If this scheme pleases you, click here to download.
| WK | LSN | STRAND | SUB-STRAND | LESSON LEARNING OUTCOMES | LEARNING EXPERIENCES | KEY INQUIRY QUESTIONS | LEARNING RESOURCES | ASSESSMENT METHODS | REFLECTION |
|---|---|---|---|---|---|---|---|---|---|
| 2 | 1 |
Scientific Investigation
|
Introduction to Integrated Science - Components of Integrated Science
|
By the end of the
lesson, the learner
should be able to:
- Define the term Integrated Science - Identify the three components of Integrated Science - Show interest in learning about science components |
- Brainstorm on the components of Integrated Science in groups
- Use charts to identify Physics, Chemistry and Biology - Discuss the meaning of Integrated Science - Draw and label a diagram showing the three components |
How does integration help us understand science better?
|
- Master Integrated Science pg. 1
- Charts showing science components - Digital resources |
- Observation
- Oral questions
- Written assignments
|
|
| 2 | 2 |
Scientific Investigation
|
Introduction to Integrated Science - Physics as a component
Introduction to Integrated Science - Chemistry as a component Introduction to Integrated Science - Biology as a component Introduction to Integrated Science - Importance in agriculture |
By the end of the
lesson, the learner
should be able to:
- Define Physics - Give examples of Physics concepts - Appreciate the role of Physics in daily life |
- Discuss the definition of Physics
- Identify Physics concepts from given examples - Use digital devices to search for Physics applications - Share findings with classmates |
What is the study of Physics all about?
|
- Master Integrated Science pg. 2
- Digital devices - Reference books - Laboratory chemicals - Charts - Living specimens - Magnifying glass - Master Integrated Science pg. 3 - Pictures of farming tools - School garden |
- Oral questions
- Group discussions
- Practical activities
|
|
| 2 | 3 |
Scientific Investigation
|
Introduction to Integrated Science - Importance in health
Introduction to Integrated Science - Importance in transport Introduction to Integrated Science - Importance in food and textile |
By the end of the
lesson, the learner
should be able to:
- Explain how science improves healthcare - Identify medical equipment and medicines - Value the role of science in disease prevention |
- Discuss how vaccines and medicines are developed
- Identify scientific instruments used in hospitals - Role-play visiting a doctor - Share experiences about medical treatments |
How does science help keep us healthy?
|
- Master Integrated Science pg. 4
- Pictures of medical equipment - First aid kit - Master Integrated Science pg. 5 - Pictures of vehicles - Internet access - Food packages - Fabric samples |
- Role-play assessment
- Oral discussions
- Written assignments
|
|
| 2 | 4 |
Scientific Investigation
|
Introduction to Integrated Science - Importance in industry
Introduction to Integrated Science - Career opportunities |
By the end of the
lesson, the learner
should be able to:
- Explain how science helps industries - Identify industrial processes - Value environmental conservation in industries |
- Study pictures of industries and their products
- Discuss recycling and waste management - Create models of simple machines - Present findings on industrial applications |
How do industries use science to make products?
|
- Master Integrated Science pg. 6
- Pictures of industries - Recycled materials - Master Integrated Science pg. 7 - Career magazines - Digital devices |
- Model making
- Presentations
- Group work
|
|
| 3 | 1 |
Scientific Investigation
|
Introduction to Integrated Science - STEM pathways
Introduction to Integrated Science - Project work and review |
By the end of the
lesson, the learner
should be able to:
- Explain STEM pathway components - Identify senior school science options - Appreciate the importance of STEM education |
- Study STEM pathway diagram
- Discuss Pure Sciences, Applied Sciences, and Technical Engineering - Create a pathway flow chart - Share findings with peers |
How does Integrated Science prepare us for senior school?
|
- Master Integrated Science pg. 8
- STEM pathway charts - Manila papers - Master Integrated Science pg. 9 - Project materials - Assessment rubrics |
- Flow chart creation
- Peer discussions
- Written assignments
|
|
| 3 | 2 |
Scientific Investigation
|
Laboratory Safety - Defining a laboratory
Laboratory Safety - Common hazards and symbols |
By the end of the
lesson, the learner
should be able to:
- Define the term laboratory - Identify places where laboratories are found - Appreciate the importance of laboratories |
- Visit the school laboratory
- Discuss what a laboratory is used for - Identify different types of laboratories - Share experiences about laboratory visits |
What is a laboratory and why is it important?
