Home






SCHEME OF WORK
Chemistry
Form 3 2026
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1 1
GAS LAWS
Boyle's Law - Introduction and Experimental Investigation
By the end of the lesson, the learner should be able to:
State Boyle's law
Explain Boyle's law using kinetic theory of matter
Investigate the relationship between pressure and volume of a fixed mass of gas
Plot graphs to illustrate Boyle's law
Teacher demonstration: Use bicycle pump to show volume-pressure relationship. Students observe force needed to compress gas. Q/A: Review kinetic theory. Class experiment: Investigate pressure-volume relationship using syringes. Record observations in table format. Discuss observations using kinetic theory.
Bicycle pump, Syringes, Gas jars, Chart showing volume-pressure relationship
KLB Secondary Chemistry Form 3, Pages 1-3
1 2
GAS LAWS
Boyle's Law - Mathematical Expression and Graphical Representation
Boyle's Law - Numerical Problems and Applications
Charles's Law - Introduction and Temperature Scales
By the end of the lesson, the learner should be able to:
Express Boyle's law mathematically
Apply the equation PV = constant
Plot and interpret pressure vs volume graphs
Plot pressure vs 1/volume graphs
Q/A: Recall previous lesson observations. Teacher exposition: Derive P₁V₁ = P₂V₂ equation from experimental data. Students plot graphs of pressure vs volume and pressure vs 1/volume. Analyze graph shapes and interpret mathematical relationship.
Graph papers, Scientific calculators, Chart showing mathematical expressions
Scientific calculators, Worked example charts, Unit conversion tables
Round-bottomed flask, Narrow glass tube, Colored water, Rubber bung, Hot and cold water baths
KLB Secondary Chemistry Form 3, Pages 3-4
1 3
GAS LAWS
Charles's Law - Experimental Investigation and Mathematical Expression
Charles's Law - Numerical Problems and Applications
Combined Gas Law and Standard Conditions
By the end of the lesson, the learner should be able to:
Investigate relationship between volume and temperature
Express Charles's law mathematically
Plot volume vs temperature graphs
Extrapolate graphs to find absolute zero
Class experiment: Volume-temperature relationship using flask and capillary tube. Record data at different temperatures. Plot graphs: volume vs temperature (°C) and volume vs absolute temperature (K). Extrapolate graph to find absolute zero. Derive V₁/T₁ = V₂/T₂ equation.
Glass apparatus, Thermometers, Graph papers, Water baths at different temperatures
Scientific calculators, Temperature conversion charts, Application examples
Scientific calculators, Combined law derivation charts, Standard conditions reference table
KLB Secondary Chemistry Form 3, Pages 8-10
1 4-5
GAS LAWS
Introduction to Diffusion - Experimental Investigation
Rates of Diffusion - Comparative Study
Graham's Law of Diffusion - Theory and Mathematical Expression
By the end of the lesson, the learner should be able to:
Define diffusion process
Investigate diffusion in liquids and gases
Compare rates of diffusion in different media
Explain diffusion using kinetic theory
State Graham's law of diffusion
Express Graham's law mathematically
Relate diffusion rate to molecular mass and density
Explain the inverse relationship between rate and √molecular mass
Class experiments: (a) KMnO₄ crystal in water - observe spreading over time. (b) Bromine vapor in gas jars - observe color distribution. (c) Ammonia gas in combustion tube with litmus paper. Record observations over time. Discuss particle movement and kinetic energy.
Teacher exposition: Graham's law statement and mathematical derivation. Discussion: Rate ∝ 1/√density and Rate ∝ 1/√molecular mass. Derive comparative expressions for two gases. Explain relationship between density and molecular mass. Practice: Identify faster diffusing gas from molecular masses.
KMnO₄ crystals, Bromine liquid, Gas jars, Combustion tube, Litmus papers, Stopwatch
Glass tube (25cm), Cotton wool, Concentrated NH₃ and HCl, Stopwatch, Ruler, Safety equipment
Graham's law charts, Molecular mass tables, Mathematical derivation displays
KLB Secondary Chemistry Form 3, Pages 14-16
KLB Secondary Chemistry Form 3, Pages 18-20
2 1
GAS LAWS
NITROGEN AND ITS COMPOUNDS
Graham's Law - Numerical Applications and Problem Solving
Introduction to Nitrogen - Properties and Occurrence
By the end of the lesson, the learner should be able to:
Solve numerical problems using Graham's law
Calculate relative rates of diffusion
Determine molecular masses from diffusion data
Compare diffusion times for equal volumes of gases
Worked examples: Calculate relative diffusion rates using √(M₂/M₁). Problems involving time comparisons for equal volumes. Calculate unknown molecular masses from rate data. Supervised practice: Various Graham's law calculations. Real-life applications: gas separation, gas masks.
