing problems Demonstrations of feature identification Explaining graph properties |
Graph papers, calculators, rulers
|
KLB Mathematics Book Three Pg 12-15
|
|
| 9 | 4 |
Quadratic Expressions and Equations
|
Graphical solutions of quadratic equation
Graphical solutions of simultaneous equations |
By the end of the
lesson, the learner
should be able to:
Solve quadratic equations using the graphs Verify algebraic solutions graphically Estimate solutions from graphs |
Q/A on solution verification
Discussions on estimation techniques Solving complex graphical problems Demonstrations of verification methods Explaining accuracy in estimation |
Graph papers, calculators, estimation guides
Graph papers, calculators, intersection analysis guides |
KLB Mathematics Book Three Pg 17-19
|
|
| 9 | 5 |
Approximations and Errors
|
Computing using calculators
|
By the end of the
lesson, the learner
should be able to:
Solve basic operations using calculators Use calculator functions effectively Apply calculator to mathematical computations |
Q/A on calculator familiarity
Discussions on calculator operations Solving basic arithmetic problems Demonstrations of calculator functions Explaining proper calculator usage |
Calculators, operation guides
Calculators, verification worksheets |
KLB Mathematics Book Three Pg 24-26
|
|
| 9 | 6 |
Approximations and Errors
|
Approximation
Estimation |
By the end of the
lesson, the learner
should be able to:
Approximate values by rounding off Round numbers to specified decimal places Apply rounding rules correctly |
Q/A on rounding concepts
Discussions on rounding techniques Solving rounding problems Demonstrations of rounding methods Explaining rounding rules and applications |
Calculators, rounding charts
Calculators, estimation guides |
KLB Mathematics Book Three Pg 29-30
|
|
| 9 | 7 |
Approximations and Errors
|
Accuracy and errors
Percentage error |
By the end of the
lesson, the learner
should be able to:
Find the absolute error Calculate relative error Distinguish between different error types |
Q/A on error concepts
Discussions on error calculations Solving absolute and relative error problems Demonstrations of error computation Explaining error significance |
Calculators, error calculation sheets
Calculators, percentage error worksheets |
KLB Mathematics Book Three Pg 31-32
|
|
| 10 | 1 |
Approximations and Errors
|
Rounding off error and truncation error
Propagation of errors |
By the end of the
lesson, the learner
should be able to:
Find the rounding off error Calculate truncation error Compare rounding and truncation errors |
Q/A on error types
Discussions on error sources Solving rounding and truncation error problems Demonstrations of error comparison Explaining error analysis |
Calculators, error comparison charts
Calculators, error propagation guides |
KLB Mathematics Book Three Pg 34
|
|
| 10 | 2 |
Approximations and Errors
|
Propagation of errors
Propagation of errors in multiplication |
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in addition and subtraction Apply error propagation to complex problems Verify error calculations |
Q/A on propagation mastery
Discussions on complex error scenarios Solving advanced propagation problems Demonstrations of verification methods Explaining error validation |
Calculators, verification worksheets
Calculators, multiplication error guides |
KLB Mathematics Book Three Pg 35-36
|
|
| 10 | 3 |
Approximations and Errors
|
Propagation of errors in multiplication
Propagation of errors in division |
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in multiplication Solve complex multiplication error problems Compare different error propagation methods |
Q/A on advanced multiplication errors
Discussions on complex error scenarios Solving challenging multiplication problems Demonstrations of method comparison Explaining optimal error calculation |
Calculators, method comparison charts
Calculators, division error worksheets |
KLB Mathematics Book Three Pg 36-37
|
|
| 10 | 4 |
Approximations and Errors
|
Propagation of errors in division
Word problems |
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in division Solve complex division error problems Verify division error calculations |
Q/A on division error mastery
Discussions on complex division scenarios Solving advanced division error problems Demonstrations of error verification Explaining accuracy in division errors |
Calculators, verification guides
Calculators, word problem sets, comprehensive review sheets |
KLB Mathematics Book Three Pg 37-38
|
|
| 10 | 5 |
Trigonometry (II)
|
The unit circle