|
- Master Integrated Science pg. 13
- School laboratory - Pictures of laboratories - Master Integrated Science pg. 14 - Chemical containers with labels - Drawing materials |
- Practical observations
- Oral questions
- Written definitions
|
|
| 3 | 3 |
Scientific Investigation
|
Laboratory Safety - Flammable substances
Laboratory Safety - Toxic substances |
By the end of the
lesson, the learner
should be able to:
- Identify flammable substances - Explain safety measures for flammable materials - Practice safe handling of such substances |
- Identify the flammable symbol
- Discuss substances that catch fire easily - Practice proper storage methods - Demonstrate safe handling procedures |
How should we handle substances that catch fire easily?
|
- Master Integrated Science pg. 15
- Flammable substance containers - Safety equipment - Protective equipment - Toxic substance labels |
- Practical demonstrations
- Safety practice assessment
- Oral questions
|
|
| 3 | 4 |
Scientific Investigation
|
Laboratory Safety - Corrosive substances
|
By the end of the
lesson, the learner
should be able to:
- Identify corrosive substances - Explain the effects of corrosive materials - Practice safe handling of corrosive substances |
- Identify the corrosive symbol
- Discuss damage caused by corrosive substances - Practice emergency procedures - Demonstrate proper storage |
What happens when corrosive substances touch our skin?
|
- Master Integrated Science pg. 16
- Corrosive warning labels - Safety equipment |
- Emergency procedure practice
- Safety demonstrations
- Oral assessments
|
|
| 4 | 1 |
Scientific Investigation
|
Laboratory Safety - Radioactive and carcinogenic substances
Laboratory Safety - Causes of laboratory accidents |
By the end of the
lesson, the learner
should be able to:
- Identify radioactive and carcinogenic symbols - Explain the dangers of radiation and cancer-causing substances - Appreciate the need for extreme caution |
- Identify radioactive and carcinogenic symbols
- Discuss health effects of radiation - Learn about protective measures - Practice safety protocols |
Why do we need special protection from radioactive materials?
|
- Master Integrated Science pg. 16
- Radioactive warning labels - Safety protocols chart - Master Integrated Science pg. 17 - Case study materials - Accident report forms |
- Safety protocol demonstration
- Symbol recognition
- Written assessments
|
|
| 4 | 2 |
Scientific Investigation
|
Laboratory Safety - Burns and scalds
Laboratory Safety - Cuts and injuries |
By the end of the
lesson, the learner
should be able to:
- Distinguish between burns and scalds - Identify causes of burns and scalds - Practice prevention measures |
- Differentiate between dry heat burns and wet heat scalds
- Identify sources of burns and scalds in the laboratory - Practice proper handling of hot equipment - Demonstrate safety procedures |
What is the difference between burns and scalds?
|
- Master Integrated Science pg. 18
- Hot water demonstration setup - Safety equipment - Glassware samples - Safety gloves |
- Practical demonstrations
- Safety procedure assessment
- Oral questions
|
|
| 4 | 3 |
Scientific Investigation
|
Laboratory Safety - Ingestion of harmful substances
Laboratory Safety - First aid for burns and scalds |
By the end of the
lesson, the learner
should be able to:
- Explain how harmful substances can be ingested - Practice hygiene measures in the laboratory - Demonstrate emergency response procedures |
- Discuss how chemicals can accidentally enter the body
- Practice proper hand washing techniques - Learn about eating restrictions in the laboratory - Demonstrate emergency first aid |
Why should we never eat or drink in the laboratory?