Scientific calculators, Worked example charts, Molecular mass reference tables
Periodic table charts, Atmospheric composition diagrams, Molecular models showing N≡N triple bond
KLB Secondary Chemistry Form 3, Pages 20-22
2 2
NITROGEN AND ITS COMPOUNDS
Isolation of Nitrogen from Air - Industrial and Laboratory Methods
By the end of the lesson, the learner should be able to:
Describe isolation of nitrogen from air
Explain fractional distillation of liquid air
Set up apparatus for laboratory isolation
Identify impurities removed during isolation
Experiment: Laboratory isolation using aspirator. Pass air through KOH solution to remove CO₂, then over heated copper to remove oxygen. Teacher demonstration: Fractional distillation principles. Flow chart study: Industrial nitrogen production steps.
Aspirator, KOH solution, Copper turnings, Heating apparatus, Fractional distillation flow chart
KLB Secondary Chemistry Form 3, Pages 119-121
2 3
NITROGEN AND ITS COMPOUNDS
Laboratory Preparation of Nitrogen Gas
Properties and Uses of Nitrogen Gas
By the end of the lesson, the learner should be able to:
Prepare nitrogen gas from ammonium compounds
Use sodium nitrite and ammonium chloride method
Test physical and chemical properties of nitrogen
Write equations for nitrogen preparation
Experiment: Mix sodium nitrite (7g) and ammonium chloride ( 5g) with water. Heat gently and collect gas over water. Tests: Color, smell, burning splint, litmus paper, lime water, burning Mg and S. Safety precautions during heating.
Sodium nitrite, Ammonium chloride, Round-bottomed flask, Gas collection apparatus, Test reagents, Deflagrating spoon
Property summary charts, Uses of nitrogen displays, Industrial application diagrams
KLB Secondary Chemistry Form 3, Pages 121-123
2 4-5
NITROGEN AND ITS COMPOUNDS
Nitrogen(I) Oxide - Preparation and Properties
Nitrogen(II) Oxide - Preparation and Properties
Nitrogen(IV) Oxide - Preparation and Properties
By the end of the lesson, the learner should be able to:
Prepare nitrogen(I) oxide from ammonium nitrate
Test physical and chemical properties
Explain decomposition and oxidizing properties
Describe uses of nitrogen(I) oxide
Prepare nitrogen(II) oxide from copper and dilute nitric acid
Observe colorless gas and brown fumes formation
Test reactions with air and iron(II) sulfate
Explain oxidation in air to NO₂
Experiment: Heat ammonium nitrate carefully in test tube. Collect gas over warm water. Tests: Color, smell, glowing splint test, reaction with heated copper and sulfur. Safety: Stop heating while some solid remains to avoid explosion.
Experiment: Add dilute HNO₃ to copper turnings. Observe brown fumes formation then disappearance. Tests: Effect on litmus, burning splint, FeSO₄ complex formation. Discussion: NO oxidation to NO₂ in air.
Ammonium nitrate, Test tubes, Gas collection apparatus, Copper turnings, Sulfur, Glowing splints
Copper turnings, Dilute nitric acid, Gas collection apparatus, Iron(II) sulfate solution, Test reagents
Copper turnings, Concentrated nitric acid, Lead(II) nitrate, Gas collection apparatus, U-tube with ice, Testing materials
KLB Secondary Chemistry Form 3, Pages 123-125
KLB Secondary Chemistry Form 3, Pages 125-127
3 1
NITROGEN AND ITS COMPOUNDS
Comparison of Nitrogen Oxides and Environmental Effects
By the end of the lesson, the learner should be able to:
Compare preparation methods of nitrogen oxides
Distinguish between different nitrogen oxides
Explain formation in vehicle engines
Describe environmental pollution effects
Comparative study: Properties table of N₂O, NO, NO₂. Discussion: Formation in internal combustion engines. Environmental effects: Acid rain formation, smog, health problems. Worked examples: Distinguishing tests for each oxide.
Comparison charts, Environmental impact diagrams, Vehicle emission illustrations
KLB Secondary Chemistry Form 3, Pages 123-131
3 2
NITROGEN AND ITS COMPOUNDS
Laboratory Preparation of Ammonia
By the end of the lesson, the learner should be able to:
Prepare ammonia from ammonium salts and alkalis
Set up apparatus with proper gas collection
Test characteristic properties of ammonia
Explain displacement reaction principle
Experiment: Heat mixture of calcium hydroxide and ammonium chloride. Collect gas by upward delivery using calcium oxide as drying agent. Tests: Color, smell, combustion, HCl fumes test, litmus paper. Safety: Slanted flask position.
Calcium hydroxide, Ammonium chloride, Round-bottomed flask, Calcium oxide, HCl solution, Glass rod, Litmus paper
KLB Secondary Chemistry Form 3, Pages 131-134
3 3
NITROGEN AND ITS COMPOUNDS
Preparation of Aqueous Ammonia and Solubility
Reactions of Aqueous Ammonia with Metal Ions
By the end of the lesson, the learner should be able to:
Prepare aqueous ammonia solution
Demonstrate high solubility using fountain experiment
Explain alkaline properties of aqueous ammonia
Write equations for ammonia in water
Experiment: Dissolve ammonia in water using inverted funnel method. Fountain experiment: Show partial vacuum formation due to high solubility. Tests: Effect on universal indicator, pH measurement. Theory: NH₃ + H₂O equilibrium.
