Home






SCHEME OF WORK
Chemistry
Form 4 2026
TERM II
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1

Reopening of school & Opener Exams

2 1
ACIDS, BASES AND SALTS.
Strength of acids. Acids in aqueous form.
By the end of the lesson, the learner should be able to:


Define an acid in terms of hydrogen ions.

Explain strength of acids in aqueous form in terms of number of hydrogen ions present.




Class experiments: investigate reactions of magnesium and zinc carbonate with different acids.
Make and record observations in tabular form.
Make deductions from the observations.
Write relevant chemical equations and ionic equations.
Detailed discussion leading to the definition of an acid and explanation of strength of an acid.




Magnesium strip, zinc carbonate,
2M HCl,
2M H2SO4,
2M ethanoic acid.




K.L.B. BK IV
Pages 1-4
2 2
ACIDS, BASES AND SALTS.
pH values of acids. Electrical conductivities of aqueous acids.
Definition of a base in terms of hydroxide ions.
Neutralization reaction.
Strength of bases.
By the end of the lesson, the learner should be able to:
Determine strength of acids using pH values.

Determine strengths of acids by comparing their electrical conductivities.

Classify acids as either strong or weak in terms of partial dissociations in aqueous solutions.
Q/A: review determination of strength of acids using a litmus paper and pH scale.
Class / group experiments: record colour of universal indicator in
2M HCl and 2M ethanoic acid.
Set up voltameters of 2M HCl and 2M ethanoic acid in turns.
Record amounts of current .
Discuss the observations.
Write corresponding ionic equations.
Universal
indicator,
2M HCl,
2M ethanoic acid,
dry cells,
carbon electrodes,
milli-ammeters,
wires, switches etc.
Red litmus paper, calcium hydroxide solid.
1M HCl,
Calcium hydroxide,
universal indicator.
2M NaOH,
2M ammonia solution, universal indicator solutions, dry cells,
milliammeters,
wires, switches etc
K.L.B. BK IV
Pages 4-6
2 3-4
ACIDS, BASES AND SALTS.
Dissolving hydrogen chloride gas in water / methylbenzene.
Dissolving ammonia gas in water/ methylbenzene.
Amphoteric oxides.
Precipitation Reactions.
Solubility of chlorides sulphites and sulphates.
Equations for formation of insoluble chlorides, sulphites and sulphates.
Complex ions.
Solubility of a salt at a given temperature.
By the end of the lesson, the learner should be able to:
Define a polar and a non-polar solvent.

Find out cations that form (in)soluble chlorides, sulphates and sulphites.
Teacher demonstration:
Dissolving HCl gas in different solvents.
Discuss the observations.
Write down related balanced chemical equations.
Class experiments: measure 2cc of 0.1M solution containing Pb2+ into a test tube.
Add drops of 2M NaCl solution.
(Later 2M Sodium Sulphate and 2M Sodium Sulphate).
Warm the mixture and make observations.
Repeat the procedure using other salt solutions containing other ions.
Tabulate the results.

Ammonia gas,
Methylbenzene, hydrogen chloride gas.
Methylbenzene.
2M Nitric acid
2M NaOH,
HNO3.
Amphoteric oxides.
Soluble carbonates e.g. Na2CO3, K2CO3, (NH4)2CO3
Salt solutions containing Mg2+, Al3+, Ca2+, etc.
0.1M solution containing Pb2+, 2M NaCl solution, 2M sodium sulphate, source of heating.
student book
2M Sodium hydroxide (2M ammonia solution),
solution containing Mg2+, Zn2+, etc.
Suitable solutes.
K.L.B. BK IV
Pages 9-11
K.L.B. BK IV
Pages 16-17
2 5
ACIDS, BASES AND SALTS.
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
Problems solving on solubility.
Effect of temperature on solubility of a solute in a solvent.
Effects of various salts on soap.
Removal of hardness of water.
Endothermic and Exothermic Reactions.
By the end of the lesson, the learner should be able to:
Solve problems involving solubility of a solute in a solvent at a given temperature.
Worked examples.
Supervised practice.
Written assignment.
Evaporating dish, watch glass, heating source, thermometer.
KClO3 thermometers, source of heat.
distilled water, tap water, rainwater, dilute solution of sodium chloride and solutions containing Ca2+ and Zn2+.
student book
Ammonium nitrate,
Sodium hydroxide, thermometers.
K.L.B. BK IV
Pages 21-22
3 1
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
Energy level diagrams.
Enthalpy Notation. Change of state.
CAT
Molar heat of solution.
By the end of the lesson, the learner should be able to:
Represent endothermic reactions with exothermic reactions with energy level diagrams.
Probing questions on relative energies of reactants and products in endothermic and exothermic and endothermic reactions.
student book
Ice, naphthalene, thermometers, graph papers.
Ammonia nitrate / sodium hydroxide, thermometers.
K.L.B. BK IV
Pages 33-35
3 2
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
Molar heat of solution of H2SO4.
Enthalpy of combustion. Enthalpy of combustion.
Molar heat of displacement of ions.
By the end of the lesson, the learner should be able to:
Determine molar heat of solution of H2SO4.
Dissolve some known volume of conc. H2SO4 in a given volume of water.
Note the change in temperature.
Work out the molar heat of solution of H2SO4.
Conc. H2SO4, thermometers.
Ethanol, distilled water, thermometer, clear wick, tripod stand and wire gauze.
Zinc, iron, magnesium, copper sulphate solution.
K.L.B. BK IV
Pages 42-45
3 3-4
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
RATES OF REACTION & REVERSIBLE REACTIONS.
RATES OF REACTION & REVERSIBLE REACTIONS.
RATES OF REACTION & REVERSIBLE REACTIONS.
Molar heat of solution of neutralization.
Standard enthalpy changes.
Hess?s Law.
Heat of solution hydration energy and lattice energy.
Heat values of fuels.
Environmental effects of fuels.
Effect of temperature of reactants on rate of reaction.
Effect of change in surface area of reactants on the rate of a reaction.
Effect of a suitable catalyst on the rate of a reaction
By the end of the lesson, the learner should be able to:
Define the term neutralization.
Determine the molar heat of neutralization of HCl with NaOH.
Define the term fuel.
Describe energy changes when a fuel undergoes combustion.
Outline factors considered when choosing a suitable fuel.
Class experiments:
Neutralize 2M HCl of known volume with a determined volume of 1M / 2M sodium hydroxide.
Note highest temperature of the solution.
Work out the molar heat of neutralization.
Solve other related problems.
Assignment.

