If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 1 |
REVISION OF PREVIOUS EXAMS |
|||||||
| 2 | 1 |
ACIDS, BASES AND SALTS
|
Definition of Acids
|
By the end of the
lesson, the learner
should be able to:
- Define an acid in terms of hydrogen ions -Investigate reactions of magnesium and zinc carbonate with different acids -Write equations for reactions taking place -Explain why magnesium strip should be cleaned |
Class experiment: React cleaned magnesium strips with 2M HCl, 2M ethanoic acid, 2M H₂SO₄, 2M ethanedioic acid. Record observations in table. Repeat using zinc carbonate. Write chemical equations. Discuss hydrogen ion displacement and gas evolution.
|
Magnesium strips, zinc carbonate, 2M HCl, 2M ethanoic acid, 2M H₂SO₄, 2M ethanedioic acid, test tubes, test tube rack
|
KLB Secondary Chemistry Form 4, Pages 1-3
|
|
| 2 | 2 |
ACIDS, BASES AND SALTS
|
Strength of Acids
Definition of Bases Strength of Bases |
By the end of the
lesson, the learner
should be able to:
- Compare strengths of acids using pH values -Determine strengths of acids by comparing their electrical conductivity -Classify acids as either strong or weak -Explain complete and partial dissociation of acids |
Class experiment: Test pH of 2M HCl and 2M ethanoic acid using universal indicator. Set up electrical conductivity apparatus with both acids. Record milliammeter readings. Compare results and explain in terms of hydrogen ion concentration. Discuss strong vs weak acid definitions.
|
2M HCl, 2M ethanoic acid, universal indicator, pH chart, electrical conductivity apparatus, milliammeter, carbon electrodes, beakers, wires
Calcium hydroxide, red litmus paper, phenolphthalein indicator, distilled water, test tubes, spatula, evaporating dish 2M NaOH, 2M ammonia solution, universal indicator, pH chart, electrical conductivity apparatus, milliammeter, carbon electrodes |
KLB Secondary Chemistry Form 4, Pages 3-5
|
|
| 2 | 3 |
ACIDS, BASES AND SALTS
|
Acid-Base Reactions
Effect of Solvent on Acids Effect of Solvent on Bases Amphoteric Oxides and Hydroxides |
By the end of the
lesson, the learner
should be able to:
- Write equations for acid-base reactions -Explain neutralization process -Identify products of acid-base reactions -Demonstrate formation of salt and water |
Q/A: Review acid and base definitions. Demonstrate neutralization reactions: HCl + NaOH, H₂SO₄ + Ca(OH)₂, HNO₃ + KOH. Write molecular and ionic equations. Explain H⁺ + OH⁻ → H₂O. Discuss salt formation. Use indicators to show neutralization point.
|
Various acids and bases from previous lessons, indicators, beakers, measuring cylinders, stirring rods
HCl gas, distilled water, methylbenzene, magnesium ribbon, calcium carbonate, litmus paper, test tubes, gas absorption apparatus Dry ammonia gas, distilled water, methylbenzene, red litmus paper, test tubes, gas collection apparatus Al₂O₃, ZnO, PbO, Zn(OH)₂, Al(OH)₃, Pb(OH)₂, 2M HNO₃, 2M NaOH, boiling tubes, heating source |
KLB Secondary Chemistry Form 4, Pages 6-7
|
|
| 2 |
OPENER C.A.T |
|||||||
| 3 | 1 |
ACIDS, BASES AND SALTS
|
Definition of Salts and Precipitation
Solubility of Chlorides, Sulphates and Sulphites |
By the end of the
lesson, the learner
should be able to:
- Define a salt as an ionic compound -Define a precipitate -Investigate precipitation reactions -Write ionic equations showing formation of precipitates |
Q/A: Review salt definition from Book 2. Demonstrate precipitation: Add sodium carbonate to solutions containing Mg²⁺, Ca²⁺, Zn²⁺, Al³⁺, Cu²⁺, Fe²⁺, Ba²⁺, Pb²⁺ ions. Record observations. Write ionic equations for precipitate formation. Explain why Fe³⁺ and Al³⁺ give different results.