Ammonia generation apparatus, Funnel, Universal indicator, Fountain apparatus, pH meter/paper
Various metal salt solutions, Aqueous ammonia, Test tubes, Droppers, Observation recording tables
KLB Secondary Chemistry Form 3, Pages 134-136
3 4-5
NITROGEN AND ITS COMPOUNDS
Chemical Properties of Ammonia - Reactions with Acids and Combustion
Industrial Manufacture of Ammonia - The Haber Process
Uses of Ammonia and Introduction to Nitrogenous Fertilizers
By the end of the lesson, the learner should be able to:
Test neutralization reactions with acids
Investigate combustion of ammonia
Examine catalytic oxidation with platinum
Study reducing properties with metal oxides
Describe raw materials and their sources
Explain optimum conditions for ammonia synthesis
Draw flow diagram of Haber process
Explain economic considerations and catalyst use
Experiments: (a) Neutralize H₂SO₄, HCl, HNO₃ with aqueous ammonia using indicators. (b) Attempt combustion in air and oxygen. (c) Catalytic oxidation with heated platinum wire. (d) Reduction of CuO by ammonia. Record all observations.
Teacher exposition: N₂ from air, H₂ from natural gas/cracking. Process conditions: 500°C, 200 atm, iron catalyst. Flow diagram study: Purification, compression, catalytic chamber, separation, recycling. Economic factors: Compromise between yield and rate.
Various dilute acids, Methyl orange, Oxygen supply, Platinum wire, Copper(II) oxide, Combustion apparatus, U-tube for collection
Haber process flow charts, Industrial diagrams, Catalyst samples, Economic analysis sheets
Fertilizer samples, Percentage calculation worksheets, Use application charts, Calculator
KLB Secondary Chemistry Form 3, Pages 138-140
KLB Secondary Chemistry Form 3, Pages 140-141
4 1
NITROGEN AND ITS COMPOUNDS
Nitrogenous Fertilizers - Types and Calculations
By the end of the lesson, the learner should be able to:
Calculate percentage nitrogen in various fertilizers
Compare fertilizer effectiveness
Prepare simple nitrogenous fertilizers
Discuss environmental considerations
Worked examples: Calculate % N in (NH₄)₂SO₄, NH₄NO₃, (NH₄)₃PO₄, CO(NH₂)₂, CAN. Comparison: Urea has highest nitrogen content. Practical: Prepare ammonium sulfate from ammonia and sulfuric acid. Environmental impact discussion.
Various fertilizer formulas, Scientific calculators, Laboratory preparation materials, Environmental impact data
KLB Secondary Chemistry Form 3, Pages 141-144
4 2
NITROGEN AND ITS COMPOUNDS
Laboratory Preparation of Nitric(V) Acid
Industrial Manufacture of Nitric(V) Acid
By the end of the lesson, the learner should be able to:
Prepare nitric acid from nitrate and concentrated sulfuric acid
Set up all-glass apparatus safely
Explain brown fumes and yellow color
Purify nitric acid by air bubbling
Experiment: Heat mixture of KNO₃ and concentrated H₂SO₄ in all-glass apparatus. Collect yellow nitric acid. Explain brown fumes (NO₂) and yellow color. Bubble air through to remove dissolved NO₂. Safety: Gentle heating, fume cupboard.
Potassium nitrate, Concentrated sulfuric acid, All-glass apparatus, Condenser, Retort stand, Safety equipment
Industrial process flow charts, Catalyst samples, Process condition charts, Efficiency calculation sheets
KLB Secondary Chemistry Form 3, Pages 144-145
4 3
NITROGEN AND ITS COMPOUNDS
Reactions of Dilute Nitric(V) Acid with Metals
By the end of the lesson, the learner should be able to:
Test reactions with various metals
Explain absence of hydrogen gas production
Observe formation of nitrogen oxides
Write equations for metal-acid reactions
Experiment: Add dilute HNO₃ to Mg, Zn, Cu. Test gases produced with burning splint. Observe that no H₂ is produced (except with Mg in very dilute acid). Explain oxidation of any H₂ formed to water. Record observations and write equations.
Various metals (Mg, Zn, Cu), Dilute nitric acid, Test tubes, Gas testing apparatus, Burning splints
KLB Secondary Chemistry Form 3, Pages 147-150
4 4-5
NITROGEN AND ITS COMPOUNDS
Reactions of Dilute Nitric(V) Acid with Carbonates and Hydroxides
Reactions of Concentrated Nitric(V) Acid - Oxidizing Properties
Uses of Nitric(V) Acid and Introduction to Nitrates
By the end of the lesson, the learner should be able to:
Test reactions with carbonates and hydrogen carbonates
Test neutralization with metal hydroxides and oxides
Identify products formed
Write balanced chemical equations
List major industrial uses of nitric acid
Explain importance in fertilizer manufacture
Describe use in explosives and dyes
Introduce nitrate salts and their preparation
Experiments: (a) Add dilute HNO₃ to Na₂CO₃, CaCO₃, ZnCO₃, CuCO₃, NaHCO₃. Test gas evolved with lime water. (b) Neutralize NaOH, CaO, CuO, PbO with dilute HNO₃. Record color changes and write equations.
