If this scheme pleases you, click here to download.
| WK | LSN | STRAND | SUB-STRAND | LESSON LEARNING OUTCOMES | LEARNING EXPERIENCES | KEY INQUIRY QUESTIONS | LEARNING RESOURCES | ASSESSMENT METHODS | REFLECTION |
|---|---|---|---|---|---|---|---|---|---|
| 2 | 1 |
Scientific Investigation
|
Introduction to Integrated Science - Components of Integrated Science
|
By the end of the
lesson, the learner
should be able to:
- Define the term Integrated Science - Identify the three components of Integrated Science - Show interest in learning about science components |
- Brainstorm on the components of Integrated Science in groups
- Use charts to identify Physics, Chemistry and Biology - Discuss the meaning of Integrated Science - Draw and label a diagram showing the three components |
How does integration help us understand science better?
|
- Master Integrated Science pg. 1
- Charts showing science components - Digital resources |
- Observation
- Oral questions
- Written assignments
|
|
| 2 | 2 |
Scientific Investigation
|
Introduction to Integrated Science - Physics as a component
Introduction to Integrated Science - Chemistry as a component |
By the end of the
lesson, the learner
should be able to:
- Define Physics - Give examples of Physics concepts - Appreciate the role of Physics in daily life |
- Discuss the definition of Physics
- Identify Physics concepts from given examples - Use digital devices to search for Physics applications - Share findings with classmates |
What is the study of Physics all about?
|
- Master Integrated Science pg. 2
- Digital devices - Reference books - Laboratory chemicals - Charts |
- Oral questions
- Group discussions
- Practical activities
|
|
| 2 | 3 |
Scientific Investigation
|
Introduction to Integrated Science - Biology as a component
Introduction to Integrated Science - Importance in agriculture Introduction to Integrated Science - Importance in health |
By the end of the
lesson, the learner
should be able to:
- Define Biology - Give examples of biological concepts - Appreciate the study of living things |
- Discuss the definition of Biology
- Identify living things in the school compound - Classify organisms as plants and animals - Share findings through group presentations |
Why is the study of living things important?
|
- Master Integrated Science pg. 2
- Living specimens - Magnifying glass - Master Integrated Science pg. 3 - Pictures of farming tools - School garden - Master Integrated Science pg. 4 - Pictures of medical equipment - First aid kit |
- Field observations
- Group work assessment
- Oral questions
|
|
| 2 | 4 |
Scientific Investigation
|
Introduction to Integrated Science - Importance in transport
Introduction to Integrated Science - Importance in food and textile Introduction to Integrated Science - Importance in industry |
By the end of the
lesson, the learner
should be able to:
- Explain scientific innovations in transport - Identify eco-friendly transport methods - Appreciate technological advancement in transport |
- Study pictures of different transport methods
- Discuss electric vehicles and their benefits - Compare traditional and modern transport - Create a timeline of transport evolution |
How has science improved transportation?
|
- Master Integrated Science pg. 5
- Pictures of vehicles - Internet access - Food packages - Fabric samples - Master Integrated Science pg. 6 - Pictures of industries - Recycled materials |
- Timeline creation
- Group discussions
- Observations
|
|
| 2 | 5 |
Scientific Investigation
|
Introduction to Integrated Science - Career opportunities
|
By the end of the
lesson, the learner
should be able to:
- Identify science-related careers - Explain pathways in STEM education - Show interest in science careers |
- Create a career chart using available materials
- Research science careers using digital devices - Interview a science professional - Display career information |
What career opportunities does science offer?
|
- Master Integrated Science pg. 7
- Career magazines - Digital devices |
- Career chart assessment
- Interview reports
- Presentations
|
|
| 3 | 1 |
Scientific Investigation
|
Introduction to Integrated Science - STEM pathways
|
By the end of the
lesson, the learner
should be able to:
- Explain STEM pathway components - Identify senior school science options - Appreciate the importance of STEM education |
- Study STEM pathway diagram
- Discuss Pure Sciences, Applied Sciences, and Technical Engineering - Create a pathway flow chart - Share findings with peers |
How does Integrated Science prepare us for senior school?
|
- Master Integrated Science pg. 8
- STEM pathway charts - Manila papers |
- Flow chart creation
- Peer discussions
- Written assignments
|
|
| 3 | 2 |
Scientific Investigation
|
Introduction to Integrated Science - Project work and review
Laboratory Safety - Defining a laboratory |
By the end of the
lesson, the learner
should be able to:
- Create a comprehensive career chart - Present science importance findings - Demonstrate understanding of Integrated Science |
- Complete the career chart project
- Present projects to classmates - Review all topics covered - Conduct peer assessment |
What have we learned about Integrated Science?