|
- Master Integrated Science pg. 19
- Hand washing stations - Emergency contact information - Master Integrated Science pg. 20 - First aid kit - Cold water supply |
- Hygiene practice assessment
- Emergency procedure demonstration
- Written tests
|
|
| 4 | 4 |
Scientific Investigation
|
Laboratory Safety - First aid for cuts
Laboratory Safety - First aid for ingestion emergencies |
By the end of the
lesson, the learner
should be able to:
- Demonstrate first aid for cuts - Practice wound cleaning procedures - Show competence in bandaging techniques |
- Learn proper wound cleaning methods
- Practice applying pressure to stop bleeding - Demonstrate bandaging techniques - Role-play cut injury scenarios |
How do we properly treat a cut to prevent infection?
|
- Master Integrated Science pg. 21
- Bandages and gauze - Antiseptic solution - Emergency contact numbers - Poison control information |
- Bandaging skills assessment
- First aid demonstration
- Practical evaluation
|
|
| 5 | 1 |
Scientific Investigation
|
Laboratory Safety - Importance of safety measures
|
By the end of the
lesson, the learner
should be able to:
- Explain why laboratory safety is important - Value personal and others' safety - Appreciate the role of safety in learning |
- Discuss benefits of following safety rules
- Analyze consequences of ignoring safety - Create safety promotion materials - Present safety importance to younger students |
Why is it important to follow safety rules in the laboratory?
|
- Master Integrated Science pg. 22
- Safety promotion materials - Presentation equipment |
- Safety presentation assessment
- Material creation evaluation
- Peer teaching assessment
|
|
| 5 | 2 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Basic skills in science
Laboratory Apparatus and Instruments - Manipulative skills |
By the end of the
lesson, the learner
should be able to:
- Define basic skills in science - Identify different science process skills - Appreciate the importance of scientific skills |
- Brainstorm on scientific skills
- Identify skills used in daily activities - Practice observation and classification - Discuss the importance of each skill |
Why are basic skills important in science?
|
- Master Integrated Science pg. 25
- Observable objects - Classification materials - Master Integrated Science pg. 26 - Laboratory equipment - Safety gloves |
- Skills demonstration
- Practical observations
- Oral assessments
|
|
| 5 | 3 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Observation skills
Laboratory Apparatus and Instruments - Measurement skills |
By the end of the
lesson, the learner
should be able to:
- Define observation skills - Practice using different senses for observation - Record observations accurately |
- Use all senses to observe objects
- Practice detailed observation techniques - Record observations systematically - Compare observations with classmates |
What can we learn by observing carefully?
|
- Master Integrated Science pg. 26
- Various objects for observation - Observation recording sheets - Master Integrated Science pg. 27 - Rulers and measuring tapes - Objects to measure |
- Observation recording assessment
- Accuracy evaluation
- Systematic recording check
|
|
| 5 | 4 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Classification skills
Laboratory Apparatus and Instruments - Prediction and communication skills |
By the end of the
lesson, the learner
should be able to:
- Define classification skills - Practice grouping objects by properties - Create classification systems |
- Sort objects by different characteristics
- Create classification charts - Practice biological classification - Develop personal classification systems |
How do we organize things into groups?
|
- Master Integrated Science pg. 27
- Various objects for sorting - Classification charts - Simple experiment materials - Communication aids |
- Classification accuracy assessment
- Chart creation evaluation
- System development check
|
|
| 6 | 1 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Heating apparatus identification
Laboratory Apparatus and Instruments - Parts of a Bunsen burner |
By the end of the
lesson, the learner
should be able to:
- Identify heating apparatus in the laboratory - Name different heating instruments - Understand the purpose of each heating device |
- Observe different heating apparatus
- Identify Bunsen burners, spirit lamps, and hot plates - Discuss uses of each heating device - Create a chart of heating equipment |
What equipment do we use for heating in the laboratory?
|
- Master Integrated Science pg. 28
- Various heating apparatus - Equipment identification charts - Master Integrated Science pg. 30 - Bunsen burner - Labeling materials |
- Equipment identification assessment
- Chart creation evaluation
- Purpose explanation check
|
|
| 6 | 2 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Using and caring for heating apparatus
|
By the end of the
lesson, the learner
should be able to:
- Demonstrate proper use of heating apparatus - Practice safety measures while heating - Show proper care and maintenance procedures |
- Practice lighting a Bunsen burner safely
- Demonstrate proper flame adjustment - Practice cleaning and storage procedures - Follow safety protocols throughout |
How do we safely use and care for heating equipment?