|
Na₂CO₃ solution, salt solutions containing various metal ions, test tubes, droppers
2M NaCl, 2M Na₂SO₄, 2M Na₂SO₃, 0.1M salt solutions, dilute HCl, test tubes, heating source |
KLB Secondary Chemistry Form 4, Pages 11-14
|
|
| 3 | 2 |
ACIDS, BASES AND SALTS
|
Complex Ions Formation
|
By the end of the
lesson, the learner
should be able to:
- Explain formation of complex ions -Investigate reactions with excess sodium hydroxide and ammonia -Identify metal ions that form complex ions -Write equations for complex ion formation |
Class experiment: Add NaOH dropwise then in excess to Mg²⁺, Ca²⁺, Zn²⁺, Al³⁺, Cu²⁺, Fe²⁺, Fe³⁺, Pb²⁺ solutions. Repeat with NH₃ solution. Record observations showing precipitate formation and dissolution. Write equations for complex ion formation: [Zn(OH)₄]²⁻, [Al(OH)₄]⁻, [Pb(OH)₄]²⁻, [Zn(NH₃)₄]²⁺, [Cu(NH₃)₄]²⁺.
|
2M NaOH, 2M NH₃ solution, 0.5M salt solutions, test tubes, droppers
|
KLB Secondary Chemistry Form 4, Pages 15-16
|
|
| 3 | 3 |
ACIDS, BASES AND SALTS
|
Solubility and Saturated Solutions
Effect of Temperature on Solubility |
By the end of the
lesson, the learner
should be able to:
- Define the term solubility -Determine solubility of a given salt at room temperature -Calculate mass of solute and solvent -Express solubility in different units |
Class experiment: Weigh evaporating dish and watch glass. Measure 20cm³ saturated KNO₃ solution. Record temperature. Evaporate to dryness carefully. Calculate masses of solute, solvent, and solution. Determine solubility per 100g water and in moles per litre. Discuss definition and significance.
|
Saturated KNO₃ solution, evaporating dish, watch glass, measuring cylinder, thermometer, balance, heating source
KClO₃, measuring cylinders, thermometer, burette, boiling tubes, heating source, graph paper |
KLB Secondary Chemistry Form 4, Pages 16-18
|
|
| 3 | 4 |
ACIDS, BASES AND SALTS
|
Solubility Curves and Applications
Fractional Crystallization |
By the end of the
lesson, the learner
should be able to:
- Plot solubility curves for various salts -Use solubility curves to determine mass of crystals formed -Apply solubility curves to practical problems -Compare solubility patterns of different salts |
Using data from textbook, plot solubility curves for KNO₃, KClO₃, NaCl, CaSO₄. Calculate mass of crystals deposited when saturated solutions are cooled. Work through examples: KClO₃ cooled from 70°C to 30°C. Discuss applications in salt extraction and purification.
|
Graph paper, ruler, pencil, calculator, data tables from textbook
Calculator, graph paper, data tables, worked examples from textbook |
KLB Secondary Chemistry Form 4, Pages 20-21
|
|
| 3 | 5 |
ACIDS, BASES AND SALTS
|
Hardness of Water - Investigation
|
By the end of the
lesson, the learner
should be able to:
- Determine the effects of various salt solutions on soap -Identify cations that cause hardness -Distinguish between hard and soft water -Investigate effect of boiling on water hardness |
Class experiment: Test soap lathering with distilled water, tap water, rainwater, and solutions of MgCl₂, NaCl, Ca(NO₃)₂, CaHCO₃, NaHCO₃, ZnSO₄. Record volumes of soap needed. Boil some solutions and retest. Compare results and identify hardness-causing ions.
|
Soap solution, burette, various salt solutions, conical flasks, distilled water, tap water, rainwater, heating source
|
KLB Secondary Chemistry Form 4, Pages 22-24
|
|
| 4 | 1 |
ACIDS, BASES AND SALTS
|
Types and Causes of Water Hardness
Effects of Hard Water |
By the end of the
lesson, the learner
should be able to:
- Define temporary and permanent hardness -Explain causes of temporary hardness -Explain causes of permanent hardness -Write equations for decomposition of hydrogen carbonates |
Q/A: Review previous experiment results. Explain temporary hardness caused by Ca(HCO₃)₂ and Mg(HCO₃)₂. Write decomposition equations when boiled. Explain permanent hardness caused by CaSO₄, MgSO₄, Ca(NO₃)₂, Mg(NO₃)₂. Discuss why permanent hardness cannot be removed by boiling.