|
- Master Integrated Science pg. 9
- Project materials - Assessment rubrics - Master Integrated Science pg. 13 - School laboratory - Pictures of laboratories |
- Project assessment
- Peer evaluation
- Self-assessment
|
|
| 3 | 3 |
Scientific Investigation
|
Laboratory Safety - Common hazards and symbols
|
By the end of the
lesson, the learner
should be able to:
- Identify common laboratory hazards - Recognize hazard symbols - Show concern for laboratory safety |
- Observe hazard symbols on chemical containers
- Draw and name different hazard symbols - Discuss the meaning of each symbol - Create a safety symbols chart |
What do laboratory hazard symbols tell us?
|
- Master Integrated Science pg. 14
- Chemical containers with labels - Drawing materials |
- Symbol identification
- Chart creation
- Practical work
|
|
| 3 | 4 |
Scientific Investigation
|
Laboratory Safety - Flammable substances
|
By the end of the
lesson, the learner
should be able to:
- Identify flammable substances - Explain safety measures for flammable materials - Practice safe handling of such substances |
- Identify the flammable symbol
- Discuss substances that catch fire easily - Practice proper storage methods - Demonstrate safe handling procedures |
How should we handle substances that catch fire easily?
|
- Master Integrated Science pg. 15
- Flammable substance containers - Safety equipment |
- Practical demonstrations
- Safety practice assessment
- Oral questions
|
|
| 3 | 5 |
Scientific Investigation
|
Laboratory Safety - Toxic substances
|
By the end of the
lesson, the learner
should be able to:
- Identify toxic substances - Explain dangers of toxic materials - Practice safety measures when near toxic substances |
- Identify the toxic symbol
- Discuss harmful effects of toxic substances - Practice using protective equipment - Demonstrate proper disposal methods |
Why are some laboratory substances dangerous to our health?
|
- Master Integrated Science pg. 15
- Protective equipment - Toxic substance labels |
- Practical demonstrations
- Safety assessment
- Written tests
|
|
| 4 | 1 |
Scientific Investigation
|
Laboratory Safety - Corrosive substances
Laboratory Safety - Radioactive and carcinogenic substances |
By the end of the
lesson, the learner
should be able to:
- Identify corrosive substances - Explain the effects of corrosive materials - Practice safe handling of corrosive substances |
- Identify the corrosive symbol
- Discuss damage caused by corrosive substances - Practice emergency procedures - Demonstrate proper storage |
What happens when corrosive substances touch our skin?
|
- Master Integrated Science pg. 16
- Corrosive warning labels - Safety equipment - Radioactive warning labels - Safety protocols chart |
- Emergency procedure practice
- Safety demonstrations
- Oral assessments
|
|
| 4 | 2 |
Scientific Investigation
|
Laboratory Safety - Causes of laboratory accidents
|
By the end of the
lesson, the learner
should be able to:
- Identify common causes of laboratory accidents - Explain how accidents occur - Develop awareness to prevent accidents |
- Discuss common laboratory accidents
- Analyze case studies of laboratory incidents - Identify unsafe practices - Create an accident prevention checklist |
How do accidents happen in the laboratory?
|
- Master Integrated Science pg. 17
- Case study materials - Accident report forms |
- Case study analysis
- Checklist creation
- Group discussions
|
|
| 4 | 3 |
Scientific Investigation
|
Laboratory Safety - Burns and scalds
|
By the end of the
lesson, the learner
should be able to:
- Distinguish between burns and scalds - Identify causes of burns and scalds - Practice prevention measures |
- Differentiate between dry heat burns and wet heat scalds
- Identify sources of burns and scalds in the laboratory - Practice proper handling of hot equipment - Demonstrate safety procedures |
What is the difference between burns and scalds?
|
- Master Integrated Science pg. 18
- Hot water demonstration setup - Safety equipment |
- Practical demonstrations
- Safety procedure assessment
- Oral questions
|
|
| 4 | 4 |
Scientific Investigation
|
Laboratory Safety - Cuts and injuries
Laboratory Safety - Ingestion of harmful substances |
By the end of the
lesson, the learner
should be able to:
- Identify causes of cuts in the laboratory - Practice safe handling of glassware - Demonstrate proper cleanup procedures |
- Handle glassware safely
- Practice proper disposal of broken glass - Demonstrate safe cutting techniques - Learn emergency response for cuts |
How can we prevent cuts when using glassware?
