If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 1 |
REVISION OF PREVIOUS EXAMS |
|||||||
| 2 | 1 |
GROWTH AND DEVELOPMENT
|
Introduction and Definitions
|
By the end of the
lesson, the learner
should be able to:
To distinguish between growth and development. To define growth as permanent increase in size and weight. To explain development as structural changes and differentiation. To relate growth to cell division and tissue formation. |
Q/A: Review reproduction concepts. Discussion: Definition of growth vs development. Teacher exposition: Cell division, differentiation and tissue formation. Q/A: Examples of growth and development in organisms. Discussion: Growth as characteristic of living organisms.
|
Charts showing growth and development, Textbook, Wall charts
|
Certificate Biology Form 3, Pages 178-179
|
|
| 2 | 2 |
GROWTH AND DEVELOPMENT
|
Measurement of Growth
Patterns and Rate of Growth Factors Controlling Plant Growth |
By the end of the
lesson, the learner
should be able to:
To identify different methods of measuring growth. To explain linear dimensions, mass and dry weight measurements. To describe advantages and limitations of each method. To calculate growth rates. |
Discussion: Methods of measuring growth in plants and animals. Teacher exposition: Linear measurements, mass, dry weight procedures. Practical demonstration: Measuring techniques. Q/A: Why dry weight is more accurate for plants. Calculate growth rate examples.
|
Measuring instruments, Scales, Rulers, Calculators, Sample plants
Growth curve charts, Graph paper, Calculators, Sample data sets Environmental factor charts, Temperature scales, Light meters if available, Textbook |
Certificate Biology Form 3, Pages 178-179
|
|
| 2 | 3 |
GROWTH AND DEVELOPMENT
|
Stages of Growth and Life Cycle
Seed Structure - Monocots and Dicots |
By the end of the
lesson, the learner
should be able to:
To describe stages from seed to maturity. To distinguish between annuals and perennials. To identify vegetative and reproductive phases. To explain germination, primary and secondary growth. |
Discussion: Plant life cycle from seed to maturity. Teacher exposition: Vegetative vs reproductive growth phases. Q/A: Differences between annuals and perennials with examples. Overview of germination, primary and secondary growth stages.
|
Plant life cycle charts, Examples of annual and perennial plants, Textbook
Soaked bean and maize seeds, Hand lens, Scalpels, Drawing materials, Iodine solution |
Certificate Biology Form 3, Pages 181-182
|
|
| 2 |
OPENER C.A.T |
|||||||
| 3 | 1 |
GROWTH AND DEVELOPMENT
|
Conditions for Germination
Types of Germination Germination Practical Investigation |
By the end of the
lesson, the learner
should be able to:
To identify conditions necessary for seed germination. To explain roles of water, oxygen and temperature in germination. To describe enzyme activation and food mobilization. To investigate scarification effects. |
Detailed discussion: Water absorption, enzyme activation, hydrolysis reactions. Teacher exposition: Oxygen requirements for respiration and ATP production. Q/A: Temperature effects on enzyme activity. Discussion: Scarification and testa permeability. Demonstration of vernalization concept.
|
Germination apparatus, Seeds at different stages, Temperature monitoring equipment, Textbook
Germinating seeds at various stages, Drawing materials, Observation trays, Hand lens Seeds, Petri dishes, Cotton wool, Measuring rulers, Data recording sheets, Clay pots |
Certificate Biology Form 3, Pages 183-184
|
|
| 3 | 2 |
GROWTH AND DEVELOPMENT
|
Primary Growth and Meristems
|
By the end of the
lesson, the learner
should be able to:
To describe primary growth in plants. To identify apical meristems and their functions. To explain tissue development from meristems. To relate meristem activity to plant growth. |
Discussion: Primary growth in seedlings and herbaceous plants. Teacher exposition: Apical meristem structure and cell characteristics. Q/A: Meristem cell division and differentiation processes. Drawing diagrams showing meristem distribution in plants.