Discussion: Uses - fertilizer production (NH₄NO₃), explosives (TNT), dyes, drugs, metal purification, etching. Introduction to nitrates as salts of nitric acid. Methods of preparation: acid + base, acid + carbonate, acid + metal. Examples of common nitrates.
Various carbonates and hydroxides, Dilute nitric acid, Lime water, Universal indicator, Test tubes
Concentrated nitric acid, Iron(II) sulfate, Sulfur powder, Copper turnings, Test tubes, Fume cupboard access
Industrial use charts, Nitrate salt samples, Preparation method diagrams, Safety data sheets
KLB Secondary Chemistry Form 3, Pages 147-150
KLB Secondary Chemistry Form 3, Pages 151
5 1
NITROGEN AND ITS COMPOUNDS
Action of Heat on Nitrates - Decomposition Patterns
By the end of the lesson, the learner should be able to:
Test thermal decomposition of different nitrates
Classify decomposition patterns based on metal reactivity
Identify products formed on heating
Write equations for decomposition reactions
Experiment: Heat KNO₃, NaNO₃, Zn(NO₃)₂, Cu(NO₃)₂, NH₄NO₃ separately. Test gases with glowing splint. Observe residues. Classification: Group I nitrates → nitrite + O₂; Group II → oxide + NO₂ + O₂; NH₄NO₃ → N₂O + H₂O.
Various nitrate salts, Test tubes, Bunsen burner, Gas collection apparatus, Glowing splints, Observation recording sheets
KLB Secondary Chemistry Form 3, Pages 151-153
5 2
NITROGEN AND ITS COMPOUNDS
Test for Nitrates - Brown Ring Test
Environmental Pollution by Nitrogen Compounds
By the end of the lesson, the learner should be able to:
Perform brown ring test for nitrates
Explain mechanism of complex formation
Use alternative copper test method
Apply tests to unknown samples
Experiments: (a) Brown ring test - add FeSO₄ solution to nitrate, then carefully add concentrated H₂SO₄. Observe brown ring formation. (b) Alternative test - warm nitrate with H₂SO₄ and copper turnings. Observe brown fumes. Test unknown samples.
Sodium nitrate, Fresh FeSO₄ solution, Concentrated H₂SO₄, Copper turnings, Test tubes, Unknown nitrate samples
Environmental pollution charts, Acid rain effect photos, Vehicle emission diagrams, Control measure illustrations
KLB Secondary Chemistry Form 3, Pages 153-154
5 3
NITROGEN AND ITS COMPOUNDS
Pollution Control and Environmental Solutions
By the end of the lesson, the learner should be able to:
Analyze methods to reduce nitrogen pollution
Design pollution control strategies
Evaluate effectiveness of current measures
Propose new solutions for environmental protection
Discussion and analysis: Catalytic converters in vehicles, sewage treatment, lime addition to soils/lakes, proper fertilizer application, industrial gas recycling. Group activity: Design pollution control strategy for local area. Evaluation of current measures.
Case studies, Pollution control technology information, Group activity worksheets, Local environmental data
KLB Secondary Chemistry Form 3, Pages 154-157
5 4-5
NITROGEN AND ITS COMPOUNDS
Comprehensive Problem Solving - Nitrogen Chemistry
Laboratory Practical Assessment - Nitrogen Compounds
Industrial Applications and Economic Importance
By the end of the lesson, the learner should be able to:
Solve complex problems involving nitrogen compounds
Apply knowledge to industrial processes
Calculate yields and percentages in reactions
Analyze experimental data and results
Evaluate economic importance of nitrogen industry
Analyze industrial production costs and benefits
Compare different manufacturing processes
Assess impact on agricultural productivity
Problem-solving session: Mixed calculations involving nitrogen preparation, ammonia synthesis, nitric acid concentration, fertilizer analysis. Industrial application problems. Data analysis from experiments. Integration of all nitrogen chemistry concepts.
Case study analysis: Haber process economics, fertilizer industry impact, nitric acid production costs. Agricultural benefits: Crop yield improvements, food security. Economic calculations: Production costs, profit margins, environmental costs. Global nitrogen cycle importance.
Scientific calculators, Comprehensive problem sets, Industrial data sheets, Experimental result tables
Unknown nitrogen compounds, All laboratory chemicals and apparatus used in chapter, Safety equipment, Assessment rubrics
Economic data sheets, Industry case studies, Agricultural statistics, Cost-benefit analysis templates
KLB Secondary Chemistry Form 3, Pages 119-157
6 1
NITROGEN AND ITS COMPOUNDS
SULPHUR AND ITS COMPOUNDS
SULPHUR AND ITS COMPOUNDS
Chapter Review and Integration
Extraction of Sulphur
Allotropes of Sulphur
By the end of the lesson, the learner should be able to:
Synthesize all nitrogen chemistry concepts
Compare preparation methods for nitrogen compounds
Relate structure to properties and reactivity
Connect laboratory and industrial processes
Comprehensive review: Concept mapping of all nitrogen compounds and their relationships. Comparison tables: Preparation methods, properties, uses. Flow chart: Nitrogen cycle in industry and environment. Integration exercises connecting all topics.