|
- Master Integrated Science pg. 18
- Glassware samples - Safety gloves - Master Integrated Science pg. 19 - Hand washing stations - Emergency contact information |
- Safe handling demonstration
- Emergency response practice
- Practical assessment
|
|
| 4 | 5 |
Scientific Investigation
|
Laboratory Safety - First aid for burns and scalds
|
By the end of the
lesson, the learner
should be able to:
- Demonstrate first aid for burns - Demonstrate first aid for scalds - Practice emergency response procedures |
- Learn the steps for treating burns
- Practice cooling burn injuries - Demonstrate proper wound covering - Role-play emergency situations |
What should we do immediately when someone gets burned?
|
- Master Integrated Science pg. 20
- First aid kit - Cold water supply |
- First aid demonstration
- Role-play assessment
- Practical skills test
|
|
| 5 | 1 |
Scientific Investigation
|
Laboratory Safety - First aid for cuts
|
By the end of the
lesson, the learner
should be able to:
- Demonstrate first aid for cuts - Practice wound cleaning procedures - Show competence in bandaging techniques |
- Learn proper wound cleaning methods
- Practice applying pressure to stop bleeding - Demonstrate bandaging techniques - Role-play cut injury scenarios |
How do we properly treat a cut to prevent infection?
|
- Master Integrated Science pg. 21
- Bandages and gauze - Antiseptic solution |
- Bandaging skills assessment
- First aid demonstration
- Practical evaluation
|
|
| 5 | 2 |
Scientific Investigation
|
Laboratory Safety - First aid for ingestion emergencies
Laboratory Safety - Importance of safety measures |
By the end of the
lesson, the learner
should be able to:
- Demonstrate first aid for poisoning - Practice emergency communication - Show knowledge of when not to induce vomiting |
- Learn appropriate responses to chemical ingestion
- Practice emergency calling procedures - Understand poison control measures - Role-play poisoning emergencies |
What should we do if someone swallows a harmful chemical?
|
- Master Integrated Science pg. 21
- Emergency contact numbers - Poison control information - Master Integrated Science pg. 22 - Safety promotion materials - Presentation equipment |
- Emergency response demonstration
- Communication skills assessment
- Scenario-based evaluation
|
|
| 5 | 3 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Basic skills in science
|
By the end of the
lesson, the learner
should be able to:
- Define basic skills in science - Identify different science process skills - Appreciate the importance of scientific skills |
- Brainstorm on scientific skills
- Identify skills used in daily activities - Practice observation and classification - Discuss the importance of each skill |
Why are basic skills important in science?
|
- Master Integrated Science pg. 25
- Observable objects - Classification materials |
- Skills demonstration
- Practical observations
- Oral assessments
|
|
| 5 | 4 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Manipulative skills
|
By the end of the
lesson, the learner
should be able to:
- Define manipulative skills - Practice handling laboratory equipment - Demonstrate safe manipulation techniques |
- Handle various laboratory tools
- Practice proper gripping techniques - Demonstrate equipment care - Show safe manipulation methods |
How do we safely handle laboratory equipment?
|
- Master Integrated Science pg. 26
- Laboratory equipment - Safety gloves |
- Equipment handling assessment
- Safety demonstration
- Practical skills evaluation
|
|
| 5 | 5 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Observation skills
Laboratory Apparatus and Instruments - Measurement skills |
By the end of the
lesson, the learner
should be able to:
- Define observation skills - Practice using different senses for observation - Record observations accurately |
- Use all senses to observe objects
- Practice detailed observation techniques - Record observations systematically - Compare observations with classmates |
What can we learn by observing carefully?
|
- Master Integrated Science pg. 26
- Various objects for observation - Observation recording sheets - Master Integrated Science pg. 27 - Rulers and measuring tapes - Objects to measure |
- Observation recording assessment
- Accuracy evaluation
- Systematic recording check
|
|
| 6 | 1 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Classification skills
|
By the end of the
lesson, the learner
should be able to:
- Define classification skills - Practice grouping objects by properties - Create classification systems |
- Sort objects by different characteristics
- Create classification charts - Practice biological classification - Develop personal classification systems |
How do we organize things into groups?