|
By the end of the
lesson, the learner
should be able to:
Draw the unit circle Identify coordinates on the unit circle Understand the unit circle concept |
Q/A on basic circle properties
Discussions on unit circle construction Solving problems using unit circle Demonstrations of circle drawing Explaining unit circle applications |
Calculators, protractors, rulers, pair of compasses
|
KLB Mathematics Book Three Pg 41-42
|
|
| 10 | 6 |
Trigonometry (II)
|
Trigonometric ratios of angles greater than 90°
|
By the end of the
lesson, the learner
should be able to:
Find the trigonometric values of angles Calculate trigonometric ratios for obtuse angles Apply reference angle concepts |
Q/A on basic trigonometric ratios
Discussions on angle extensions Solving obtuse angle problems Demonstrations of reference angles Explaining quadrant relationships |
Calculators, protractors, rulers, pair of compasses
Calculators, quadrant charts |
KLB Mathematics Book Three Pg 44-45
|
|
| 10 | 7 |
Trigonometry (II)
|
Trigonometric ratios of negative angles
Trigonometric ratios of angles greater than 360° |
By the end of the
lesson, the learner
should be able to:
Find the trigonometric values of negative angles Apply negative angle identities Solve problems involving negative angles |
Q/A on negative angle concepts
Discussions on angle direction Solving negative angle problems Demonstrations of identity applications Explaining clockwise rotations |
Geoboards, graph books, calculators
|
KLB Mathematics Book Three Pg 48-49
|
|
| 11 | 1 |
Trigonometry (II)
|
Use of mathematical tables
|
By the end of the
lesson, the learner
should be able to:
Use mathematical tables to find sine and cosine Read trigonometric tables accurately Apply table interpolation methods |
Q/A on table reading skills
Discussions on table structure Solving problems using tables Demonstrations of interpolation Explaining table accuracy |
Mathematical tables, calculators
|
KLB Mathematics Book Three Pg 51-55
|
|
| 11 | 2 |
Trigonometry (II)
|
Use of calculators
Radian measure |
By the end of the
lesson, the learner
should be able to:
Use calculators to find sine, cosine and tan Apply calculator functions for trigonometry Verify calculator accuracy |
Q/A on calculator trigonometric functions
Discussions on calculator modes Solving problems using calculators Demonstrations of function keys Explaining degree vs radian modes |
Calculators, function guides
Calculators, conversion charts |
KLB Mathematics Book Three Pg 56-58
|
|
| 11 | 3 |
Trigonometry (II)
|
Simple trigonometric graphs
Graphs of cosines |
By the end of the
lesson, the learner
should be able to:
Draw tables for sine of values Plot graphs of sine functions Identify sine graph properties |
Q/A on coordinate graphing
Discussions on periodic functions Solving graphing problems Demonstrations of sine plotting Explaining graph characteristics |
Calculators, graph papers, plotting guides
|
KLB Mathematics Book Three Pg 62-63
|
|
| 11 | 4 |
Trigonometry (II)
|
Graphs of tan
The sine rule |
By the end of the
lesson, the learner
should be able to:
Draw tables for tan of values Plot graphs of tan functions Identify asymptotes and discontinuities |
Q/A on tangent behavior
Discussions on function domains Solving tangent graphing problems Demonstrations of asymptote identification Explaining discontinuous functions |
Calculators, graph papers, plotting guides
Calculators, triangle worksheets |
KLB Mathematics Book Three Pg 64-65
|
|
| 11 | 5 |
Trigonometry (II)
|
Cosine rule
Problem solving |
By the end of the
lesson, the learner
should be able to:
State the cosine rule Apply cosine rule to find solution of triangles Choose appropriate rule for triangle solving |
Q/A on cosine rule concepts
Discussions on rule selection Solving complex triangle problems Demonstrations of cosine rule Explaining when to use each rule |
Calculators, triangle worksheets
Calculators, comprehensive problem sets, real-world examples |
KLB Mathematics Book Three Pg 71-75
|
|
| 11 | 6 |
Surds
|
Rational and irrational numbers
Order of surds and simplification |
By the end of the
lesson, the learner
should be able to:
Classify numbers as rational and irrational numbers Identify rational and irrational numbers Distinguish between rational and irrational forms |
Q/A on number classification concepts
Discussions on rational vs irrational properties Solving classification problems Demonstrations of number identification Explaining decimal representations |
Calculators, number classification charts
Calculators, surd order examples |
KLB Mathematics Book Three Pg 78