Concept mapping materials, Comparison charts, Flow diagram templates, Integration worksheets
Charts showing periodic table, Diagram of Frasch process, Samples of sulphur compounds (pyrites, gypsum)
Powdered sulphur, Carbon(IV) sulphide, Evaporating dish, Glass rod, Hand lens, Boiling tubes, Filter paper, Beakers
KLB Secondary Chemistry Form 3, Pages 119-157
6 2
SULPHUR AND ITS COMPOUNDS
Physical Properties of Sulphur - Solubility
Physical Properties of Sulphur - Effect of Heat
By the end of the lesson, the learner should be able to:
Investigate the solubility of sulphur in different solvents. Explain the molecular structure of sulphur. Compare solubility in polar and non-polar solvents. State the physical properties of sulphur.
Practical work: Experiment 2(a) - Testing solubility of sulphur in water, benzene, methylbenzene, and carbon(IV) sulphide. Observation and recording in Table Discussion: Explain why sulphur dissolves in organic solvents but not water. Drawing: Puckered ring structure of S8 molecule.
Powdered sulphur, Water, Benzene, Methylbenzene, Carbon(IV) sulphide, Test tubes, Charts showing molecular structure
Powdered sulphur, Test tubes, Bunsen burner, Cold surface for condensation, Thermometer, Safety equipment
KLB Secondary Chemistry Form 4, Pages 163-164
6 3
SULPHUR AND ITS COMPOUNDS
Chemical Properties of Sulphur - Reactions with Elements
Chemical Properties of Sulphur - Reactions with Acids
Uses of Sulphur and Introduction to Oxides
By the end of the lesson, the learner should be able to:
Investigate the reaction of sulphur with oxygen. Investigate the reaction of sulphur with metals. Write balanced equations for reactions of sulphur. Explain the formation of sulphides.
Practical work: Experiment 3(a) - Burning sulphur in oxygen using deflagrating spoon. Testing with moist litmus paper. Practical work: Heating mixtures of sulphur with iron powder and copper powder. Observation: Exothermic reactions and color changes. Writing equations: Fe + S → FeS, 2Cu + S → Cu2S.
Sulphur, Iron powder, Copper powder, Oxygen gas jar, Deflagrating spoon, Moist litmus papers, Test tubes, Bunsen burner
Sulphur powder, Concentrated HNO3, Concentrated H2SO4, Concentrated HCl, Barium chloride solution, Test tubes, Fume cupboard access
Charts showing uses of sulphur, Samples of vulcanized rubber, Fungicides, Industrial photographs, Textbook diagrams
KLB Secondary Chemistry Form 4, Pages 165-167
6 4-5
SULPHUR AND ITS COMPOUNDS
Preparation of Sulphur(IV) Oxide
Physical and Chemical Properties of Sulphur(IV) Oxide
Bleaching Action of Sulphur(IV) Oxide
Reducing Action of Sulphur(IV) Oxide
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of sulphur(IV) oxide. Set up apparatus for gas preparation and collection. Write balanced equations for the preparation reactions. Explain the drying and collection methods used.
Investigate the bleaching properties of SO Compare SO2 bleaching with chlorine bleaching. Explain the mechanism of SO2 bleaching. Relate bleaching to paper manufacturing.
Practical work: Experiment 4 - Preparation of SO2 using sodium sulphite and dilute HCl. Apparatus setup: Round-bottomed flask, delivery tube, gas jars. Collection: Downward delivery method. Testing: Using acidified potassium chromate(VI) paper. Alternative method: Copper + concentrated H2SO
Practical work: Experiment 6 - Placing colored flower petals in SO2 gas. Observation: Temporary bleaching effect. Discussion: SO2 + H2O → H2SO3, reduction of organic dyes. Comparison: Permanent vs temporary bleaching. Application: Paper industry bleaching processes.
Sodium sulphite, Dilute HCl, Round-bottomed flask, Delivery tubes, Gas jars, Concentrated H2SO4 for drying, Acidified potassium chromate(VI) paper
SO2 gas from previous preparation, Litmus papers, Universal indicator, 0.1M NaOH solution, Water, Test tubes, Safety equipment
Colored flower petals (red/blue), SO2 gas jars, Hand lens for observation, Charts comparing bleaching agents
SO2 gas, Acidified K2Cr2O7, Acidified KMnO4, Bromine water, Iron(III) chloride solution, Concentrated HNO3, Test tubes
KLB Secondary Chemistry Form 4, Pages 170-171
KLB Secondary Chemistry Form 4, Pages 173
7-8

Midterm exams and breaks

9 1
SULPHUR AND ITS COMPOUNDS
Oxidising Action of Sulphur(IV) Oxide
By the end of the lesson, the learner should be able to:
Investigate SO2 as an oxidizing agent. Demonstrate reaction with stronger reducing agents. Explain the dual nature of SO Write equations for oxidation reactions by SO
Practical work: Experiment 8 - Lowering burning magnesium into SO2 gas. Observation: Continued burning, white fumes of MgO, yellow specks of sulphur. Reaction with hydrogen sulphide gas (demonstration). Discussion: SO2 decomposition providing oxygen. Writing equations: 2Mg + SO2 → 2MgO + S.