|
- Master Integrated Science pg. 27
- Various objects for sorting - Classification charts |
- Classification accuracy assessment
- Chart creation evaluation
- System development check
|
|
| 6 | 2 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Prediction and communication skills
|
By the end of the
lesson, the learner
should be able to:
- Define prediction and communication skills - Make reasonable predictions - Communicate findings effectively |
- Make predictions about simple experiments
- Test predictions through observation - Communicate results to classmates - Practice scientific reporting |
How do we share our scientific discoveries?
|
- Master Integrated Science pg. 27
- Simple experiment materials - Communication aids |
- Prediction accuracy assessment
- Communication skills evaluation
- Scientific reporting check
|
|
| 6 | 3 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Heating apparatus identification
|
By the end of the
lesson, the learner
should be able to:
- Identify heating apparatus in the laboratory - Name different heating instruments - Understand the purpose of each heating device |
- Observe different heating apparatus
- Identify Bunsen burners, spirit lamps, and hot plates - Discuss uses of each heating device - Create a chart of heating equipment |
What equipment do we use for heating in the laboratory?
|
- Master Integrated Science pg. 28
- Various heating apparatus - Equipment identification charts |
- Equipment identification assessment
- Chart creation evaluation
- Purpose explanation check
|
|
| 6 | 4 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Parts of a Bunsen burner
Laboratory Apparatus and Instruments - Using and caring for heating apparatus |
By the end of the
lesson, the learner
should be able to:
- Identify parts of a Bunsen burner - Explain the function of each part - Draw a labeled diagram of a Bunsen burner |
- Examine a real Bunsen burner
- Identify and label each part - Discuss the function of each component - Draw accurate labeled diagrams |
What are the different parts of a Bunsen burner?
|
- Master Integrated Science pg. 30
- Bunsen burner - Labeling materials - Master Integrated Science pg. 31 - Heating apparatus - Safety equipment |
- Diagram labeling assessment
- Function explanation evaluation
- Drawing accuracy check
|
|
| 6 | 5 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Mass measuring instruments
|
By the end of the
lesson, the learner
should be able to:
- Identify instruments for measuring mass - Distinguish between electronic and beam balances - Practice proper use of weighing instruments |
- Identify different types of balances
- Practice using electronic balances - Compare beam balance and electronic balance - Measure masses of various objects |
What instruments do we use to measure mass?
|
- Master Integrated Science pg. 34
- Electronic and beam balances - Objects for weighing |
- Balance usage assessment
- Measurement accuracy evaluation
- Comparison skills check
|
|
| 7 | 1 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Temperature measuring instruments
|
By the end of the
lesson, the learner
should be able to:
- Identify temperature measuring instruments - Read thermometers accurately - Practice proper thermometer handling |
- Identify different types of thermometers
- Practice reading temperature scales - Measure temperatures of various substances - Learn proper thermometer care |
How do we measure temperature accurately?
|
- Master Integrated Science pg. 36
- Various thermometers - Substances at different temperatures |
- Reading accuracy assessment
- Handling skills evaluation
- Care procedure check
|
|
| 7 | 2 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Length measuring instruments
Laboratory Apparatus and Instruments - Volume and weight measuring |
By the end of the
lesson, the learner
should be able to:
- Identify length measuring instruments - Use rulers, calipers, and micrometers - Practice accurate length measurements |
- Use rulers and tape measures
- Practice with vernier calipers - Learn micrometer screw gauge usage - Measure various object dimensions |
What tools help us measure length precisely?
|
- Master Integrated Science pg. 39
- Rulers, calipers, micrometers - Objects for measurement - Master Integrated Science pg. 45 - Volume measuring apparatus - Spring balances |
- Measurement precision assessment
- Tool usage evaluation
- Accuracy comparison check
|
|
| 7 | 3 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Magnification tools and SI units
|
By the end of the
lesson, the learner
should be able to:
- Identify magnification instruments - Use microscopes and hand lenses - Understand SI units for measurements |
- Practice using hand lenses
- Learn microscope parts and functions - Use microscopes to observe specimens - Review all SI units covered |
How do we see tiny objects and express measurements?
|
- Master Integrated Science pg. 49
- Microscopes and hand lenses - SI unit reference charts |
- Microscope usage assessment
- Magnification skills evaluation
- SI unit application check
|
|
| 7 | 4 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Practical skills assessment
|
By the end of the
lesson, the learner
should be able to:
- Demonstrate competency in using all apparatus - Show mastery of safety procedures - Apply measurement skills accurately |
- Complete practical skills stations
- Demonstrate all learned procedures - Apply safety measures consistently - Show measurement competency |
How well can we use laboratory equipment safely and accurately?