|
Meristem distribution charts, Drawing materials, Microscope slides of meristems, Textbook
|
Certificate Biology Form 3, Pages 186-187
|
|
| 3 | 3 |
GROWTH AND DEVELOPMENT
|
Secondary Growth and Cambium Activity
Annual Rings and Plant Dormancy |
By the end of the
lesson, the learner
should be able to:
To describe secondary growth in dicots. To explain vascular cambium and cork cambium functions. To identify secondary xylem and phloem formation. To relate secondary growth to plant strength and support. |
Detailed discussion: Secondary thickening in woody plants. Teacher exposition: Vascular cambium tangential divisions. Q/A: Secondary xylem and phloem development. Discussion: Cork cambium, lenticels and bark formation. Drawing cross-sections showing secondary tissues.
|
Secondary growth diagrams, Tree trunk sections, Drawing materials, Hand lens
Tree trunk cross-sections, Dormant plant organs, Charts, Textbook |
Certificate Biology Form 3, Pages 186-188
|
|
| 3 | 4 |
GROWTH AND DEVELOPMENT
|
Seed Dormancy and Breaking Mechanisms
|
By the end of the
lesson, the learner
should be able to:
To describe seed dormancy characteristics. To explain factors that break seed dormancy. To identify vernalization, moisture, light and chemical effects. To discuss advantages of seed dormancy. |
Detailed discussion: Dormant seed characteristics and low metabolic activity. Teacher exposition: Vernalization, moisture, light requirements. Q/A: Chemical inhibitors and gibberellic acid effects. Discussion: Dormancy advantages - dispersal time, favorable conditions.
|
Dormant seeds, Germination comparison setups, Chemical solutions, Textbook
|
Certificate Biology Form 3, Pages 188-189
|
|
| 3 | 5 |
GROWTH AND DEVELOPMENT
|
Plant Growth Substances - Auxins
|
By the end of the
lesson, the learner
should be able to:
To describe discovery of plant hormones by Fritz Went. To explain auxin functions in stems, leaves, roots and fruits. To identify IAA structure and translocation. To discuss practical applications of auxins. |
Teacher exposition: Went's experiments with oat coleoptiles and auxin discovery. Discussion: Auxin effects in different plant organs. Q/A: Apical dominance and parthenocarpy. Practical applications: rooting powders, herbicides, fruit development.
|
Auxin experiment diagrams, Plant cuttings, Rooting powder demonstration, Textbook
|
Certificate Biology Form 3, Pages 189-192
|
|
| 4 | 1 |
GROWTH AND DEVELOPMENT
|
Gibberellins, Cytokinins and Other Hormones
Practical Applications of Plant Hormones |
By the end of the
lesson, the learner
should be able to:
To describe gibberellin functions and effects. To explain cytokinin roles in cell division and growth. To identify abscissic acid as growth inhibitor. To describe ethene and florigen effects. |
Discussion: Gibberellin effects on stem elongation and seed germination. Teacher exposition: Cytokinin functions in meristematic tissues. Q/A: Abscissic acid antagonistic effects. Discussion: Ethene in fruit ripening and florigen in flowering.
|
Plant hormone effect charts, Ripening fruits, Textbook
Hormone application examples, Agricultural product samples, Case study materials |
Certificate Biology Form 3, Pages 192-194
|
|
| 4 | 2 |
GROWTH AND DEVELOPMENT
|
Animal Growth Patterns and Life Cycles
|
By the end of the
lesson, the learner
should be able to:
To distinguish continuous from discontinuous growth in animals. To describe sigmoid growth curve phases. To explain lag, exponential, decelerating and plateau phases. To compare growth patterns in different animal groups. |
Analysis of sigmoid growth curves showing four phases. Teacher exposition: Continuous growth in mammals, birds, fish. Discussion: Discontinuous growth in insects and amphibians. Q/A: Factors affecting each growth phase.