Probing questions and brief discussion.
2M HCl of known volume, 1M / 2M sodium hydroxide.
student book
student book
Sodium thiosulphate heated at different temperatures, dilute HCl, stopwatches.
Graph papers.
Marble chips, marble chips powder, syringes, conical flasks with stoppers, 1M HCl.
Hydrogen peroxide, manganese (IV) oxide.
K.L.B. BK IV
Pages 50-53
K.L.B. BK IV
Pages 64-66
3 5
RATES OF REACTION & REVERSIBLE REACTIONS.
Effect of light on rate of specific reactions.
Reversible reactions.
State of equilibrium in chemical reactions.
Le Chatelier?s Principle.
Effect of change of pressure and temperature on equilibrium shift.
By the end of the lesson, the learner should be able to:
Identify reactions that are affected by light.
Teacher demonstration: decomposition of silver bromide in the presence of light.
Mention other examples of reactions affected by light.
Silver bromide.
Crystals of hydrated copper (II) sulphate.
student book
Add 2M sodium hydroxide,
K.L.B. BK IV
Pages 89-91
4 1
RATES OF REACTION & REVERSIBLE REACTIONS.
ELECTRO-CHEMISTRY.
ELECTRO-CHEMISTRY.
The Haber Process.
The Contact Process.
Redox reactions.
Oxidizing Numbers.
By the end of the lesson, the learner should be able to:
Explain the concept optimum conditions of a chemical equilibrium.
Explain factors that change the position of equilibrium of the Harber process.
Q/A and detailed discussion on change of pressure, temperature, concentration of ammonia and effect of presence of a suitable catalyst on the Haber process.
student book
K.L.B. BK IV
Pages 102-103
4 2
ELECTRO-CHEMISTRY.
Displacement reactions.
The oxidizing power of an element.
Cell diagrams.
Standard Electrode Potentials.
Standard electrode potential series.
By the end of the lesson, the learner should be able to:
Explain change of oxidation numbers during redox / displacement reactions. Arrange elements in order of their reducing power.
Class standard experiments: reacting metals with solutions containing metal ions.
Taking note of reactions and those that do not take place; and tabulating the results.
Metals: Ca, Na, Zn, Fe, Pb, and Cu.
Solutions containing Ca2+, Mg2+, Zn2+, Fe2+.
Halogens:
Cl2 (g),
Br2 (l),
I2 (s).
Halides:
KCl, KBr, KI.
Zinc/ copper cell.
student book
K.L.B. BK IV
Pages 116-120
4 3-4
ELECTRO-CHEMISTRY.
Emf of a cell.
Possibility of a reaction to take place.
Primary and secondary chemical cells.
Electrolysis of dilute NaCl.
Electrolysis of brine.
Electrolysis of dilute sulphuric (VI) acid.
Factors affecting electrolysis.
Application of electrolysis.
Faraday?s law of electrolysis.
By the end of the lesson, the learner should be able to:
Calculate emf of a cell using standard electrodes potentials.
Identify products of electrolysis of brine.
Q/A: review half-cells.
Worked examples; supervised practice.
Assignment.

Teacher demonstration/ group experiments.
Test for the products of electrolysis.
Write relevant equations.


student book
Dilute sodium chloride voltameter.
Brine voltameter.
Sulphuric acid voltameter.
student book
Suitable voltameter.
Weighing balance, stop watch, copper sulphate voltameter.
K.L.B. BK IV
Pages 133-136
K.L.B. BK IV
Pages 144-146
4 5
METALS
Ores of some metals.
Occurrence and extraction of sodium.
Occurrence and extraction of aluminium.
Occurrence and extraction of iron.
Occurrence and extraction of zinc.
By the end of the lesson, the learner should be able to:


Name the chief ores of some metals.



Exposition and brief discussion.
Chart: Down?s cell.
student book
Chart: Blast furnace.
Flow chart: extraction of Zinc.
K.L.B. BK IV
Pages 168-9
5 1
METALS
Extraction of lead.
Occurrence and extraction of copper.
Physical properties of some metals.
Reaction of metals with oxygen.
By the end of the lesson, the learner should be able to:
Explain how lead is extracted.
Q/A & brief discussion.
Write balanced chemical equations leading to extraction of lead.
Flow chart: extraction of lead.
Flow chart: extraction of copper.
student book
Common lab. metals.
K.L.B. BK IV
Pages 179-80
5 2
METALS
Reaction of metals with cold water and steam.
Reaction of metals with chlorine.
Reaction of metals with acids.
Uses of metals.
By the end of the lesson, the learner should be able to:
Describe reaction of metals with cold water and steam.

Arrange the metals in order of reactivity with cold water and steam.

Class experiments:
Investigate reaction of some metals with cold water and steam.
Analyse the results.
Metals: Al, Zn, Fe, Cu.
Metals: Al, Zn, Fe, Cu.
Metals: Al, Zn, Fe, Cu.
Acids; HCl, HNO3, H2SO4.
student book
K.L.B. BK IV
Pages 186-9
5 3-4
METALS
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
RADIOACTIVITY
RADIOACTIVITY
RADIOACTIVITY
RADIOACTIVITY
RADIOACTIVITY
RADIOACTIVITY
Environmental effects of extraction of metals.
Alkanols (Alcohols).
Nomenclature of alkanols.
Isomerism in alkanols.
Preparation of ethanol in the lab.
Definition of radioactivity.
Alpha particles.
Equations involving alpha particles.
Beta particles. Gamma rays.
Radioactive Half-Life.
Radioactive decay curve.
By the end of the lesson, the learner should be able to:
Identify some environmental effects of extraction of metals.
Describe preparation of ethanol in the laboratory.
Oral questions and open discussion.

Assignment / Topic review.
Group experiments / teacher demonstration.