|
- Master Integrated Science pg. 25-56
- All apparatus covered - Assessment rubrics |
- Comprehensive practical assessment
- Skills demonstration evaluation
- Safety competency check
|
|
| 7 | 5 |
Scientific Investigation
Mixtures, Elements and Compounds Mixtures, Elements and Compounds |
Laboratory Apparatus and Instruments - Review and consolidation
Mixtures - Components of Integrated Science as a field of study Mixtures - Categorising mixtures as homogenous or heterogeneous |
By the end of the
lesson, the learner
should be able to:
- Review all concepts covered in the strand - Demonstrate understanding through assessment - Appreciate the importance of scientific investigation |
- Review all sub-strand topics
- Complete comprehensive assessment - Reflect on learning achievements - Plan for future learning |
What have we learned about scientific investigation?
|
- Master Integrated Science pg. 25-56
- Review materials - Assessment papers Master Integrated Science pg. 72 - Digital resources - Internet access - Exercise books - Environment for observation |
- Comprehensive written assessment
- Reflection evaluation
- Learning progress check
|
|
| 8 | 1 |
Mixtures, Elements and Compounds
|
Mixtures - Solute, solvent and solution
Mixtures - Identifying solute, solvent and solution in mixtures |
By the end of the
lesson, the learner
should be able to:
- Define solute, solvent and solution - Identify the solute and solvent in given solutions - Show interest in understanding solution formation |
- Use textbooks and digital devices to research on solute, solvent and solution
- Discuss findings with classmates - Demonstrate solution formation using salt and water |
How do solutes and solvents combine to form solutions?
|
Master Integrated Science pg. 74
- Salt and water - Beakers and stirring rods - Common salt - Water - Beakers - Stirring rods |
- Oral questions
- Practical work
- Written tests
|
|
| 8 | 2 |
Mixtures, Elements and Compounds
|
Mixtures - Separation by evaporation
Mixtures - Separation by crystallisation Mixtures - Simple distillation setup |
By the end of the
lesson, the learner
should be able to:
- Describe the evaporation method of separation - Demonstrate separation of salt solution using evaporation - Appreciate the importance of evaporation in separation |
- Prepare salt solution
- Set up apparatus for evaporation - Heat the solution until crystals form - Record observations and discuss results |
How does evaporation help in separating mixtures?
|
Master Integrated Science pg. 76
- Salt, water - Evaporating dish - Bunsen burner - Tripod stand Master Integrated Science pg. 78 - Salt, distilled water - Filter paper and funnel Master Integrated Science pg. 80 - Distillation apparatus - Safety equipment |
- Practical work
- Observation schedule
- Assessment rubrics
|
|
| 8 | 3 |
Mixtures, Elements and Compounds
|
Mixtures - Separation by simple distillation
Mixtures - Fractional distillation setup |
By the end of the
lesson, the learner
should be able to:
- Demonstrate simple distillation process - Explain how simple distillation works - Show interest in distillation methods |
- Separate salt and water using simple distillation
- Observe temperature changes during heating - Collect distillate and examine residue - Record observations |
How does simple distillation separate components of different boiling points?
|
Master Integrated Science pg. 80
- Salt solution - Complete distillation setup - Thermometer Master Integrated Science pg. 82 - Fractional distillation apparatus - Digital devices for research |
- Practical work
- Assessment rubrics
- Observation schedule
|
|
| 8 | 4 |
Mixtures, Elements and Compounds
|
Mixtures - Separation by fractional distillation
|
By the end of the
lesson, the learner
should be able to:
- Demonstrate fractional distillation process - Explain separation of miscible liquids - Show appreciation for advanced separation techniques |
- Separate water and ethanol mixture using fractional distillation
- Monitor temperature changes - Collect fractions at different temperatures - Discuss applications |
How are miscible liquids with close boiling points separated?
|
Master Integrated Science pg. 82
- Water and ethanol mixture - Complete fractional distillation setup |
- Practical work
- Assessment rubrics
- Written tests
|
|
| 8 | 5 |
Mixtures, Elements and Compounds
|
Mixtures - Separation by sublimation
Mixtures - Separation by solvent extraction |
By the end of the
lesson, the learner
should be able to:
- Define sublimation and deposition - Demonstrate separation using sublimation - Appreciate sublimation as a separation method |
- Separate iodine from impurities using sublimation
- Observe purple vapour formation - Collect pure iodine crystals on cool surfaces - Discuss other substances that sublime |
How does sublimation help in purifying substances?