SO2 gas jars, Magnesium ribbon, Deflagrating spoon, Hydrogen sulphide gas, Water droppers, Safety equipment
KLB Secondary Chemistry Form 4, Pages 176-177
9 2
SULPHUR AND ITS COMPOUNDS
Test for Sulphate and Sulphite Ions & Uses of SO2
Large-scale Manufacture of Sulphuric(VI) Acid - Contact Process
By the end of the lesson, the learner should be able to:
Carry out confirmatory tests for sulphate and sulphite ions. Distinguish between sulphate and sulphite using chemical tests. List the uses of sulphur(IV) oxide. Explain the applications in industry.
Practical work: Experiment 9 - Testing sodium sulphate and sodium sulphite with barium chloride. Adding dilute HCl to precipitates. Recording observations in Table 8. Discussion: BaSO4 insoluble in acid, BaSO3 dissolves. Uses: Raw material for H2SO4, bleaching wood pulp, fumigant, preservative.
Sodium sulphate solution, Sodium sulphite solution, Barium chloride solution, Dilute HCl, Test tubes, Charts showing industrial uses
Flow chart diagrams, Charts showing industrial plant, Samples of catalyst (V2O5), Photographs of Thika chemical plant, Calculator for percentage calculations
KLB Secondary Chemistry Form 4, Pages 178-179
9 3
SULPHUR AND ITS COMPOUNDS
Properties of Concentrated Sulphuric(VI) Acid - Dehydrating Properties
By the end of the lesson, the learner should be able to:
Investigate the dehydrating properties of concentrated H2SO Demonstrate removal of water from hydrated salts. Show dehydration of organic compounds. Explain the hygroscopic nature of the acid.
Practical work: Experiment 10 - Adding concentrated H2SO4 to copper(II) sulphate crystals, sucrose crystals, ethanol. Observations: Blue to white crystals, charring of sugar, formation of ethene. Safety: Proper dilution technique - acid to water. Testing evolved gases. Discussion: Chemical vs physical dehydration.
Concentrated H2SO4, Copper(II) sulphate crystals, Sucrose, Ethanol, KMnO4 solution, Test tubes, Beakers, Safety equipment, Fume cupboard
KLB Secondary Chemistry Form 4, Pages 181-183
9 4-5
SULPHUR AND ITS COMPOUNDS
Properties of Concentrated Sulphuric(VI) Acid - Oxidizing Properties
Properties of Concentrated Sulphuric(VI) Acid - Displacement Reactions
Reactions of Dilute Sulphuric(VI) Acid - With Metals
By the end of the lesson, the learner should be able to:
Investigate the oxidizing properties of concentrated H2SO Test reactions with metals and non-metals. Identify the products of oxidation reactions. Write balanced equations for redox reactions.
Investigate reactions of dilute H2SO4 with metals. Compare reactivity of different metals. Test for hydrogen gas evolution. Relate reactions to reactivity series.
Practical work: Experiment 10 (continued) - Reactions with copper foil, zinc granules, charcoal. Testing evolved gases with acidified K2Cr2O7 paper, lime water. Observations: SO2 evolution, color changes. Discussion: H2SO4 → SO2 + H2O + [O]. Writing half-equations and overall equations.
Practical work: Experiment 11 - Reactions with magnesium, zinc, copper. Testing evolved gas with burning splint. Recording observations in Table 10. Discussion: More reactive metals above hydrogen displace it. Vigour of reaction decreases down reactivity series. Writing ionic equations.
Copper foil, Zinc granules, Charcoal powder, Concentrated H2SO4, Acidified K2Cr2O7 paper, Lime water, Test tubes, Bunsen burner
Potassium nitrate crystals, Sodium chloride crystals, Concentrated H2SO4, Moist blue litmus paper, Concentrated ammonia, Test tubes, Bunsen burner
Magnesium ribbon, Zinc granules, Copper turnings, Dilute H2SO4, Test tubes, Burning splints, Reactivity series chart
KLB Secondary Chemistry Form 4, Pages 183-184
KLB Secondary Chemistry Form 4, Pages 184-185
10 1
SULPHUR AND ITS COMPOUNDS
Reactions of Dilute Sulphuric(VI) Acid - With Carbonates
By the end of the lesson, the learner should be able to:
Investigate reactions of dilute H2SO4 with carbonates. Test for carbon dioxide evolution. Explain why some reactions stop prematurely. Compare reactions of different metal carbonates.
Practical work: Experiment 12 - Reactions with sodium carbonate, zinc carbonate, calcium carbonate, copper(II) carbonate. Testing evolved gas with lime water. Recording observations in Table 1 Discussion: Formation of insoluble calcium sulphate coating. Effervescence and CO2 identification.
Sodium carbonate, Zinc carbonate, Calcium carbonate, Copper(II) carbonate, Dilute H2SO4, Lime water, Test tubes
KLB Secondary Chemistry Form 4, Pages 185-186
10 2
SULPHUR AND ITS COMPOUNDS
Reactions of Dilute Sulphuric(VI) Acid - With Oxides and Hydroxides
Hydrogen Sulphide - Preparation and Physical Properties
By the end of the lesson, the learner should be able to:
Investigate reactions of dilute H2SO4 with metal oxides and hydroxides. Identify neutralization reactions. Explain formation of insoluble sulphates. Write equations for acid-base reactions.