|
Growth curve charts, Animal development examples, Graph paper, Textbook
|
Certificate Biology Form 3, Pages 193-194
|
|
| 4 | 3 |
GROWTH AND DEVELOPMENT
|
Complete Metamorphosis
|
By the end of the
lesson, the learner
should be able to:
To describe complete metamorphosis stages. To explain life cycle of housefly and butterfly. To identify egg, larva, pupa and adult stages. To discuss economic importance of insects with complete metamorphosis. |
Detailed study: Housefly life cycle - egg, maggot, pupa, imago. Teacher exposition: Butterfly development - caterpillar, chrysalis, adult. Q/A: Structural and behavioral differences between stages. Discussion: Economic importance - pests, silk production.
|
Insect life cycle charts, Preserved specimens if available, Drawings, Textbook
|
Certificate Biology Form 3, Pages 195-198
|
|
| 4 | 4 |
GROWTH AND DEVELOPMENT
|
Incomplete Metamorphosis
Hormonal Control of Growth in Animals |
By the end of the
lesson, the learner
should be able to:
To describe incomplete metamorphosis characteristics. To explain life cycles of cockroach and locust. To identify nymphal stages and molting process. To compare complete and incomplete metamorphosis. |
Discussion: Egg to adult development through nymphal stages. Teacher exposition: Cockroach and locust life cycles. Q/A: Molting/ecdysis process and wing development. Comparison table: Complete vs incomplete metamorphosis.
|
Incomplete metamorphosis charts, Grasshopper specimens, Comparison tables, Textbook
Hormone control charts, Animal development diagrams, Textbook |
Certificate Biology Form 3, Pages 198-199
|
|
| 4 | 5 |
GROWTH AND DEVELOPMENT
GENETICS |
Growth Measurement Practical
Introduction to Genetics and Variation |
By the end of the
lesson, the learner
should be able to:
To measure plant growth over time. To record linear measurements and calculate growth rates. To plot growth curves from collected data. To analyze factors affecting growth differences. |
Practical work: Long-term measurement of plant growth (height, leaf length). Data recording: Daily/weekly measurements over extended period. Mathematical analysis: Growth rate calculations. Graph plotting: Growth curves and growth rate curves.
|
Growing plants, Measuring rulers, Data recording sheets, Graph paper, Calculators
Textbook, chalkboard, chalk |
Certificate Biology Form 3, Pages 201-202
|
|
| 5 | 1 |
GENETICS
|
Observable Variations in Human Beings
Discontinuous and Continuous Variation |
By the end of the
lesson, the learner
should be able to:
Observe and record variations in tongue rolling, fingerprints and height. Distinguish between different types of variations. Create data tables. |
Practical activity on tongue rolling. Fingerprint examination using ink pads. Height measurement and data recording.
|
Ink pad, plain paper, metre rule, exercise books
Graph paper, rulers, height data from previous lesson, textbook |
KLB Secondary Biology Form 4, Pages 2-3
|
|
| 5 | 2 |
GENETICS
|
Causes of Variation
Chromosome Structure Chromosome Behaviour During Mitosis |
By the end of the
lesson, the learner
should be able to:
Explain genetic and environmental causes of variation. Describe role of meiosis, fertilization and mutations in creating variation. |
Exposition on sources of variation. Discussion on independent assortment during meiosis. Examples of environmental effects on phenotypes.
|
Textbook, chalkboard, chalk
Textbook, chalkboard, chalk, exercise books, pencils Colored threads (6cm and 3cm), scissors, manila paper, string for tying knots |
KLB Secondary Biology Form 4, Pages 4-5
|
|
| 5 | 3 |
GENETICS
|
Chromosome Behaviour During Meiosis
DNA Structure and Replication DNA and Protein Synthesis |
By the end of the
lesson, the learner
should be able to:
Describe chromosome behaviour during meiosis. Explain crossing over and reduction division. Compare mitosis and meiosis. |
Continuation of chromosome modeling using threads. Demonstration of reduction division. Discussion on gamete formation.
|
Colored threads, manila paper, textbook
Textbook, chalkboard, chalk, exercise books Textbook, chalkboard, chalk |
KLB Secondary Biology Form 4, Pages 8-9
|
|
| 5 | 4 |
GENETICS
|
Mendel's Experiments and First Law
|
By the end of the
lesson, the learner
should be able to:
Describe Mendel's experiments with garden peas. State Mendel's first law of inheritance. Explain reasons for Mendel's success. |
Q/A on Mendel's work. Detailed discussion of pea plant experiments using chalkboard diagrams. Analysis of F1 and F2 results.