|
Master Integrated Science pg. 84
- Impure iodine - Evaporating dish - Filter funnel - Cotton wool Master Integrated Science pg. 86 - Groundnuts or seeds - Propanone - Mortar and pestle - Filter paper |
- Practical work
- Observation
- Oral questions
|
|
| 9 | 1 |
Mixtures, Elements and Compounds
|
Mixtures - Separation by chromatography
|
By the end of the
lesson, the learner
should be able to:
- Define paper chromatography - Demonstrate chromatography technique - Appreciate chromatography as an analytical tool |
- Prepare filter paper strip
- Apply ink spot and dip in propanone - Observe separation of ink components - Measure distances travelled by components |
How does chromatography separate components of colored mixtures?
|
Master Integrated Science pg. 88
- Black ink - Filter paper - Propanone - Measuring cylinder |
- Practical work
- Observation
- Written assignments
|
|
| 9 | 2 |
Mixtures, Elements and Compounds
|
Mixtures - Extended chromatography activity
|
By the end of the
lesson, the learner
should be able to:
- Apply chromatography technique to different materials - Explain solubility differences in separation - Show interest in analytical chemistry |
- Use different ink samples for chromatography
- Apply radial chromatography technique - Compare results from different inks - Discuss solubility and movement patterns |
Why do different components move different distances in chromatography?
|
Master Integrated Science pg. 90
- Various pen inks - Filter papers - Propanone - Droppers |
- Practical work
- Assessment rubrics
- Checklist
|
|
| 9 | 3 |
Mixtures, Elements and Compounds
|
Mixtures - Applications of separation methods in daily life
Mixtures - Matching separation methods with applications |
By the end of the
lesson, the learner
should be able to:
- Identify applications of separation methods in industries - Explain real-life uses of separation techniques - Appreciate the importance of separation methods in society |
- Study images showing industrial applications
- Discuss separation methods used in salt production - Research applications using digital devices - Present findings to classmates |
How are separation methods applied in industries and daily life?
|
Master Integrated Science pg. 92
- Digital devices - Industrial application images - Reference materials Master Integrated Science pg. 94 - Activity tables - Course book |
- Research presentation
- Oral questions
- Written tests
|
|
| 9 | 4 |
Mixtures, Elements and Compounds
|
Mixtures - Review of separation methods
|
By the end of the
lesson, the learner
should be able to:
- Summarize all separation methods learned - Compare advantages and disadvantages of different methods - Demonstrate understanding of separation principles |
- Review all separation methods covered
- Create summary charts of separation techniques - Discuss when to use each method - Practice problem-solving with mixture separation |
How do we choose the best separation method for a given situation?
|
Master Integrated Science pg. 72-94
- Summary charts - Previous practical results |
- Written tests
- Observation
- Assessment rubrics
|
|
| 9 | 5 |
Mixtures, Elements and Compounds
|
Mixtures - Assessment and application synthesis
|
By the end of the
lesson, the learner
should be able to:
- Apply knowledge of separation methods to solve practical problems - Evaluate effectiveness of different separation techniques - Show confidence in handling separation challenges |
- Solve complex separation problems
- Design separation procedures for given mixtures - Evaluate and critique separation methods - Present solutions to separation challenges |
How can we design effective separation procedures for complex mixtures?
|
Master Integrated Science pg. 72-94
- Problem scenarios - Assessment materials |
- Assessment rubrics
- Practical work
- Written tests
|
|
| 10 | 1 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Introduction to acids and bases
Acids, Bases and Indicators - Using litmus paper to identify acids and bases |
By the end of the
lesson, the learner
should be able to:
- Define acids and bases - Identify characteristics of acids and bases - Show interest in learning about acids and bases |
- Brainstorm on acids and bases
- Discuss taste and texture of common substances - Identify acidic and basic substances in daily life - Share experiences with sour and bitter substances |
What makes substances acidic or basic?