Practical work: Experiment 13 - Reactions with magnesium oxide, zinc oxide, copper(II) oxide, lead(II) oxide, sodium hydroxide. Recording observations in Table 1 Discussion: Salt and water formation, immediate stopping with lead(II) oxide due to insoluble PbSO Acid-base neutralization concept.
Metal oxides (MgO, ZnO, CuO, PbO), NaOH solution, 2M H2SO4, Test tubes, Bunsen burner for warming
Iron(II) sulphide, Dilute HCl, Apparatus for gas generation, Anhydrous CaCl2, Gas jars, Safety equipment, Fume cupboard
KLB Secondary Chemistry Form 4, Pages 186-187
10 3
SULPHUR AND ITS COMPOUNDS
Chemical Properties of Hydrogen Sulphide
By the end of the lesson, the learner should be able to:
Investigate H2S as a reducing agent. Test reactions with oxidizing agents. Demonstrate precipitation of metal sulphides. Write ionic equations for redox reactions.
Practical demonstrations: H2S with bromine water, iron(III) chloride, acidified KMnO4, K2Cr2O7. Precipitation tests: H2S with copper(II) sulphate, lead(II) nitrate, zinc sulphate. Color changes: Brown to colorless, yellow to green, purple to colorless. Formation of black, yellow, and white precipitates.
H2S gas, Bromine water, Iron(III) chloride, KMnO4, K2Cr2O7, Metal salt solutions, Test tubes, Droppers
KLB Secondary Chemistry Form 4, Pages 188-190
10 4-5
SULPHUR AND ITS COMPOUNDS
CHLORINE AND ITS COMPOUNDS
CHLORINE AND ITS COMPOUNDS
Pollution Effects and Summary
Introduction and Preparation of Chlorine
Physical Properties of Chlorine
Chemical Properties of Chlorine - Reaction with Water
Chemical Properties of Chlorine - Reaction with Metals
Chemical Properties of Chlorine - Reaction with Non-metals
By the end of the lesson, the learner should be able to:
Explain environmental pollution by sulphur compounds. Describe formation and effects of acid rain. Suggest methods to reduce sulphur pollution. Summarize key concepts of sulphur chemistry.
Investigate the reaction of chlorine with water. Explain the formation of chlorine water. Test the acidic nature of chlorine water. Demonstrate the bleaching action of chlorine.
Discussion: Sources of SO2 pollution - burning fossil fuels, metal extraction, H2SO4 manufacture. Formation of acid rain: SO2 + H2O → H2SO3 → H2SO Effects: Plant damage, aquatic life destruction, building corrosion, soil acidification. Control measures: Scrubbing with Ca(OH)2, catalytic converters. Revision: Key reactions, properties, uses.
Practical work: Experiment 6.3 - Bubbling chlorine through water. Testing with litmus papers (dry vs moist). Testing with colored flower petals. Formation of green-yellow chlorine water. Writing equations: Cl2 + H2O → HCl + HOCl. Discussion: Formation of hypochlorous acid and hydrochloric acid.
Charts showing pollution effects, Photographs of acid rain damage, Environmental data, Summary charts of reactions, Industrial pollution control diagrams
Manganese(IV) oxide, Concentrated HCl, Gas collection apparatus, Water, Concentrated H2SO4, Blue litmus paper, Gas jars
Preserved chlorine gas, Water trough, Gas jars, Observation tables, Safety equipment
Chlorine gas, Distilled water, Blue and red litmus papers, Colored flower petals, Gas jars, Boiling tubes
Magnesium ribbon, Iron wire, Chlorine gas, Deflagrating spoon, Combustion tube, Anhydrous CaCl2, Gas jars
Red phosphorus, Hydrogen gas, Chlorine gas, Deflagrating spoon, Gas jars, Bunsen burner, Safety equipment
KLB Secondary Chemistry Form 4, Pages 190-194
KLB Secondary Chemistry Form 4, Pages 197-199
11 1
CHLORINE AND ITS COMPOUNDS
Oxidising Properties of Chlorine
Reaction of Chlorine with Alkali Solutions
Oxidising Properties - Displacement Reactions
By the end of the lesson, the learner should be able to:
Investigate chlorine as an oxidizing agent. Test reactions with reducing agents. Write ionic equations for redox reactions. Identify color changes in oxidation reactions.
Practical work: Experiment 6.6 - Bubbling chlorine through sodium sulphite solution, testing with barium nitrate and lead nitrate. Reactions with hydrogen sulphide and ammonia. Recording observations in Table 6. Color changes and precipitate formation. Writing ionic equations: SO3²⁻ + Cl2 + H2O → SO4²⁻ + 2Cl⁻ + 2H⁺.