Discuss the fermentation process.
student book
Calcium hydroxide solution, sugar solution, yeast.
student book
Dice.
Graph papers.
K.L.B. BK IV
Pages 197-8
K.L.B. BK IV
Pages 210-11
5 5
RADIOACTIVITY
GAS LAWS
GAS LAWS
GAS LAWS
GAS LAWS
Nuclear fusion and nuclear fission. Applications of radioactivity.
Boyle's Law - Introduction and Experimental Investigation
Boyle's Law - Mathematical Expression and Graphical Representation
Boyle's Law - Numerical Problems and Applications
Charles's Law - Introduction and Temperature Scales
By the end of the lesson, the learner should be able to:
Differentiate between nuclear fusion and nuclear fission.
Describe applications of radioactivity.
Exposition of new concepts accompanied by nuclear equations.
Brief discussion: Carbon dating, detecting leakage, medication, agriculture, industry; effect of static charges, etc.
student book
Bicycle pump, Syringes, Gas jars, Chart showing volume-pressure relationship
Graph papers, Scientific calculators, Chart showing mathematical expressions
Scientific calculators, Worked example charts, Unit conversion tables
Round-bottomed flask, Narrow glass tube, Colored water, Rubber bung, Hot and cold water baths
K.L.B. BK IV
Pages 259-260
6 1
GAS LAWS
Charles's Law - Experimental Investigation and Mathematical Expression
Charles's Law - Numerical Problems and Applications
Combined Gas Law and Standard Conditions
Introduction to Diffusion - Experimental Investigation
Rates of Diffusion - Comparative Study
By the end of the lesson, the learner should be able to:
Investigate relationship between volume and temperature
Express Charles's law mathematically
Plot volume vs temperature graphs
Extrapolate graphs to find absolute zero
Class experiment: Volume-temperature relationship using flask and capillary tube. Record data at different temperatures. Plot graphs: volume vs temperature (°C) and volume vs absolute temperature (K). Extrapolate graph to find absolute zero. Derive V₁/T₁ = V₂/T₂ equation.
Glass apparatus, Thermometers, Graph papers, Water baths at different temperatures
Scientific calculators, Temperature conversion charts, Application examples
Scientific calculators, Combined law derivation charts, Standard conditions reference table
KMnO₄ crystals, Bromine liquid, Gas jars, Combustion tube, Litmus papers, Stopwatch
Glass tube (25cm), Cotton wool, Concentrated NH₃ and HCl, Stopwatch, Ruler, Safety equipment
KLB Secondary Chemistry Form 3, Pages 8-10
6 2
GAS LAWS
THE MOLE
Graham's Law of Diffusion - Theory and Mathematical Expression
Graham's Law - Numerical Applications and Problem Solving
Relative Mass - Introduction and Experimental Investigation
By the end of the lesson, the learner should be able to:
State Graham's law of diffusion
Express Graham's law mathematically
Relate diffusion rate to molecular mass and density
Explain the inverse relationship between rate and √molecular mass
Teacher exposition: Graham's law statement and mathematical derivation. Discussion: Rate ∝ 1/√density and Rate ∝ 1/√molecular mass. Derive comparative expressions for two gases. Explain relationship between density and molecular mass. Practice: Identify faster diffusing gas from molecular masses.
Graham's law charts, Molecular mass tables, Mathematical derivation displays
Scientific calculators, Worked example charts, Molecular mass reference tables
Different sized nails ( 5-15cm), Beam balance, Fruits of different masses, Reference charts
KLB Secondary Chemistry Form 3, Pages 18-20
6 3-4
THE MOLE
Avogadro's Constant and the Mole Concept
Interconversion of Mass and Moles for Elements
Molecules and Moles - Diatomic Elements
Empirical Formula - Experimental Determination
Empirical Formula - Reduction Method
Empirical Formula - Percentage Composition Method
Molecular Formula - Determination from Empirical Formula
By the end of the lesson, the learner should be able to:
Define Avogadro's constant and its value
Explain the concept of a mole as a counting unit
Relate molar mass to relative atomic mass
Calculate number of atoms in given masses of elements
Determine empirical formula using reduction reactions
Calculate empirical formula from reduction data
Apply reduction method to copper oxides
Analyze experimental errors and sources
Experiment: Determine number of nails with mass equal to relative mass in grams. Teacher exposition: Introduce Avogadro's constant (6.023 × 10²³). Discussion: Mole as counting unit like dozen. Worked examples: Calculate moles from mass and vice versa.
Experiment: Reduction of copper(II) oxide using laboratory gas. Measure masses before and after reduction. Calculate moles of copper and oxygen. Determine empirical formula from mole ratios. Discuss experimental precautions.
Beam balance, Various sized nails, Scientific calculators, Avogadro's constant charts
Scientific calculators, Periodic table, Worked example charts, Formula triangles
Molecular models, Charts showing diatomic elements, Scientific calculators
Crucible and lid, Magnesium ribbon, Bunsen burner, Beam balance, Tongs, Safety equipment
Combustion tube, Porcelain boat, Copper(II) oxide, Laboratory gas, Beam balance, Bunsen burner
Scientific calculators, Percentage composition charts, Worked example displays
Scientific calculators, Molecular mass charts, Worked example displays
KLB Secondary Chemistry Form 3, Pages 27-30
KLB Secondary Chemistry Form 3, Pages 35-37
6 5
THE MOLE
Molecular Formula - Combustion Analysis
Concentration and Molarity of Solutions
Preparation of Molar Solutions
By the end of the lesson, the learner should be able to:
Determine molecular formula from combustion data
Calculate moles of products in combustion
Relate product moles to reactant composition
Apply combustion analysis to hydrocarbons
Worked examples: Hydrocarbon combustion producing CO₂ and H₂O. Calculate moles of C and H from product masses. Determine empirical formula, then molecular formula. Practice: Various combustion analysis problems.
Scientific calculators, Combustion analysis charts, Molecular models of hydrocarbons
Scientific calculators, Molarity charts, Various salt samples for demonstration
Volumetric flasks (250, 500, 1000cm³), Sodium hydroxide pellets, Beam balance, Wash bottles, Beakers
KLB Secondary Chemistry Form 3, Pages 40-41
7 1
THE MOLE
Dilution of Solutions
Stoichiometry - Experimental Determination of Equations
Stoichiometry - Precipitation Reactions
Stoichiometry - Gas Evolution Reactions
By the end of the lesson, the learner should be able to:
Define dilution process
Apply dilution formula M₁V₁ = M₂V₂
Calculate concentrations after dilution
Prepare dilute solutions from concentrated ones
Experiment: Dilute 25cm³ of 2M HCl to different final volumes (250cm³ and 500cm³). Calculate resulting concentrations. Worked examples using dilution formula. Safety precautions when diluting acids.
Volumetric flasks, Hydrochloric acid (2M), Measuring cylinders, Pipettes, Safety equipment
Iron filings, Copper(II) sulphate solution, Beam balance, Beakers, Filter equipment
Test tubes, Lead(II) nitrate solution, Potassium iodide solution, Burettes, Ethanol, Rulers
Conical flask, Thistle funnel, Plastic bags, Rubber bands, Sodium carbonate, HCl solution
KLB Secondary Chemistry Form 3, Pages 46-50
7 2
THE MOLE
Volumetric Analysis - Introduction and Apparatus
Titration - Acid-Base Neutralization
Titration - Diprotic Acids
By the end of the lesson, the learner should be able to:
Define volumetric analysis and titration
Identify and use titration apparatus correctly
Explain functions of pipettes and burettes
Demonstrate proper reading techniques
Practical session: Familiarization with pipettes and burettes. Practice filling and reading burettes accurately. Learn proper meniscus reading. Use pipette fillers safely. Rinse apparatus with appropriate solutions.