|
Textbook, chalkboard, chalk
|
KLB Secondary Biology Form 4, Pages 13-15
|
|
| 5 | 5 |
GENETICS
|
Monohybrid Inheritance Concepts
|
By the end of the
lesson, the learner
should be able to:
Define monohybrid inheritance, genotype, phenotype. Distinguish between dominant and recessive genes. Explain homozygous and heterozygous conditions. |
Exposition on genetic terminology. Practice using genetic symbols on chalkboard. Discussion on gene expression patterns.
|
Textbook, chalkboard, chalk, exercise books
|
KLB Secondary Biology Form 4, Pages 15-17
|
|
| 6-7 |
MIDTERM EXAM |
|||||||
| 8 |
MIDTERM BREAK |
|||||||
| 9 | 1 |
GENETICS
|
Genetic Crosses and Punnet Squares
Probability in Inheritance |
By the end of the
lesson, the learner
should be able to:
Draw genetic cross diagrams. Use punnet squares to show genetic crosses. Predict offspring genotypes and phenotypes. |
Step-by-step construction of genetic crosses on chalkboard. Practice with punnet squares. Student exercises on genetic problems.
|
Textbook, chalkboard, chalk, exercise books, pencils
Coins, exercise books for recording, calculators (if available), textbook |
KLB Secondary Biology Form 4, Pages 17-18
|
|
| 9 | 2 |
GENETICS
|
Modeling Random Gamete Fusion
|
By the end of the
lesson, the learner
should be able to:
Demonstrate random fusion of gametes. Use simple materials to model inheritance. Analyze experimental vs expected results. |
Practical activity using different colored beans to represent gametes. Data collection and analysis. Discussion on sample size effects.
|
Different colored beans (or maize grains), small containers, exercise books
|
KLB Secondary Biology Form 4, Pages 19-20
|
|
| 9 | 3 |
GENETICS
|
Complete Dominance Problems
Incomplete Dominance |
By the end of the
lesson, the learner
should be able to:
Solve genetic problems involving complete dominance. Analyze inheritance patterns in garden peas. Practice genetic calculations. |
Worked examples of genetic problems on chalkboard. Practice sessions with various characteristics. Group problem-solving.
|
Textbook, chalkboard, chalk, exercise books
Textbook, chalkboard, chalk, colored chalk (if available) |
KLB Secondary Biology Form 4, Pages 20-21
|
|
| 9 | 4 |
GENETICS
|
ABO Blood Group System
|
By the end of the
lesson, the learner
should be able to:
Explain multiple alleles concept. Describe ABO blood group inheritance. Understand co-dominance in blood groups. Solve blood group problems. |
Detailed explanation of blood group genetics on chalkboard. Genetic crosses involving blood group inheritance. Practice problems and paternity cases.
|
Textbook, chalkboard, chalk, exercise books
|
KLB Secondary Biology Form 4, Pages 24-25
|
|
| 9 | 5 |
GENETICS
|
Rhesus Factor and Unknown Genotypes
|
By the end of the
lesson, the learner
should be able to:
Describe Rhesus factor genetics. Explain test cross and back cross methods. Use selfing to determine genotypes. |
Exposition on Rh factor inheritance using chalkboard. Demonstration of test cross technique. Practice problems on genotype determination.
|
Textbook, chalkboard, chalk, exercise books
|
KLB Secondary Biology Form 4, Pages 25-26
|
|
| 10 | 1 |
GENETICS
|
Sex Determination
Gene Linkage |
By the end of the
lesson, the learner
should be able to:
Describe sex determination in humans and other animals. Explain XX/XY sex determination systems. Calculate probability of male/female offspring. |
Exposition on sex chromosomes using chalkboard diagrams. Genetic crosses for sex determination. Comparison with other animals.