Sodium sulphite solution, Barium nitrate, Lead nitrate, Hydrogen sulphide gas, Aqueous ammonia, Chlorine gas, Test tubes
Sodium hydroxide solutions (dilute cold, concentrated hot), Chlorine gas, Beakers, Bunsen burner, Thermometer
Potassium bromide solution, Potassium iodide solution, Chlorine gas, Test tubes, Observation charts
KLB Secondary Chemistry Form 4, Pages 201-202
11 2
CHLORINE AND ITS COMPOUNDS
Test for Chloride Ions
By the end of the lesson, the learner should be able to:
Carry out confirmatory tests for chloride ions. Distinguish between different chloride tests. Practice qualitative analysis techniques. Write equations for chloride ion tests.
Practical work: Experiment 6.9 - Testing sodium chloride with concentrated H2SO4, testing with lead(II) nitrate solution. Recording observations in Table 6. Tests: White fumes with H2SO4 + ammonia test, white precipitate with Pb(NO3)2 that dissolves on warming. Writing equations: NaCl + H2SO4 → NaHSO4 + HCl, Pb²⁺ + 2Cl⁻ → PbCl
Sodium chloride, Concentrated H2SO4, Lead(II) nitrate solution, Aqueous ammonia, Glass rod, Test tubes, Bunsen burner
KLB Secondary Chemistry Form 4, Pages 204-205
11 3
CHLORINE AND ITS COMPOUNDS
Uses of Chlorine and its Compounds
Hydrogen Chloride - Laboratory Preparation
By the end of the lesson, the learner should be able to:
List the industrial uses of chlorine. Explain the use of chlorine in water treatment. Describe manufacture of chlorine compounds. Relate properties to uses of chlorine.
Discussion: Industrial applications - HCl manufacture, bleaching agents for cotton and paper industries, water treatment and sewage plants. Study Figure 6.3(a) - bleaching chemicals. Applications: Chloroform (anaesthetic), solvents (trichloroethane), CFCs, PVC plastics, pesticides (DDT), germicides and fungicides. Q/A: Relating chemical properties to practical applications.
Charts showing industrial uses, Samples of bleaching agents, PVC materials, Photographs of water treatment plants, Industrial application diagrams
Rock salt (NaCl), Concentrated H2SO4, Gas collection apparatus, Ammonia solution, Litmus papers, Water trough, Gas jars
KLB Secondary Chemistry Form 4, Pages 205-207
11 4-5
CHLORINE AND ITS COMPOUNDS
Chemical Properties of Hydrogen Chloride
Large-scale Manufacture of Hydrochloric Acid
Uses of Hydrochloric Acid
By the end of the lesson, the learner should be able to:
Prepare aqueous hydrogen chloride (hydrochloric acid). Investigate acid properties of HCl solution. Test reactions with metals, bases, and carbonates. Compare HCl in water vs organic solvents.
Describe industrial production of hydrochloric acid. Identify raw materials and conditions used. Explain the controlled combustion process. Draw flow diagrams of the industrial process.
Practical work: Experiment 6.11 - Preparation of aqueous HCl using apparatus in Figure 6. Testing with metals (Zn, Fe, Mg, Cu), NaOH, carbonates, lead nitrate. Recording observations in Table 6.7. Testing HCl in methylbenzene - no acid properties. Discussion: Ionization in water vs molecular existence in organic solvents. Writing equations for acid reactions.
Study of Figure 6.4 - Large-scale manufacture setup. Discussion: Raw materials (H2 from electrolysis/cracking, Cl2 from electrolysis). Controlled combustion: H2 + Cl2 → 2HCl in jet burner. Dissolving HCl gas in water over glass beads. Safety: Explosive nature of H2/Cl2 mixture, use of excess chlorine. Industrial considerations: 35% concentration, transport in rubber-lined steel tanks.
Distilled water, Filter funnel, Metals (Zn, Fe, Mg, Cu), NaOH solution, Carbonates, Lead nitrate, Methylbenzene, Indicators
Flow diagrams, Industrial photographs, Glass beads samples, Charts showing electrolysis processes, Safety equipment models
Samples of rusted and cleaned metals, Photographic materials, pH control charts, Industrial application videos, Water treatment diagrams
KLB Secondary Chemistry Form 4, Pages 208-211
KLB Secondary Chemistry Form 4, Pages 211-212
12-13

End term exam

14 1
CHLORINE AND ITS COMPOUNDS
Environmental Pollution by Chlorine Compounds and Summary
By the end of the lesson, the learner should be able to:
Explain environmental effects of chlorine compounds. Describe the impact of CFCs on ozone layer. Discuss pollution by chlorine-containing pesticides. Summarize key concepts of chlorine chemistry.
Discussion: Environmental impacts - chlorine gas forming acid rain, CFCs (life span CCl3F = 75 years, CCl2F2 = 110 years) breaking down ozone layer. DDT as persistent pesticide, PVC as non-biodegradable plastic. NEMA role in environmental protection, Stockholm Convention on DDT. Control measures and alternatives. Revision: Key reactions, properties, uses, and environmental considerations. Summary of halogen chemistry concepts.
Environmental pollution charts, Ozone layer diagrams, DDT restriction documents, PVC waste samples, NEMA guidelines, Summary charts of reactions
KLB Secondary Chemistry Form 4, Pages 213-215

Your Name Comes Here


Download

Feedback