Pipettes (10, 20, 25cm³), Burettes (50cm³), Pipette fillers, Conical flasks, Various solutions
Burettes, Pipettes, 0.1M NaOH, 0.1M HCl, Phenolphthalein indicator, Conical flasks
Burettes, Pipettes, 0.1M H₂SO₄, 0.1M NaOH, Phenolphthalein, Basicity reference chart
KLB Secondary Chemistry Form 3, Pages 58-59
7 3-4
THE MOLE
Standardization of Solutions
Back Titration Method
Redox Titrations - Principles
Redox Titrations - KMnO₄ Standardization
Water of Crystallization Determination
Atomicity and Molar Gas Volume
Combining Volumes of Gases - Experimental Investigation
By the end of the lesson, the learner should be able to:
Define standardization process
Standardize HCl using Na₂CO₃ as primary standard
Calculate accurate concentrations from titration data
Understand importance of primary standards
Standardize KMnO₄ solution using iron(II) salt
Calculate molarity from redox titration data
Apply 1:5 mole ratio in calculations
Prepare solutions for redox titrations
Experiment: Prepare approximately 0.1M HCl and standardize using accurately weighed Na₂CO₃. Use methyl orange indicator. Calculate exact molarity from titration results. Discuss primary standard requirements.
Experiment: Standardize KMnO₄ using FeSO₄(NH₄)₂SO₄·6H₂O. Dissolve iron salt in boiled, cooled water. Titrate with KMnO₄ until persistent pink color. Calculate molarity using 5:1 mole ratio.
Anhydrous Na₂CO₃, Approximately 0.1M HCl, Methyl orange, Volumetric flasks, Analytical balance
Metal carbonate sample, 0.5M HCl, 0M NaOH, Phenolphthalein, Conical flasks
Potassium manganate(VII), Potassium dichromate(VI), Iron(II) solutions, Color change charts
Iron(II) ammonium sulfate, KMnO₄ solution, Dilute H₂SO₄, Pipettes, Burettes
Hydrated iron(II) salt, Standardized KMnO₄, Dilute H₂SO₄, Analytical balance
Gas syringes (50cm³), Various gases, Analytical balance, Gas supply apparatus
Gas syringes, Dry NH₃ generator, Dry HCl generator, Glass connecting tubes, Clips
KLB Secondary Chemistry Form 3, Pages 65-67
KLB Secondary Chemistry Form 3, Pages 70-72
7 5
THE MOLE
ORGANIC CHEMISTRY I
ORGANIC CHEMISTRY I
Gas Laws and Chemical Equations
Introduction to Organic Chemistry and Hydrocarbons
Sources of Alkanes - Natural Gas, Biogas, and Crude Oil
By the end of the lesson, the learner should be able to:
Apply Avogadro's law to chemical reactions
Use volume ratios to determine chemical equations
Calculate product volumes from reactant volumes
Solve problems involving gas stoichiometry
Worked examples: Use Gay-Lussac's law to determine equations. Calculate volumes of products from given reactant volumes. Apply Avogadro's law to find number of molecules. Practice: Complex gas stoichiometry problems.
Scientific calculators, Gas law charts, Volume ratio examples
Carbon models, Hydrocarbon structure charts, Molecular model kits
Biogas digester model/diagram, Natural gas composition charts, Organic waste samples
KLB Secondary Chemistry Form 3, Pages 77-79
8 1
ORGANIC CHEMISTRY I
Fractional Distillation of Crude Oil
Cracking of Alkanes - Thermal and Catalytic Methods
Alkane Series and Homologous Series Concept
By the end of the lesson, the learner should be able to:
Explain fractional distillation process
Perform fractional distillation of crude oil
Identify different fractions and their uses
Relate boiling points to molecular size
Experiment: Fractional distillation of crude oil using improvised column. Collect fractions at different temperatures (120°C intervals up to 350°C). Test fractions for appearance, flammability, and viscosity. Record observations and relate to molecular size.
Crude oil sample, Boiling tubes, High-temperature thermometer, Sand/porcelain chips, Bunsen burner, Test tubes
Cracking process diagrams, Chemical equation charts, Catalyst samples for demonstration
Alkane series chart, Molecular formula worksheets, Periodic table
KLB Secondary Chemistry Form 3, Pages 87-89
8 2
ORGANIC CHEMISTRY I
Nomenclature of Alkanes - Straight Chain and Branched
Isomerism in Alkanes - Structural Isomers
Laboratory Preparation of Methane
Laboratory Preparation of Ethane
By the end of the lesson, the learner should be able to:
Name straight-chain alkanes using IUPAC rules
Identify parent chains in branched alkanes
Name branched alkanes with substituent groups
Apply systematic naming rules correctly
Teacher demonstration: Step-by-step naming of branched alkanes. Rules application: Longest chain identification, numbering from nearest branch, substituent naming. Practice exercises: Various branched alkane structures. Group work: Name complex branched alkanes.
Structural formula charts, IUPAC naming rules poster, Molecular model kits
Molecular model kits, Isomerism charts, Structural formula worksheets
Sodium ethanoate, Soda lime, Round-bottomed flask, Gas collection apparatus, Bromine water, Wooden splints
Sodium propanoate, Soda lime, Gas collection apparatus, Testing materials
KLB Secondary Chemistry Form 3, Pages 90-92
8 3-4
ORGANIC CHEMISTRY I
Physical Properties of Alkanes
Chemical Properties of Alkanes - Combustion and Substitution
Uses of Alkanes in Industry and Daily Life
Introduction to Alkenes and Functional Groups
Nomenclature of Alkenes
Isomerism in Alkenes - Branching and Positional
By the end of the lesson, the learner should be able to:
Describe physical properties of alkanes
Explain trends in melting and boiling points
Relate molecular size to physical properties
Compare solubility in different solvents
Define alkenes and unsaturation
Identify the C=C functional group
Write general formula for alkenes (CₙH₂ₙ)
Compare alkenes with alkanes
Data analysis: Study table of physical properties of first 10 alkanes. Graph plotting: Boiling points vs number of carbon atoms. Discussion: Intermolecular forces and property trends. Q/A: Solubility patterns in polar and non-polar solvents.
Teacher exposition: Alkenes definition and unsaturation concept. Introduction: C=C double bond as functional group. Table study: First 6 members of alkene series. Comparison: Alkenes vs alkanes - formulas and structures.
Physical properties data tables, Graph paper, Calculators, Solubility demonstration materials
Molecular models, Halogenation reaction charts, Chemical equation worksheets
Industrial application charts, Product samples, Environmental impact materials
Alkene series charts, Molecular models showing double bonds, Functional group posters
IUPAC naming charts for alkenes, Structural formula worksheets, Molecular model kits
Molecular model kits, Isomerism worksheets, Geometric isomer models
KLB Secondary Chemistry Form 3, Pages 96-97
KLB Secondary Chemistry Form 3, Pages 100-101
8 5
ORGANIC CHEMISTRY I
Laboratory Preparation of Ethene
Alternative Preparation of Ethene and Physical Properties
Chemical Properties of Alkenes - Addition Reactions
Oxidation Reactions of Alkenes and Polymerization
By the end of the lesson, the learner should be able to:
Prepare ethene by dehydration of ethanol
Describe role of concentrated sulfuric acid
Set up apparatus safely for ethene preparation
Test physical and chemical properties of ethene
Experiment: Dehydration of ethanol using concentrated H₂SO₄ at 170°C. Use sand bath for controlled heating. Pass gas through NaOH to remove impurities. Tests: Bromine water, acidified KMnO₄, combustion. Safety precautions with concentrated acid.
Ethanol, Concentrated H₂SO₄, Round-bottomed flask, Sand bath, Gas collection apparatus, Testing solutions
Aluminum oxide catalyst, Glass wool, Alternative apparatus setup, Physical properties charts
Addition reaction charts, Mechanism diagrams, Chemical equation worksheets
Oxidizing agents for demonstration, Polymer samples, Polymerization charts, Monomer-polymer models
KLB Secondary Chemistry Form 3, Pages 102-104
9