|
Student books, examples from previous experiment, chalkboard for equations
Samples of fur deposits, pictures of scaled pipes, calculator for cost analysis |
KLB Secondary Chemistry Form 4, Pages 24-25
|
|
| 4 | 2 |
ACIDS, BASES AND SALTS
|
Methods of Removing Hardness I
Methods of Removing Hardness II |
By the end of the
lesson, the learner
should be able to:
- Explain removal of hardness by boiling -Explain removal by distillation -Write equations for these processes -Compare effectiveness of different methods |
Demonstrate boiling method: Boil hard water samples from previous experiments and test with soap. Write equations for Ca(HCO₃)₂ and Mg(HCO₃)₂ decomposition. Discuss distillation method using apparatus setup. Compare costs and effectiveness. Explain why boiling only removes temporary hardness.
|
Hard water samples, heating source, soap solution, distillation apparatus diagram
Na₂CO₃ solution, hard water samples, ion exchange resin diagram, Ca(OH)₂, NH₃ solution |
KLB Secondary Chemistry Form 4, Pages 25-26
|
|
| 4 | 3 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Endothermic and Exothermic Reactions
|
By the end of the
lesson, the learner
should be able to:
- Define endothermic and exothermic reactions using ΔH notation -Investigate temperature changes when ammonium nitrate and sodium hydroxide dissolve in water -Explain observations made during dissolution -Draw energy level diagrams for endothermic and exothermic reactions |
Class experiment: Wrap 250ml plastic beakers with tissue paper. Dissolve 2 spatulafuls of NH₄NO₃ in 100ml distilled water, record temperature changes. Repeat with NaOH pellets. Compare initial and final temperatures. Draw energy level diagrams showing relative energies of reactants and products.
|
250ml plastic beakers, tissue paper, rubber bands, NH₄NO₃, NaOH pellets, distilled water, thermometers, spatulas, measuring cylinders
|
KLB Secondary Chemistry Form 4, Pages 29-31
|
|
| 4 | 4 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Enthalpy Notation and Energy Content
Bond Breaking and Bond Formation |
By the end of the
lesson, the learner
should be able to:
- Define enthalpy and enthalpy change -Use the symbol ΔH to represent enthalpy changes -Calculate enthalpy changes using the formula ΔH = H(products) - H(reactants) -Distinguish between positive and negative enthalpy changes |
Q/A: Review previous experiment results. Introduce enthalpy symbol H and enthalpy change ΔH. Calculate enthalpy changes from previous experiments. Explain why endothermic reactions have positive ΔH and exothermic reactions have negative ΔH. Practice calculations with worked examples.
|
Student books, calculators, worked examples from textbook, chalkboard for calculations
Crushed pure ice, 250ml glass beakers, thermometers, heating source, stopwatch, graph paper, stirring rods |
KLB Secondary Chemistry Form 4, Pages 31-32
|
|
| 4 | 5 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Latent Heat of Fusion and Vaporization
Bond Energy Calculations |
By the end of the
lesson, the learner
should be able to:
- Define latent heat of fusion and molar heat of fusion -Define latent heat of vaporization and molar heat of vaporization -Explain why temperature remains constant during phase changes -Relate intermolecular forces to melting and boiling points |
Discussion based on previous heating curve experiment. Explain energy used to overcome intermolecular forces during melting and boiling. Compare molar heats of fusion and vaporization for water and ethanol. Relate strength of intermolecular forces to magnitude of latent heats. Calculate energy required for phase changes.
|
Data tables showing molar heats of fusion/vaporization, calculators, heating curves from previous lesson
Bond energy data tables, calculators, worked examples, practice problems |
KLB Secondary Chemistry Form 4, Pages 32-35
|
|
| 5 | 1 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Determination of Enthalpy of Solution I
|
By the end of the
lesson, the learner
should be able to:
- Determine the enthalpy changes of solution of ammonium nitrate and sodium hydroxide -Calculate enthalpy change using ΔH = mcΔT -Calculate number of moles of solute dissolved -Determine molar heat of solution |
Class experiment: Dissolve exactly 2.0g NH₄NO₃ in 100ml distilled water in plastic beaker. Record temperature change. Repeat with 2.0g NaOH. Calculate enthalpy changes using ΔH = mcΔT where m = 100g, c = 4.2 kJ kg⁻¹K⁻¹. Calculate moles dissolved and molar heat of solution.