|
- Master Integrated Science pg. 31
- Heating apparatus - Safety equipment |
- Safe usage demonstration
- Care procedure assessment
- Safety protocol evaluation
|
|
| 6 | 3 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Mass measuring instruments
Laboratory Apparatus and Instruments - Temperature measuring instruments |
By the end of the
lesson, the learner
should be able to:
- Identify instruments for measuring mass - Distinguish between electronic and beam balances - Practice proper use of weighing instruments |
- Identify different types of balances
- Practice using electronic balances - Compare beam balance and electronic balance - Measure masses of various objects |
What instruments do we use to measure mass?
|
- Master Integrated Science pg. 34
- Electronic and beam balances - Objects for weighing - Master Integrated Science pg. 36 - Various thermometers - Substances at different temperatures |
- Balance usage assessment
- Measurement accuracy evaluation
- Comparison skills check
|
|
| 6 | 4 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Length measuring instruments
Laboratory Apparatus and Instruments - Volume and weight measuring |
By the end of the
lesson, the learner
should be able to:
- Identify length measuring instruments - Use rulers, calipers, and micrometers - Practice accurate length measurements |
- Use rulers and tape measures
- Practice with vernier calipers - Learn micrometer screw gauge usage - Measure various object dimensions |
What tools help us measure length precisely?
|
- Master Integrated Science pg. 39
- Rulers, calipers, micrometers - Objects for measurement - Master Integrated Science pg. 45 - Volume measuring apparatus - Spring balances |
- Measurement precision assessment
- Tool usage evaluation
- Accuracy comparison check
|
|
| 7 | 1 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Magnification tools and SI units
Laboratory Apparatus and Instruments - Practical skills assessment |
By the end of the
lesson, the learner
should be able to:
- Identify magnification instruments - Use microscopes and hand lenses - Understand SI units for measurements |
- Practice using hand lenses
- Learn microscope parts and functions - Use microscopes to observe specimens - Review all SI units covered |
How do we see tiny objects and express measurements?
|
- Master Integrated Science pg. 49
- Microscopes and hand lenses - SI unit reference charts - Master Integrated Science pg. 25-56 - All apparatus covered - Assessment rubrics |
- Microscope usage assessment
- Magnification skills evaluation
- SI unit application check
|
|
| 7 | 2 |
Scientific Investigation
Mixtures, Elements and Compounds Mixtures, Elements and Compounds |
Laboratory Apparatus and Instruments - Review and consolidation
Mixtures - Components of Integrated Science as a field of study Mixtures - Categorising mixtures as homogenous or heterogeneous |
By the end of the
lesson, the learner
should be able to:
- Review all concepts covered in the strand - Demonstrate understanding through assessment - Appreciate the importance of scientific investigation |
- Review all sub-strand topics
- Complete comprehensive assessment - Reflect on learning achievements - Plan for future learning |
What have we learned about scientific investigation?
|
- Master Integrated Science pg. 25-56
- Review materials - Assessment papers Master Integrated Science pg. 72 - Digital resources - Internet access - Exercise books - Environment for observation |
- Comprehensive written assessment
- Reflection evaluation
- Learning progress check
|
|
| 7 | 3 |
Mixtures, Elements and Compounds
|
Mixtures - Solute, solvent and solution
Mixtures - Identifying solute, solvent and solution in mixtures Mixtures - Separation by evaporation |
By the end of the
lesson, the learner
should be able to:
- Define solute, solvent and solution - Identify the solute and solvent in given solutions - Show interest in understanding solution formation |
- Use textbooks and digital devices to research on solute, solvent and solution
- Discuss findings with classmates - Demonstrate solution formation using salt and water |
How do solutes and solvents combine to form solutions?