Midterm Exams and break

10 1
ORGANIC CHEMISTRY I
Tests for Alkenes and Uses
Introduction to Alkynes and Triple Bond
Nomenclature and Isomerism in Alkynes
By the end of the lesson, the learner should be able to:
Perform chemical tests to identify alkenes
Use bromine water and KMnO₄ as test reagents
List industrial and domestic uses of alkenes
Explain importance in plastic manufacture
Practical session: Test known alkenes with bromine water and acidified KMnO₄. Observe rapid decolorization compared to alkanes. Discussion: Uses in plastics, ethanol production, fruit ripening, detergents. Assignment: Research alkene applications.
Test alkenes, Bromine water, Acidified KMnO₄, Plastic samples, Uses reference charts
Alkyne series charts, Triple bond molecular models, Unsaturation comparison charts
IUPAC naming rules for alkynes, Structural formula worksheets, Molecular model kits
KLB Secondary Chemistry Form 3, Pages 108-109
10 2
ORGANIC CHEMISTRY I
Laboratory Preparation of Ethyne
Physical and Chemical Properties of Alkynes
Addition Reactions of Alkynes and Chemical Tests
By the end of the lesson, the learner should be able to:
Prepare ethyne from calcium carbide and water
Set up gas collection apparatus safely
Test physical and chemical properties of ethyne
Write equation for ethyne preparation
Experiment: Calcium carbide + water reaction. Use sand layer for heat absorption. Collect ethyne over water. Tests: Color, smell, combustion, bromine water, acidified KMnO₄. Safety: Dry apparatus, controlled water addition.
Calcium carbide, Sand, Flat-bottomed flask, Dropping funnel, Gas collection apparatus, Testing solutions
Physical properties charts, Comparison tables, Combustion equation examples
Addition reaction charts, Chemical equation worksheets, Test solutions, Stopwatch for rate comparison
KLB Secondary Chemistry Form 3, Pages 111-112
10 3-4
ORGANIC CHEMISTRY I
NITROGEN AND ITS COMPOUNDS
NITROGEN AND ITS COMPOUNDS
Uses of Alkynes and Industrial Applications
Introduction to Nitrogen - Properties and Occurrence
Isolation of Nitrogen from Air - Industrial and Laboratory Methods
Laboratory Preparation of Nitrogen Gas
Properties and Uses of Nitrogen Gas
Nitrogen(I) Oxide - Preparation and Properties
Nitrogen(II) Oxide - Preparation and Properties
By the end of the lesson, the learner should be able to:
List industrial uses of alkynes
Explain oxy-acetylene welding applications
Describe use in synthetic fiber production
Evaluate importance as chemical starting materials
Prepare nitrogen gas from ammonium compounds
Use sodium nitrite and ammonium chloride method
Test physical and chemical properties of nitrogen
Write equations for nitrogen preparation
Discussion: Industrial applications of alkynes in adhesives, plastics, synthetic fibers. Teacher demonstration: Oxy-acetylene flame principles (or video). Q/A: Starting materials for chemical synthesis. Assignment: Research local industrial uses.
Experiment: Mix sodium nitrite (7g) and ammonium chloride ( 5g) with water. Heat gently and collect gas over water. Tests: Color, smell, burning splint, litmus paper, lime water, burning Mg and S. Safety precautions during heating.
Industrial application charts, Welding equipment demonstration/video, Synthetic fiber samples
Periodic table charts, Atmospheric composition diagrams, Molecular models showing N≡N triple bond
Aspirator, KOH solution, Copper turnings, Heating apparatus, Fractional distillation flow chart
Sodium nitrite, Ammonium chloride, Round-bottomed flask, Gas collection apparatus, Test reagents, Deflagrating spoon
Property summary charts, Uses of nitrogen displays, Industrial application diagrams
Ammonium nitrate, Test tubes, Gas collection apparatus, Copper turnings, Sulfur, Glowing splints
Copper turnings, Dilute nitric acid, Gas collection apparatus, Iron(II) sulfate solution, Test reagents
KLB Secondary Chemistry Form 3, Pages 115-116
KLB Secondary Chemistry Form 3, Pages 121-123
10 5
NITROGEN AND ITS COMPOUNDS
Nitrogen(IV) Oxide - Preparation and Properties
Comparison of Nitrogen Oxides and Environmental Effects
Laboratory Preparation of Ammonia
By the end of the lesson, the learner should be able to:
Prepare nitrogen(IV) oxide from copper and concentrated nitric acid
Prepare from thermal decomposition of nitrates
Test properties including equilibrium with N₂O₄
Describe reactions and uses
Experiment: Add concentrated HNO₃ to copper turnings. Collect red-brown gas by downward delivery. Alternative: Heat lead(II) nitrate with cooling U-tube. Tests: Solubility, effect on litmus, burning elements, cooling/heating effects.
Copper turnings, Concentrated nitric acid, Lead(II) nitrate, Gas collection apparatus, U-tube with ice, Testing materials
Comparison charts, Environmental impact diagrams, Vehicle emission illustrations
Calcium hydroxide, Ammonium chloride, Round-bottomed flask, Calcium oxide, HCl solution, Glass rod, Litmus paper
KLB Secondary Chemistry Form 3, Pages 127-131
11 1
NITROGEN AND ITS COMPOUNDS
Preparation of Aqueous Ammonia and Solubility
Reactions of Aqueous Ammonia with Metal Ions
Chemical Properties of Ammonia - Reactions with Acids and Combustion
By the end of the lesson, the learner should be able to:
Prepare aqueous ammonia solution
Demonstrate high solubility using fountain experiment
Explain alkaline properties of aqueous ammonia
Write equations for ammonia in water
Experiment: Dissolve ammonia in water using inverted funnel method. Fountain experiment: Show partial vacuum formation due to high solubility. Tests: Effect on universal indicator, pH measurement. Theory: NH₃ + H₂O equilibrium.
Ammonia generation apparatus, Funnel, Universal indicator, Fountain apparatus, pH meter/paper
Various metal salt solutions, Aqueous ammonia, Test tubes, Droppers, Observation recording tables