|
Textbook, chalkboard, chalk
|
KLB Secondary Biology Form 4, Pages 26-27
|
|
| 10 | 2 |
GENETICS
|
Sex-linked Inheritance - Color Blindness
|
By the end of the
lesson, the learner
should be able to:
Describe sex-linked inheritance patterns. Explain color blindness inheritance. Construct and analyze pedigree charts. |
Detailed exposition on X-linked inheritance using chalkboard. Genetic crosses for color blindness. Drawing simple pedigree charts.
|
Textbook, chalkboard, chalk, exercise books, rulers
|
KLB Secondary Biology Form 4, Pages 28-30
|
|
| 10 | 3 |
GENETICS
|
Sex-linked Inheritance - Haemophilia
|
By the end of the
lesson, the learner
should be able to:
Explain haemophilia inheritance. Understand carrier females and affected males. Analyze inheritance through generations. |
Exposition on haemophilia genetics. Drawing inheritance patterns on chalkboard. Practice with pedigree construction and analysis.
|
Textbook, chalkboard, chalk, exercise books
|
KLB Secondary Biology Form 4, Pages 30-31
|
|
| 10 | 4 |
GENETICS
|
Crossing Over and Recombination
Chromosomal Mutations - Non-disjunction |
By the end of the
lesson, the learner
should be able to:
Explain crossing over during meiosis. Understand how crossing over affects linkage. Describe formation of new gene combinations. |
Detailed explanation of crossing over using simple diagrams. Examples of recombinant offspring drawn on chalkboard. Discussion on genetic variation.
|
Textbook, chalkboard, chalk, colored chalk
Textbook, chalkboard, chalk, exercise books |
KLB Secondary Biology Form 4, Page 31
|
|
| 10 | 5 |
GENETICS
|
Chromosomal Mutations - Polyploidy
|
By the end of the
lesson, the learner
should be able to:
Describe structural chromosome changes. Explain polyploidy in plants. Understand chromosome number variations. |
Exposition on chromosome number changes. Examples of polyploidy in agriculture using chalkboard. Discussion on plant breeding applications.
|
Textbook, chalkboard, chalk
|
KLB Secondary Biology Form 4, Pages 35-36
|
|
| 11 | 1 |
GENETICS
|
Gene Mutations
|
By the end of the
lesson, the learner
should be able to:
Define gene mutations. Describe insertion, deletion, substitution and inversion. Explain effects on protein synthesis using analogies. |
Detailed exposition on point mutations using simple examples. Use SMS text analogies for mutations. Discussion on protein changes.
|
Textbook, chalkboard, chalk, simple text examples
|
KLB Secondary Biology Form 4, Pages 36-38
|
|
| 11 | 2 |
GENETICS
|
Genetic Disorders - Albinism
Genetic Disorders - Sickle Cell Anaemia |
By the end of the
lesson, the learner
should be able to:
Describe albinism inheritance. Explain enzyme deficiency in albinism. Calculate inheritance probabilities. Draw genetic crosses. |
Case study of albinism using chalkboard diagrams. Genetic crosses for albinism inheritance. Discussion on carrier parents and affected children.
|
Textbook, chalkboard, chalk, exercise books
Textbook, chalkboard, chalk |
KLB Secondary Biology Form 4, Pages 38-40
|
|
| 11 | 3 |
GENETICS
|
Environmental Effects on Gene Expression
|
By the end of the
lesson, the learner
should be able to:
Explain gene-environment interactions. Describe phenotypic plasticity. Understand limitations of genetic determinism. |
Discussion on environmental influences using local examples. Plant growth under different conditions. Twin studies and environmental factors.
|
Textbook, local plant examples, chalkboard
|
KLB Secondary Biology Form 4, Pages 42-43
|
|
| 11 | 4 |
GENETICS
EVOLUTION |
Applications of Genetics
Meaning of Evolution and Origin of Life Theories |
By the end of the
lesson, the learner
should be able to:
Identify applications in plant and animal breeding. Explain genetic counselling. Understand blood transfusion genetics. Introduce genetic engineering basics. |
Exposition on practical genetics applications. Local examples of plant breeding. Discussion on genetic counselling process and medical applications.