|
250ml plastic beakers, 2.0g samples of NH₄NO₃ and NaOH, distilled water, thermometers, measuring cylinders, analytical balance, calculators
|
KLB Secondary Chemistry Form 4, Pages 36-38
|
|
| 5 | 2 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Thermochemical Equations
Enthalpy of Solution of Concentrated Sulphuric Acid |
By the end of the
lesson, the learner
should be able to:
- Write thermochemical equations including enthalpy changes -Define molar heat of solution -Draw energy level diagrams for dissolution reactions -Interpret thermochemical equations correctly |
Using data from previous experiment, write thermochemical equations for NH₄NO₃ and NaOH dissolution. Show proper notation with state symbols and ΔH values. Draw corresponding energy level diagrams. Practice writing thermochemical equations for various reactions. Explain significance of molar quantities in equations.
|
Results from previous experiment, graph paper for energy level diagrams, practice examples
Concentrated H₂SO₄, distilled water, 250ml plastic beaker, tissue paper, measuring cylinders, thermometer, safety equipment |
KLB Secondary Chemistry Form 4, Pages 38-39
|
|
| 5 | 3 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Enthalpy of Combustion
Enthalpy of Displacement |
By the end of the
lesson, the learner
should be able to:
- Define molar heat of combustion -Determine enthalpy of combustion of ethanol experimentally -Explain why experimental values differ from theoretical values -Calculate molar enthalpy of combustion from experimental data |
Class experiment: Burn ethanol in small bottle with wick to heat 100cm³ water in glass beaker. Record initial and final masses of bottle+ethanol and temperature change. Calculate moles of ethanol burned and heat evolved. Determine molar enthalpy of combustion. Compare with theoretical value (-1368 kJ/mol). Discuss sources of error.
|
Ethanol, small bottles with wicks, 250ml glass beakers, tripod stands, wire gauze, thermometers, analytical balance, measuring cylinders
Zinc powder, 0.5M CuSO₄ solution, 250ml plastic beakers, tissue paper, thermometers, analytical balance, stirring rods |
KLB Secondary Chemistry Form 4, Pages 41-44
|
|
| 5 | 4 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Enthalpy of Neutralization
|
By the end of the
lesson, the learner
should be able to:
- Define molar heat of neutralization -Determine heat of neutralization of HCl with NaOH -Compare neutralization enthalpies of strong and weak acids/bases -Write ionic equations for neutralization reactions |
Class experiment: Mix 50cm³ of 2M HCl with 50cm³ of 2M NaOH in wrapped beaker. Record temperature changes. Calculate molar heat of neutralization. Repeat with weak acid (ethanoic) and weak base (ammonia). Compare values. Write ionic equations. Explain why strong acid + strong base gives ~57.2 kJ/mol.
|
2M HCl, 2M NaOH, 2M ethanoic acid, 2M ammonia solution, measuring cylinders, thermometers, 250ml plastic beakers, tissue paper
|
KLB Secondary Chemistry Form 4, Pages 47-49
|
|
| 5 | 5 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Standard Conditions and Standard Enthalpy Changes
Hess's Law - Introduction and Theory |
By the end of the
lesson, the learner
should be able to:
- Identify standard conditions for measuring enthalpy changes -Define standard enthalpy changes using ΔH° notation -Explain importance of standard conditions -Use subscripts to denote different types of enthalpy changes |
Q/A: Review previous enthalpy measurements. Introduce standard conditions: 25°C (298K) and 1 atmosphere pressure (101.325 kPa). Explain ΔH° notation and subscripts (ΔH°c for combustion, ΔH°f for formation, etc.). Discuss why standard conditions are necessary for comparison. Practice using correct notation.
|
Student books, examples of standard enthalpy data, notation practice exercises
Energy cycle diagrams for methane formation, chalkboard illustrations, worked examples from textbook |
KLB Secondary Chemistry Form 4, Pages 49
|
|
| 6-7 |
MIDTERM EXAM |
|||||||
| 8 |
MIDTERM BREAK |
|||||||
| 9 | 1 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Energy Cycle Diagrams
|
By the end of the
lesson, the learner
should be able to:
- Draw energy cycle diagrams -Link enthalpy of formation with enthalpy of combustion -Calculate unknown enthalpy changes using energy cycles -Apply Hess's Law to determine enthalpy of formation |
Work through energy cycle for formation of CO from carbon and oxygen using combustion data. Draw cycle showing Route 1 (direct combustion) and Route 2 (formation then combustion). Calculate ΔH°f(CO) = ΔH°c(C) - ΔH°c(CO). Practice with additional examples including ethanol formation.