Various dilute acids, Methyl orange, Oxygen supply, Platinum wire, Copper(II) oxide, Combustion apparatus, U-tube for collection
KLB Secondary Chemistry Form 3, Pages 134-136
11 2
NITROGEN AND ITS COMPOUNDS
Industrial Manufacture of Ammonia - The Haber Process
Uses of Ammonia and Introduction to Nitrogenous Fertilizers
Nitrogenous Fertilizers - Types and Calculations
Laboratory Preparation of Nitric(V) Acid
By the end of the lesson, the learner should be able to:
Describe raw materials and their sources
Explain optimum conditions for ammonia synthesis
Draw flow diagram of Haber process
Explain economic considerations and catalyst use
Teacher exposition: N₂ from air, H₂ from natural gas/cracking. Process conditions: 500°C, 200 atm, iron catalyst. Flow diagram study: Purification, compression, catalytic chamber, separation, recycling. Economic factors: Compromise between yield and rate.
Haber process flow charts, Industrial diagrams, Catalyst samples, Economic analysis sheets
Fertilizer samples, Percentage calculation worksheets, Use application charts, Calculator
Various fertilizer formulas, Scientific calculators, Laboratory preparation materials, Environmental impact data
Potassium nitrate, Concentrated sulfuric acid, All-glass apparatus, Condenser, Retort stand, Safety equipment
KLB Secondary Chemistry Form 3, Pages 140-141
11 3-4
NITROGEN AND ITS COMPOUNDS
Industrial Manufacture of Nitric(V) Acid
Reactions of Dilute Nitric(V) Acid with Metals
Reactions of Dilute Nitric(V) Acid with Carbonates and Hydroxides
Reactions of Concentrated Nitric(V) Acid - Oxidizing Properties
Uses of Nitric(V) Acid and Introduction to Nitrates
Action of Heat on Nitrates - Decomposition Patterns
By the end of the lesson, the learner should be able to:
Describe catalytic oxidation process
Explain raw materials and conditions
Draw flow diagram of industrial process
Calculate theoretical yields and efficiency
Demonstrate strong oxidizing properties
Test reactions with FeSO₄, sulfur, and copper
Observe formation of nitrogen dioxide
Explain electron transfer in oxidation
Teacher exposition: Ostwald process - NH₃ oxidation with Pt-Rh catalyst at 900°C. Flow diagram: Oxidation chamber, cooling, absorption tower. Equations: NH₃ → NO → NO₂ → HNO₃. Economic factors: Catalyst cost, heat recovery.
Experiments: (a) Add concentrated HNO₃ to acidified FeSO₄ - observe color change. (b) Add to sulfur - observe reaction. (c) Add to copper turnings - observe vigorous reaction and brown fumes. Explain oxidizing power and reduction to NO₂.
Industrial process flow charts, Catalyst samples, Process condition charts, Efficiency calculation sheets
Various metals (Mg, Zn, Cu), Dilute nitric acid, Test tubes, Gas testing apparatus, Burning splints
Various carbonates and hydroxides, Dilute nitric acid, Lime water, Universal indicator, Test tubes
Concentrated nitric acid, Iron(II) sulfate, Sulfur powder, Copper turnings, Test tubes, Fume cupboard access
Industrial use charts, Nitrate salt samples, Preparation method diagrams, Safety data sheets
Various nitrate salts, Test tubes, Bunsen burner, Gas collection apparatus, Glowing splints, Observation recording sheets
KLB Secondary Chemistry Form 3, Pages 145-147
KLB Secondary Chemistry Form 3, Pages 150-151
11 5
NITROGEN AND ITS COMPOUNDS
Test for Nitrates - Brown Ring Test
Environmental Pollution by Nitrogen Compounds
Pollution Control and Environmental Solutions
Comprehensive Problem Solving - Nitrogen Chemistry
By the end of the lesson, the learner should be able to:
Perform brown ring test for nitrates
Explain mechanism of complex formation
Use alternative copper test method
Apply tests to unknown samples
Experiments: (a) Brown ring test - add FeSO₄ solution to nitrate, then carefully add concentrated H₂SO₄. Observe brown ring formation. (b) Alternative test - warm nitrate with H₂SO₄ and copper turnings. Observe brown fumes. Test unknown samples.
Sodium nitrate, Fresh FeSO₄ solution, Concentrated H₂SO₄, Copper turnings, Test tubes, Unknown nitrate samples
Environmental pollution charts, Acid rain effect photos, Vehicle emission diagrams, Control measure illustrations
Case studies, Pollution control technology information, Group activity worksheets, Local environmental data
Scientific calculators, Comprehensive problem sets, Industrial data sheets, Experimental result tables
KLB Secondary Chemistry Form 3, Pages 153-154
12 1
NITROGEN AND ITS COMPOUNDS
Laboratory Practical Assessment - Nitrogen Compounds
Industrial Applications and Economic Importance
Chapter Review and Integration
By the end of the lesson, the learner should be able to:
Demonstrate practical skills in nitrogen chemistry
Perform qualitative analysis of nitrogen compounds
Apply safety procedures correctly
Interpret experimental observations accurately
Practical examination: Identify unknown nitrogen compounds using chemical tests. Prepare specified nitrogen compounds. Demonstrate proper laboratory techniques. Safety assessment. Written report on observations and conclusions.
Unknown nitrogen compounds, All laboratory chemicals and apparatus used in chapter, Safety equipment, Assessment rubrics
Economic data sheets, Industry case studies, Agricultural statistics, Cost-benefit analysis templates
Concept mapping materials, Comparison charts, Flow diagram templates, Integration worksheets
KLB Secondary Chemistry Form 3, Pages 119-157
12 2
SULPHUR AND ITS COMPOUNDS
Extraction of Sulphur
Allotropes of Sulphur
Physical Properties of Sulphur - Solubility
Physical Properties of Sulphur - Effect of Heat
Chemical Properties of Sulphur - Reactions with Elements
By the end of the lesson, the learner should be able to:
Define sulphur and state its position in the periodic table. Describe the occurrence of sulphur in nature. Explain the Frasch process for extraction of sulphur. Evaluate the effectiveness of the Frasch process.
Q/A: Review group VI elements and electron configuration of sulphur. Teacher demonstration: Using diagrams to explain the Frasch process setup. Discussion: Why ordinary mining is impossible for sulphur deposits. Group work: Students draw and label the Frasch process diagram.
Charts showing periodic table, Diagram of Frasch process, Samples of sulphur compounds (pyrites, gypsum)
Powdered sulphur, Carbon(IV) sulphide, Evaporating dish, Glass rod, Hand lens, Boiling tubes, Filter paper, Beakers
Powdered sulphur, Water, Benzene, Methylbenzene, Carbon(IV) sulphide, Test tubes, Charts showing molecular structure
Powdered sulphur, Test tubes, Bunsen burner, Cold surface for condensation, Thermometer, Safety equipment
Sulphur, Iron powder, Copper powder, Oxygen gas jar, Deflagrating spoon, Moist litmus papers, Test tubes, Bunsen burner
KLB Secondary Chemistry Form 4, Pages 160-161
12 3-4
SULPHUR AND ITS COMPOUNDS
Chemical Properties of Sulphur - Reactions with Acids
Uses of Sulphur and Introduction to Oxides
Preparation of Sulphur(IV) Oxide
Physical and Chemical Properties of Sulphur(IV) Oxide
Bleaching Action of Sulphur(IV) Oxide
Reducing Action of Sulphur(IV) Oxide
Oxidising Action of Sulphur(IV) Oxide
Test for Sulphate and Sulphite Ions & Uses of SO2
By the end of the lesson, the learner should be able to:
Investigate the reaction of sulphur with concentrated acids. Identify the products formed in these reactions. Write balanced equations for oxidation reactions. Test for sulphate ions using barium chloride.
Investigate SO2 as a reducing agent. Test reactions with various oxidizing agents. Write ionic equations for redox reactions. Identify color changes in redox reactions.
Practical work: Experiment 3(b) - Reactions with concentrated nitric(V) acid, sulphuric(VI) acid, and hydrochloric acid. Testing with barium chloride solution. Observation: Formation of sulphate ions, brown fumes, no reaction with HCl. Discussion: Sulphur as a reducing agent, acids as oxidizing agents.
Practical work: Experiment 7 - Testing SO2 with acidified potassium dichromate(VI), potassium manganate(VII), bromine water, iron(III) chloride. Recording observations in Table 6. Color changes: Orange to green, purple to colorless, brown to colorless, yellow to pale green. Writing half-equations and overall equations.
Sulphur powder, Concentrated HNO3, Concentrated H2SO4, Concentrated HCl, Barium chloride solution, Test tubes, Fume cupboard access
Charts showing uses of sulphur, Samples of vulcanized rubber, Fungicides, Industrial photographs, Textbook diagrams
Sodium sulphite, Dilute HCl, Round-bottomed flask, Delivery tubes, Gas jars, Concentrated H2SO4 for drying, Acidified potassium chromate(VI) paper
SO2 gas from previous preparation, Litmus papers, Universal indicator, 0.1M NaOH solution, Water, Test tubes, Safety equipment
Colored flower petals (red/blue), SO2 gas jars, Hand lens for observation, Charts comparing bleaching agents
SO2 gas, Acidified K2Cr2O7, Acidified KMnO4, Bromine water, Iron(III) chloride solution, Concentrated HNO3, Test tubes
SO2 gas jars, Magnesium ribbon, Deflagrating spoon, Hydrogen sulphide gas, Water droppers, Safety equipment
Sodium sulphate solution, Sodium sulphite solution, Barium chloride solution, Dilute HCl, Test tubes, Charts showing industrial uses
KLB Secondary Chemistry Form 4, Pages 167-168
KLB Secondary Chemistry Form 4, Pages 173-176
12 5
SULPHUR AND ITS COMPOUNDS
Large-scale Manufacture of Sulphuric(VI) Acid - Contact Process
Properties of Concentrated Sulphuric(VI) Acid - Dehydrating Properties
Properties of Concentrated Sulphuric(VI) Acid - Oxidizing Properties
By the end of the lesson, the learner should be able to:
Describe the contact process for manufacturing H2SO Identify raw materials and conditions used. Explain the role of catalyst in the process. Draw flow diagrams of the contact process.
Study of flow diagram: Figure 12 - Contact process. Discussion: Raw materials (sulphur, air), burning sulphur to SO Purification: Electrostatic precipitation, drying with H2SO Catalytic chamber: V2O5 catalyst at 450°C, 2-3 atmospheres. Formation of oleum: H2S2O7. Safety and environmental considerations.
Flow chart diagrams, Charts showing industrial plant, Samples of catalyst (V2O5), Photographs of Thika chemical plant, Calculator for percentage calculations
Concentrated H2SO4, Copper(II) sulphate crystals, Sucrose, Ethanol, KMnO4 solution, Test tubes, Beakers, Safety equipment, Fume cupboard
Copper foil, Zinc granules, Charcoal powder, Concentrated H2SO4, Acidified K2Cr2O7 paper, Lime water, Test tubes, Bunsen burner
KLB Secondary Chemistry Form 4, Pages 179-181
13 1
SULPHUR AND ITS COMPOUNDS
Properties of Concentrated Sulphuric(VI) Acid - Displacement Reactions
Reactions of Dilute Sulphuric(VI) Acid - With Metals
Reactions of Dilute Sulphuric(VI) Acid - With Carbonates
Reactions of Dilute Sulphuric(VI) Acid - With Oxides and Hydroxides
By the end of the lesson, the learner should be able to:
Investigate acid displacement reactions. Demonstrate formation of volatile acids. Test the evolved gases for identification. Write equations for displacement reactions.
Practical work: Experiment 10 (continued) - Reactions with potassium nitrate and sodium chloride. Testing evolved gases with moist blue litmus, concentrated ammonia. Observations: Brown fumes (NO2), white fumes (HCl). Discussion: Less volatile acid displacing more volatile acids. Industrial applications.
Potassium nitrate crystals, Sodium chloride crystals, Concentrated H2SO4, Moist blue litmus paper, Concentrated ammonia, Test tubes, Bunsen burner