|
Master Integrated Science pg. 95
- Common household items - Course book Master Integrated Science pg. 96 - Red and blue litmus papers - Various household solutions - Test tubes |
- Observation
- Oral questions
- Written assignments
|
|
| 10 | 2 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Resource person on plant extract indicators
|
By the end of the
lesson, the learner
should be able to:
- Explain the use of plant extracts as indicators - Identify plants suitable for indicator preparation - Show appreciation for natural indicators |
- Listen to resource person on plant extract indicators
- Ask questions for clarification - Write notes on key points discussed - Discuss applications of natural indicators |
Why can some plants be used as acid-base indicators?
|
Master Integrated Science pg. 98
- Resource person - Note-taking materials |
- Observation
- Oral questions
- Note-taking assessment
|
|
| 10 | 3 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Preparing indicators from plant extracts
|
By the end of the
lesson, the learner
should be able to:
- Prepare acid-base indicators from plant flowers - Extract colored substances from plant materials - Show interest in natural indicator preparation |
- Collect colored flowers from school environment
- Cut flowers into small pieces - Crush flowers with ethanol to extract color - Filter the extract to obtain colored solution |
How do we extract useful indicators from plants?
|
Master Integrated Science pg. 98
- Plant flowers - Ethanol - Mortar and pestle - Filter paper |
- Practical work
- Assessment rubrics
- Observation
|
|
| 10 | 4 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Alternative plant extract preparation
|
By the end of the
lesson, the learner
should be able to:
- Prepare indicators using red cabbage or beetroot - Compare different plant extract indicators - Appreciate variety in natural indicators |
- Use red cabbage or beetroot to prepare indicators
- Follow extraction procedure with ethanol - Compare color intensity with flower extracts - Dispose of waste materials safely |
Which plants give the best natural indicators?
|
Master Integrated Science pg. 100
- Red cabbage or beetroot - Ethanol - Extraction apparatus |
- Practical work
- Observation
- Assessment rubrics
|
|
| 10 | 5 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Testing solutions with plant extract indicators
Acids, Bases and Indicators - Physical properties of acids |
By the end of the
lesson, the learner
should be able to:
- Use plant extract indicators to test solutions - Classify solutions as acidic or basic using natural indicators - Show appreciation for natural indicator effectiveness |
- Test various household solutions with plant extract indicators
- Record color changes observed - Complete classification table - Compare results with litmus paper tests |
How effective are plant extract indicators compared to litmus paper?
|
Master Integrated Science pg. 100
- Plant extract indicators - Various household solutions - Test tubes - Droppers Master Integrated Science pg. 102 - Lemon juice - Safety equipment - Litmus papers |
- Practical work
- Observation schedule
- Written tests
|
|
| 11 | 1 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Physical properties of bases
|
By the end of the
lesson, the learner
should be able to:
- Describe physical properties of bases - Compare properties of bases with acids - Appreciate differences between acids and bases |
- Observe appearance of baking powder solution
- Test texture and smell safely - Test with litmus papers - Compare with acidic solution properties - Record comparative observations |
How do physical properties of bases differ from acids?
|
Master Integrated Science pg. 102
- Baking powder solution - Safety equipment - Litmus papers - Comparison tables |
- Practical work
- Assessment rubrics
- Comparative analysis
|
|
| 11 | 2 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Solubility of acids and bases
|
By the end of the
lesson, the learner
should be able to:
- Investigate solubility of acids and bases in water - Explain formation of homogeneous mixtures - Show understanding of solution formation |
- Add water to lemon juice and observe mixing
- Add water to baking powder solution and observe - Discuss formation of homogeneous solutions - Compare solubility characteristics |
Why do acids and bases dissolve in water?
|
Master Integrated Science pg. 102
- Acidic and basic solutions - Water - Test tubes - Observation sheets |
- Practical work
- Observation
- Oral questions
|
|
| 11 | 3 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Electrical conductivity of acids and bases
Acids, Bases and Indicators - Uses of acids in daily life |
By the end of the
lesson, the learner
should be able to:
- Test electrical conductivity of acids and bases - Explain why acids and bases conduct electricity - Appreciate electrical properties of solutions |
- Set up electrical conductivity apparatus
- Test conductivity of vinegar - Test conductivity of baking powder solution - Observe bulb brightness in both cases |
Why do acidic and basic solutions conduct electricity?