|
Master Integrated Science pg. 74
- Salt and water - Beakers and stirring rods - Common salt - Water - Beakers - Stirring rods Master Integrated Science pg. 76 - Salt, water - Evaporating dish - Bunsen burner - Tripod stand |
- Oral questions
- Practical work
- Written tests
|
|
| 7 | 4 |
Mixtures, Elements and Compounds
|
Mixtures - Separation by crystallisation
Mixtures - Simple distillation setup Mixtures - Separation by simple distillation Mixtures - Fractional distillation setup |
By the end of the
lesson, the learner
should be able to:
- Explain the crystallisation process - Separate mixtures using crystallisation method - Show appreciation for the crystallisation method |
- Prepare saturated salt solution
- Heat solution gently while stirring - Allow cooling and observe crystal formation - Filter and dry the crystals |
What is the difference between evaporation and crystallisation?
|
Master Integrated Science pg. 78
- Salt, distilled water - Evaporating dish - Filter paper and funnel Master Integrated Science pg. 80 - Distillation apparatus - Safety equipment - Salt solution - Complete distillation setup - Thermometer Master Integrated Science pg. 82 - Fractional distillation apparatus - Digital devices for research |
- Practical work
- Observation
- Written tests
|
|
| 8 |
Midterm Break |
||||||||
| 9 | 1 |
Mixtures, Elements and Compounds
|
Mixtures - Separation by fractional distillation
Mixtures - Separation by sublimation |
By the end of the
lesson, the learner
should be able to:
- Demonstrate fractional distillation process - Explain separation of miscible liquids - Show appreciation for advanced separation techniques |
- Separate water and ethanol mixture using fractional distillation
- Monitor temperature changes - Collect fractions at different temperatures - Discuss applications |
How are miscible liquids with close boiling points separated?
|
Master Integrated Science pg. 82
- Water and ethanol mixture - Complete fractional distillation setup Master Integrated Science pg. 84 - Impure iodine - Evaporating dish - Filter funnel - Cotton wool |
- Practical work
- Assessment rubrics
- Written tests
|
|
| 9 | 2 |
Mixtures, Elements and Compounds
|
Mixtures - Separation by solvent extraction
|
By the end of the
lesson, the learner
should be able to:
- Explain solvent extraction method - Extract oil from nuts using solvent extraction - Show interest in extraction processes |
- Crush groundnuts and add propanone
- Allow mixture to settle and decant solution - Evaporate solvent to obtain oil - Test oil properties using filter paper |
How are useful substances extracted from natural materials?
|
Master Integrated Science pg. 86
- Groundnuts or seeds - Propanone - Mortar and pestle - Filter paper |
- Practical work
- Assessment rubrics
- Observation schedule
|
|
| 9 | 3 |
Mixtures, Elements and Compounds
|
Mixtures - Separation by chromatography
Mixtures - Extended chromatography activity |
By the end of the
lesson, the learner
should be able to:
- Define paper chromatography - Demonstrate chromatography technique - Appreciate chromatography as an analytical tool |
- Prepare filter paper strip
- Apply ink spot and dip in propanone - Observe separation of ink components - Measure distances travelled by components |
How does chromatography separate components of colored mixtures?
|
Master Integrated Science pg. 88
- Black ink - Filter paper - Propanone - Measuring cylinder Master Integrated Science pg. 90 - Various pen inks - Filter papers - Droppers |
- Practical work
- Observation
- Written assignments
|
|
| 9 | 4 |
Mixtures, Elements and Compounds
|
Mixtures - Applications of separation methods in daily life
Mixtures - Matching separation methods with applications |
By the end of the
lesson, the learner
should be able to:
- Identify applications of separation methods in industries - Explain real-life uses of separation techniques - Appreciate the importance of separation methods in society |
- Study images showing industrial applications
- Discuss separation methods used in salt production - Research applications using digital devices - Present findings to classmates |
How are separation methods applied in industries and daily life?