Magnesium ribbon, Zinc granules, Copper turnings, Dilute H2SO4, Test tubes, Burning splints, Reactivity series chart
Sodium carbonate, Zinc carbonate, Calcium carbonate, Copper(II) carbonate, Dilute H2SO4, Lime water, Test tubes
Metal oxides (MgO, ZnO, CuO, PbO), NaOH solution, 2M H2SO4, Test tubes, Bunsen burner for warming
KLB Secondary Chemistry Form 4, Pages 184
13 2
SULPHUR AND ITS COMPOUNDS
Hydrogen Sulphide - Preparation and Physical Properties
Chemical Properties of Hydrogen Sulphide
Pollution Effects and Summary
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of hydrogen sulphide. Set up apparatus for H2S preparation. State the physical properties of H2S. Explain the toxicity and safety precautions.
Demonstration: Figure 13 apparatus setup for H2S preparation. Reaction: FeS + 2HCl → FeCl2 + H2S. Collection over warm water due to solubility. Drying: Using anhydrous CaCl2 (not H2SO4). Properties: Colorless, rotten egg smell, poisonous, denser than air. Safety precautions in handling.
Iron(II) sulphide, Dilute HCl, Apparatus for gas generation, Anhydrous CaCl2, Gas jars, Safety equipment, Fume cupboard
H2S gas, Bromine water, Iron(III) chloride, KMnO4, K2Cr2O7, Metal salt solutions, Test tubes, Droppers
Charts showing pollution effects, Photographs of acid rain damage, Environmental data, Summary charts of reactions, Industrial pollution control diagrams
KLB Secondary Chemistry Form 4, Pages 187-188
13 3-4
CHLORINE AND ITS COMPOUNDS
Introduction and Preparation of Chlorine
Physical Properties of Chlorine
Chemical Properties of Chlorine - Reaction with Water
Chemical Properties of Chlorine - Reaction with Metals
Chemical Properties of Chlorine - Reaction with Non-metals
Oxidising Properties of Chlorine
Reaction of Chlorine with Alkali Solutions
Oxidising Properties - Displacement Reactions
Test for Chloride Ions
Uses of Chlorine and its Compounds
By the end of the lesson, the learner should be able to:
Define chlorine and state its position in the periodic table. Describe the occurrence of chlorine in nature. Describe laboratory preparation of chlorine gas. Write balanced equations for chlorine preparation.
Investigate chlorine as an oxidizing agent. Test reactions with reducing agents. Write ionic equations for redox reactions. Identify color changes in oxidation reactions.
Q/A: Review Group VII elements and electron configuration of chlorine ( 8.7). Discussion: Occurrence as sodium chloride in sea water and rock salt. Practical work: Experiment 6.1 - Preparation using MnO2 + concentrated HCl. Setup apparatus as in Figure 6. Safety precautions for handling chlorine gas.
Practical work: Experiment 6.6 - Bubbling chlorine through sodium sulphite solution, testing with barium nitrate and lead nitrate. Reactions with hydrogen sulphide and ammonia. Recording observations in Table 6. Color changes and precipitate formation. Writing ionic equations: SO3²⁻ + Cl2 + H2O → SO4²⁻ + 2Cl⁻ + 2H⁺.
Manganese(IV) oxide, Concentrated HCl, Gas collection apparatus, Water, Concentrated H2SO4, Blue litmus paper, Gas jars
Preserved chlorine gas, Water trough, Gas jars, Observation tables, Safety equipment
Chlorine gas, Distilled water, Blue and red litmus papers, Colored flower petals, Gas jars, Boiling tubes
Magnesium ribbon, Iron wire, Chlorine gas, Deflagrating spoon, Combustion tube, Anhydrous CaCl2, Gas jars
Red phosphorus, Hydrogen gas, Chlorine gas, Deflagrating spoon, Gas jars, Bunsen burner, Safety equipment
Sodium sulphite solution, Barium nitrate, Lead nitrate, Hydrogen sulphide gas, Aqueous ammonia, Chlorine gas, Test tubes
Sodium hydroxide solutions (dilute cold, concentrated hot), Chlorine gas, Beakers, Bunsen burner, Thermometer
Potassium bromide solution, Potassium iodide solution, Chlorine gas, Test tubes, Observation charts
Sodium chloride, Concentrated H2SO4, Lead(II) nitrate solution, Aqueous ammonia, Glass rod, Test tubes, Bunsen burner
Charts showing industrial uses, Samples of bleaching agents, PVC materials, Photographs of water treatment plants, Industrial application diagrams
KLB Secondary Chemistry Form 4, Pages 195-196
KLB Secondary Chemistry Form 4, Pages 201-202
13 5
CHLORINE AND ITS COMPOUNDS
Hydrogen Chloride - Laboratory Preparation
Chemical Properties of Hydrogen Chloride
Large-scale Manufacture of Hydrochloric Acid
Uses of Hydrochloric Acid
Environmental Pollution by Chlorine Compounds and Summary
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of hydrogen chloride gas. Set up apparatus for HCl preparation. Investigate physical properties of HCl gas. Explain the method of collection used.
Practical work: Experiment 6.10 - Preparation using rock salt (NaCl) + concentrated H2SO Setup apparatus as in Figure 6.3(b). Testing physical properties and recording in Table 6.6. Tests: Solubility (fountain experiment), reaction with ammonia, effect on litmus. Collection by downward delivery due to density. Writing equation: NaCl + H2SO4 → NaHSO4 + HCl.
Rock salt (NaCl), Concentrated H2SO4, Gas collection apparatus, Ammonia solution, Litmus papers, Water trough, Gas jars
Distilled water, Filter funnel, Metals (Zn, Fe, Mg, Cu), NaOH solution, Carbonates, Lead nitrate, Methylbenzene, Indicators
Flow diagrams, Industrial photographs, Glass beads samples, Charts showing electrolysis processes, Safety equipment models
Samples of rusted and cleaned metals, Photographic materials, pH control charts, Industrial application videos, Water treatment diagrams
Environmental pollution charts, Ozone layer diagrams, DDT restriction documents, PVC waste samples, NEMA guidelines, Summary charts of reactions
KLB Secondary Chemistry Form 4, Pages 207-208
14

End the term exam


Your Name Comes Here


Download

Feedback