|
Master Integrated Science pg. 102
- Battery and bulb setup - Connecting wires - Metal rods - Acidic and basic solutions Master Integrated Science pg. 104 - Digital devices - Application images - Reference materials |
- Practical work
- Observation schedule
- Assessment rubrics
|
|
| 11 | 4 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Uses of bases in daily life
|
By the end of the
lesson, the learner
should be able to:
- Identify uses of bases in cooking, cleaning, and medicine - Explain applications of bases in agriculture - Show appreciation for base applications |
- Discuss baking soda uses in cooking
- Explore cleaning applications of bases - Research medicinal uses of antacids - Study soil treatment with bases |
What important roles do bases play in our lives?
|
Master Integrated Science pg. 104
- Household base products - Digital resources - Application examples |
- Observation
- Research activities
- Oral presentations
|
|
| 11 | 5 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Uses of indicators in various sectors
|
By the end of the
lesson, the learner
should be able to:
- Explain uses of indicators in agriculture, medicine, and laboratories - Identify importance of indicators in testing - Appreciate indicator applications in quality control |
- Research indicator uses in soil testing
- Discuss medical test strips - Explore food freshness indicators - Study laboratory indicator applications |
How do indicators help in testing and quality control?
|
Master Integrated Science pg. 104
- Test strips examples - Digital resources - Laboratory indicators |
- Research presentation
- Assessment rubrics
- Written tests
|
|
| 12 | 1 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Reading product labels for acids and bases
Acids, Bases and Indicators - Applications in food and cooking |
By the end of the
lesson, the learner
should be able to:
- Identify acidic and basic ingredients in household products - Read and interpret product labels - Show awareness of chemical content in daily products |
- Collect household product containers
- Read ingredient labels carefully - Identify acidic and basic components - Create classification table of products - Discuss findings with classmates |
What acidic and basic substances are found in household products?
|
Master Integrated Science pg. 104
- Household product containers - Label reading worksheets - Classification tables - Food product examples - Cooking ingredients - Preservative labels |
- Practical work
- Assessment rubrics
- Label interpretation skills
|
|
| 12 | 2 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Applications in agriculture
|
By the end of the
lesson, the learner
should be able to:
- Explain soil pH management using acids and bases - Identify fertilizer applications - Show understanding of agricultural chemistry |
- Discuss soil acidity testing
- Explore lime application to neutralize acidic soils - Study fertilizer use in farming - Connect with Agriculture and Nutrition concepts |
How do farmers use acids and bases to improve soil quality?
|
Master Integrated Science pg. 104
- Soil testing materials - Agricultural examples - pH testing demonstrations |
- Practical demonstrations
- Assessment rubrics
- Cross-curricular connections
|
|
| 12 | 3 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Applications in medicine and health
|
By the end of the
lesson, the learner
should be able to:
- Identify medicinal uses of acids and bases - Explain antacid function in treating heartburn - Appreciate chemical solutions to health problems |
- Study antacid tablet ingredients
- Discuss stomach acid neutralization - Explore pain relief medications containing acids - Research medical applications of acids and bases |
How do acids and bases help solve health problems?
|
Master Integrated Science pg. 104
- Medicine examples - Antacid products - Medical application research |
- Research activities
- Oral presentations
- Written assignments
|
|
| 12 | 4 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Applications in cleaning and industry
Acids, Bases and Indicators - Review and synthesis of concepts |
By the end of the
lesson, the learner
should be able to:
- Explain cleaning applications of acids and bases - Identify industrial uses of acids and bases - Show appreciation for chemical solutions in industry |
- Study toilet cleaners containing acids
- Explore soap and detergent base content - Discuss car battery acid applications - Research industrial acid and base uses |
What roles do acids and bases play in cleaning and industrial processes?
|
Master Integrated Science pg. 104
- Cleaning product examples - Industrial application images - Safety material examples Master Integrated Science pg. 95-105 - Review materials - Concept mapping resources |
- Practical demonstrations
- Assessment rubrics
- Industrial application analysis
|
|
| 12 | 5 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Problem-solving with acids and bases
Acids, Bases and Indicators - Integration and future applications |
By the end of the
lesson, the learner
should be able to:
- Apply knowledge to solve practical problems - Design experiments to test unknown solutions - Show confidence in handling acid-base problems |
- Solve identification problems with unknown solutions
- Design testing procedures using available indicators - Evaluate effectiveness of different testing methods - Present solutions to practical challenges |
How can we use our knowledge to solve real acid-base problems?
|
Master Integrated Science pg. 95-105
- Unknown solution samples - Various indicators - Problem scenarios - Career information resources - Future learning pathways |
- Problem-solving assessment
- Practical work
- Assessment rubrics
|
Your Name Comes Here