|
|
| 11 | 7 |
Surds
|
Simplification of surds practice
Addition of surds |
By the end of the
lesson, the learner
should be able to:
Simplify surds using factorization Express surds in simplest form Apply systematic simplification methods |
Q/A on factorization techniques
Discussions on factor identification Solving extensive simplification problems Demonstrations of step-by-step methods Explaining perfect square extraction |
Calculators, factor trees, simplification worksheets
Calculators, addition rule charts |
KLB Mathematics Book Three Pg 79-80
|
|
| 12 | 1 |
Surds
|
Subtraction of surds
Multiplication of surds |
By the end of the
lesson, the learner
should be able to:
Subtract surds with like terms Apply subtraction rules to surds Simplify surd subtraction expressions |
Q/A on subtraction principles
Discussions on surd subtraction methods Solving subtraction problems Demonstrations of systematic approaches Explaining subtraction verification |
Calculators, subtraction worksheets
Calculators, multiplication rule guides |
KLB Mathematics Book Three Pg 80
|
|
| 12 | 2 |
Surds
|
Division of surds
Rationalizing the denominator |
By the end of the
lesson, the learner
should be able to:
Divide surds of the same order Apply division rules to surds Simplify quotients of surds |
Q/A on division concepts
Discussions on surd division methods Solving division problems systematically Demonstrations of quotient simplification Explaining division techniques |
Calculators, division worksheets
Calculators, rationalization guides |
KLB Mathematics Book Three Pg 81-82
|
|
| 12 | 3 |
Surds
Further Logarithms |
Advanced rationalization techniques
Introduction |
By the end of the
lesson, the learner
should be able to:
Rationalize complex expressions Apply advanced rationalization methods Handle multiple term denominators |
Q/A on complex rationalization
Discussions on advanced techniques Solving challenging rationalization problems Demonstrations of sophisticated methods Explaining complex denominator handling |
Calculators, advanced technique sheets
Calculators, logarithm definition charts |
KLB Mathematics Book Three Pg 85-87
|
|
| 12 | 4 |
Further Logarithms
|
Laws of logarithms
|
By the end of the
lesson, the learner
should be able to:
State the laws of logarithms Apply basic logarithmic laws Use logarithm laws for simple calculations |
Q/A on logarithmic law foundations
Discussions on multiplication and division laws Solving problems using basic laws Demonstrations of law applications Explaining law derivations |
Calculators, logarithm law charts
Calculators, advanced law worksheets |
KLB Mathematics Book Three Pg 90-93
|
|
| 12 | 5 |
Further Logarithms
|
Laws of logarithms
Logarithmic equations and expressions |
By the end of the
lesson, the learner
should be able to:
Use laws of logarithms to solve problems Master all logarithmic laws comprehensively Apply laws to challenging mathematical problems |
Q/A on comprehensive law understanding
Discussions on law selection strategies Solving challenging logarithmic problems Demonstrations of optimal law application Explaining problem-solving approaches |
Calculators, challenging problem sets
Calculators, equation-solving guides |
KLB Mathematics Book Three Pg 90-93
|
|
| 12 | 6 |
Further Logarithms
|
Logarithmic equations and expressions
Further computation using logarithms |
By the end of the
lesson, the learner
should be able to:
Solve the logarithmic equations and expressions Handle complex logarithmic equations Apply advanced solution techniques |
Q/A on advanced equation methods
Discussions on complex equation structures Solving challenging logarithmic equations Demonstrations of sophisticated techniques Explaining advanced solution strategies |
Calculators, advanced equation worksheets
Calculators, computation worksheets |
KLB Mathematics Book Three Pg 93-95
|
|
| 12 | 7 |
Further Logarithms
|
Further computation using logarithms
Problem solving Problem solving |
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Apply logarithms to intermediate calculations Handle multi-step logarithmic computations |
Q/A on intermediate computational skills
Discussions on multi-step processes Solving intermediate computation problems Demonstrations of systematic approaches Explaining step-by-step methods |
Calculators, intermediate problem sets
Calculators, advanced computation guides Calculators, comprehensive problem sets Calculators, real-world application examples |
KLB Mathematics Book Three Pg 95-96
|
|
| 13 |
ENDTERM EXAMINATION, MARKING AND CLOSING |
|||||||
Your Name Comes Here