|
Textbook, local breeding examples, chalkboard
Textbook, chalkboard, chalk |
KLB Secondary Biology Form 4, Pages 43-49
|
|
| 11 | 5 |
EVOLUTION
|
Chemical Evolution and Miller's Experiment
|
By the end of the
lesson, the learner
should be able to:
Describe Miller's spark discharge experiment. Explain formation of organic compounds from simple molecules. Understand primitive earth conditions. |
Detailed exposition on Miller's experimental setup using chalkboard diagrams. Discussion on primitive atmosphere composition. Analysis of experimental results and significance.
|
Textbook, chalkboard, chalk, simple laboratory glassware for demonstration
|
KLB Secondary Biology Form 4, Pages 53-55
|
|
| 12 | 1 |
EVOLUTION
|
Evidence for Evolution - Fossil Records
|
By the end of the
lesson, the learner
should be able to:
Define fossils and explain fossil formation. Describe types of fossils. Analyze fossil evidence for evolution. Understand geological time scale. |
Exposition on fossil formation processes. Examination of any available fossil specimens or pictures. Discussion on fossil records of humans and other organisms. Timeline construction on chalkboard.
|
Textbook, any available fossil specimens, pictures from textbook, chalkboard, chalk
|
KLB Secondary Biology Form 4, Pages 55-62
|
|
| 12 | 2 |
EVOLUTION
|
Geographical Distribution and Comparative Embryology
Comparative Anatomy - Homologous Structures |
By the end of the
lesson, the learner
should be able to:
Explain biogeographical evidence for evolution. Describe continental drift effects on species distribution. Compare embryological development in vertebrates. |
Discussion on animal and plant distribution patterns. Examination of world map showing species distribution. Drawing embryological stages on chalkboard. Comparison of vertebrate embryos.
|
Textbook, world map, chalkboard, chalk
Textbook, bone specimens (if available), pictures of animal limbs, chalkboard, chalk, exercise books |
KLB Secondary Biology Form 4, Pages 60-63
|
|
| 12 | 3 |
EVOLUTION
|
Comparative Anatomy - Analogous and Vestigial Structures
|
By the end of the
lesson, the learner
should be able to:
Define analogous and vestigial structures. Compare bird and insect wings. Give examples of vestigial organs. Explain convergent evolution. |
Examination of bird and insect wing specimens. Drawing wing structures on chalkboard. Discussion on vestigial organs in humans and other animals. Examples of convergent evolution.
|
Textbook, wing specimens (bird feathers, insect specimens), chalkboard, chalk
|
KLB Secondary Biology Form 4, Pages 67-70
|
|
| 12 | 4 |
EVOLUTION
|
Cell Biology and Comparative Serology Evidence
|
By the end of the
lesson, the learner
should be able to:
Describe cellular evidence for evolution. Explain biochemical similarities in organisms. Understand serological tests for evolutionary relationships. |
Discussion on universal cellular features. Exposition on ATP, DNA similarities across species. Explanation of blood protein comparisons. Simple demonstration of precipitation reactions.
|
Textbook, chalkboard, chalk, simple solutions for demonstration (if available)
|
KLB Secondary Biology Form 4, Pages 69-70
|
|
| 12 | 5 |
EVOLUTION
|
Lamarck's Theory vs Darwin's Theory
Natural Selection in Action Modern Examples of Evolution and Resistance |
By the end of the
lesson, the learner
should be able to:
Explain Lamarck's theory of acquired characteristics. Describe Darwin's theory of natural selection. Compare and contrast both theories. Understand scientific acceptance criteria. |
Exposition on Lamarck's giraffe example using chalkboard drawings. Detailed explanation of Darwin's natural selection theory. Comparison table construction. Discussion on scientific evidence.
|
Textbook, chalkboard, chalk
White and black paper, scissors, textbook, chalkboard Textbook, local examples of pesticide resistance, chalkboard |
KLB Secondary Biology Form 4, Pages 71-73
|
|
| 13 |
CLOSING C.A.T |
|||||||
Your Name Comes Here