|
Master Integrated Science pg. 92
- Digital devices - Industrial application images - Reference materials Master Integrated Science pg. 94 - Activity tables - Course book |
- Research presentation
- Oral questions
- Written tests
|
|
| 10 | 1 |
Mixtures, Elements and Compounds
|
Mixtures - Review of separation methods
Mixtures - Assessment and application synthesis |
By the end of the
lesson, the learner
should be able to:
- Summarize all separation methods learned - Compare advantages and disadvantages of different methods - Demonstrate understanding of separation principles |
- Review all separation methods covered
- Create summary charts of separation techniques - Discuss when to use each method - Practice problem-solving with mixture separation |
How do we choose the best separation method for a given situation?
|
Master Integrated Science pg. 72-94
- Summary charts - Previous practical results - Problem scenarios - Assessment materials |
- Written tests
- Observation
- Assessment rubrics
|
|
| 10 | 2 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Introduction to acids and bases
Acids, Bases and Indicators - Using litmus paper to identify acids and bases |
By the end of the
lesson, the learner
should be able to:
- Define acids and bases - Identify characteristics of acids and bases - Show interest in learning about acids and bases |
- Brainstorm on acids and bases
- Discuss taste and texture of common substances - Identify acidic and basic substances in daily life - Share experiences with sour and bitter substances |
What makes substances acidic or basic?
|
Master Integrated Science pg. 95
- Common household items - Course book Master Integrated Science pg. 96 - Red and blue litmus papers - Various household solutions - Test tubes |
- Observation
- Oral questions
- Written assignments
|
|
| 10 | 3 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Resource person on plant extract indicators
|
By the end of the
lesson, the learner
should be able to:
- Explain the use of plant extracts as indicators - Identify plants suitable for indicator preparation - Show appreciation for natural indicators |
- Listen to resource person on plant extract indicators
- Ask questions for clarification - Write notes on key points discussed - Discuss applications of natural indicators |
Why can some plants be used as acid-base indicators?
|
Master Integrated Science pg. 98
- Resource person - Note-taking materials |
- Observation
- Oral questions
- Note-taking assessment
|
|
| 10 | 4 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Preparing indicators from plant extracts
Acids, Bases and Indicators - Alternative plant extract preparation |
By the end of the
lesson, the learner
should be able to:
- Prepare acid-base indicators from plant flowers - Extract colored substances from plant materials - Show interest in natural indicator preparation |
- Collect colored flowers from school environment
- Cut flowers into small pieces - Crush flowers with ethanol to extract color - Filter the extract to obtain colored solution |
How do we extract useful indicators from plants?
|
Master Integrated Science pg. 98
- Plant flowers - Ethanol - Mortar and pestle - Filter paper Master Integrated Science pg. 100 - Red cabbage or beetroot - Extraction apparatus |
- Practical work
- Assessment rubrics
- Observation
|
|
| 11 | 1 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Testing solutions with plant extract indicators
Acids, Bases and Indicators - Physical properties of acids |
By the end of the
lesson, the learner
should be able to:
- Use plant extract indicators to test solutions - Classify solutions as acidic or basic using natural indicators - Show appreciation for natural indicator effectiveness |
- Test various household solutions with plant extract indicators
- Record color changes observed - Complete classification table - Compare results with litmus paper tests |
How effective are plant extract indicators compared to litmus paper?
|
Master Integrated Science pg. 100
- Plant extract indicators - Various household solutions - Test tubes - Droppers Master Integrated Science pg. 102 - Lemon juice - Safety equipment - Litmus papers |
- Practical work
- Observation schedule
- Written tests
|
|
| 11 | 2 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Physical properties of bases
Acids, Bases and Indicators - Solubility of acids and bases |
By the end of the
lesson, the learner
should be able to:
- Describe physical properties of bases - Compare properties of bases with acids - Appreciate differences between acids and bases |
- Observe appearance of baking powder solution
- Test texture and smell safely - Test with litmus papers - Compare with acidic solution properties - Record comparative observations |
How do physical properties of bases differ from acids?
|
Master Integrated Science pg. 102
- Baking powder solution - Safety equipment - Litmus papers - Comparison tables - Acidic and basic solutions - Water - Test tubes - Observation sheets |
- Practical work
- Assessment rubrics
- Comparative analysis
|
|
| 11 | 3 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Electrical conductivity of acids and bases
Acids, Bases and Indicators - Uses of acids in daily life |
By the end of the
lesson, the learner
should be able to:
- Test electrical conductivity of acids and bases - Explain why acids and bases conduct electricity - Appreciate electrical properties of solutions |
- Set up electrical conductivity apparatus
- Test conductivity of vinegar - Test conductivity of baking powder solution - Observe bulb brightness in both cases |
Why do acidic and basic solutions conduct electricity?
|
Master Integrated Science pg. 102
- Battery and bulb setup - Connecting wires - Metal rods - Acidic and basic solutions Master Integrated Science pg. 104 - Digital devices - Application images - Reference materials |
- Practical work
- Observation schedule
- Assessment rubrics
|
|
| 11 | 4 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Uses of bases in daily life
|
By the end of the
lesson, the learner
should be able to:
- Identify uses of bases in cooking, cleaning, and medicine - Explain applications of bases in agriculture - Show appreciation for base applications |
- Discuss baking soda uses in cooking
- Explore cleaning applications of bases - Research medicinal uses of antacids - Study soil treatment with bases |
What important roles do bases play in our lives?
|
Master Integrated Science pg. 104
- Household base products - Digital resources - Application examples |
- Observation
- Research activities
- Oral presentations
|
|
| 12 | 1 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Uses of indicators in various sectors
Acids, Bases and Indicators - Reading product labels for acids and bases |
By the end of the
lesson, the learner
should be able to:
- Explain uses of indicators in agriculture, medicine, and laboratories - Identify importance of indicators in testing - Appreciate indicator applications in quality control |
- Research indicator uses in soil testing
- Discuss medical test strips - Explore food freshness indicators - Study laboratory indicator applications |
How do indicators help in testing and quality control?
|
Master Integrated Science pg. 104
- Test strips examples - Digital resources - Laboratory indicators - Household product containers - Label reading worksheets - Classification tables |
- Research presentation
- Assessment rubrics
- Written tests
|
|
| 12 | 2 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Applications in food and cooking
Acids, Bases and Indicators - Applications in agriculture |
By the end of the
lesson, the learner
should be able to:
- Explain uses of acids and bases in food preparation - Identify preservative and flavoring applications - Appreciate chemical processes in cooking |
- Study food preservatives containing acids
- Explore baking powder use in cooking - Discuss vinegar applications in food - Analyze food flavoring with citric acid |
How do acids and bases contribute to food preparation and preservation?
|
Master Integrated Science pg. 104
- Food product examples - Cooking ingredients - Preservative labels - Soil testing materials - Agricultural examples - pH testing demonstrations |
- Observation
- Practical demonstrations
- Oral questions
|
|
| 12 | 3 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Applications in medicine and health
Acids, Bases and Indicators - Applications in cleaning and industry |
By the end of the
lesson, the learner
should be able to:
- Identify medicinal uses of acids and bases - Explain antacid function in treating heartburn - Appreciate chemical solutions to health problems |
- Study antacid tablet ingredients
- Discuss stomach acid neutralization - Explore pain relief medications containing acids - Research medical applications of acids and bases |
How do acids and bases help solve health problems?
|
Master Integrated Science pg. 104
- Medicine examples - Antacid products - Medical application research - Cleaning product examples - Industrial application images - Safety material examples |
- Research activities
- Oral presentations
- Written assignments
|
|
| 12 | 4 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Review and synthesis of concepts
Acids, Bases and Indicators - Problem-solving with acids and bases Acids, Bases and Indicators - Integration and future applications |
By the end of the
lesson, the learner
should be able to:
- Summarize key concepts about acids, bases, and indicators - Compare different identification methods - Demonstrate comprehensive understanding |
- Review acid and base definitions
- Compare litmus and plant extract indicators - Summarize physical properties - Create concept maps of applications |
How do all the concepts about acids, bases, and indicators connect?
|
Master Integrated Science pg. 95-105
- Review materials - Concept mapping resources - Unknown solution samples - Various indicators - Problem scenarios - Career information resources - Future learning pathways |
- Written tests
- Assessment rubrics
- Concept mapping
|
|
Your Name Comes Here