|
Graph paper, energy cycle templates, combustion data tables, calculators
|
KLB Secondary Chemistry Form 4, Pages 52-54
|
|
| 9 | 2 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Hess's Law Calculations
Lattice Energy and Hydration Energy |
By the end of the
lesson, the learner
should be able to:
- Solve complex problems using Hess's Law -Apply energy cycles to multi-step reactions -Calculate enthalpy of formation from combustion data -Use thermochemical equations in Hess's Law problems |
Work through detailed calculation for ethanol formation: 2C(s) + 3H₂(g) + ½O₂(g) → C₂H₅OH(l). Use combustion enthalpies of carbon (-393 kJ/mol), hydrogen (-286 kJ/mol), and ethanol (-1368 kJ/mol). Calculate ΔH°f(ethanol) = -278 kJ/mol. Practice with propane and other compounds.
|
Worked examples, combustion data, calculators, step-by-step calculation sheets
Energy cycle diagrams, lattice energy and hydration energy data tables, calculators |
KLB Secondary Chemistry Form 4, Pages 54-56
|
|
| 9 | 3 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Factors Affecting Lattice and Hydration Energies
Definition and Types of Fuels |
By the end of the
lesson, the learner
should be able to:
- Explain factors affecting lattice energy -Explain factors affecting hydration energy -Use data tables to identify trends -Calculate enthalpies of solution for various ionic compounds |
Analyze data tables showing lattice energies (Table 2.7) and hydration energies (Table 2.6). Identify trends: smaller ions and higher charges give larger lattice energies and hydration energies. Calculate heat of solution for MgCl₂ using: ΔH(solution) = +2489 + (-1891 + 2×(-384)) = -170 kJ/mol. Practice with other compounds.
|
Data tables from textbook, calculators, trend analysis exercises
Examples of different fuels, classification charts, pictures of fuel types |
KLB Secondary Chemistry Form 4, Pages 54-56
|
|
| 9 | 4 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Heating Values of Fuels
|
By the end of the
lesson, the learner
should be able to:
- Define heating value of a fuel -Calculate heating values from molar enthalpies of combustion -Compare heating values of different fuels -Explain units of heating value (kJ/g) |
Calculate heating value of ethanol: ΔH°c = -1360 kJ/mol, Molar mass = 46 g/mol, Heating value = 1360/46 = 30 kJ/g. Compare heating values from Table 2.8: methane (55 kJ/g), fuel oil (45 kJ/g), charcoal (33 kJ/g), wood (17 kJ/g). Discuss significance of these values for fuel selection.
|
Heating value data table, calculators, fuel comparison charts
|
KLB Secondary Chemistry Form 4, Pages 56-57
|
|
| 9 | 5 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Factors in Fuel Selection
Environmental Effects of Fuels |
By the end of the
lesson, the learner
should be able to:
- State factors that influence choice of fuel -Explain why different fuels are chosen for different purposes -Compare advantages and disadvantages of various fuels -Apply selection criteria to real situations |
Discuss seven factors: heating value, ease of combustion, availability, transportation, storage, environmental effects, cost. Compare wood/charcoal for domestic use vs methylhydrazine for rockets. Analyze why each is suitable for its purpose. Students suggest best fuels for cooking, heating, transport in their area.
|
Fuel comparison tables, local fuel availability data, cost analysis sheets
Pictures of environmental damage, pollution data, examples of clean technology |
KLB Secondary Chemistry Form 4, Pages 57
|
|
| 10 | 1 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Fuel Safety and Precautions
Endothermic and Exothermic Reactions |
By the end of the
lesson, the learner
should be able to:
- State precautions necessary when using fuels -Explain safety measures for different fuel types -Identify hazards associated with improper fuel handling -Apply safety principles to local situations |
Discuss safety precautions: ventilation for charcoal stoves (CO poisoning), not running engines in closed garages, proper gas cylinder storage, fuel storage away from populated areas, keeping away from fuel spills. Relate to local situations and accidents. Students identify potential hazards in their environment.
|
Safety guideline charts, examples of fuel accidents, local safety case studies
250ml plastic beakers, tissue paper, NH₄NO₃, NaOH pellets, distilled water, thermometers, calculators |
KLB Secondary Chemistry Form 4, Pages 57-58
|
|
| 10 | 2 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
|
Bond Breaking, Formation and Phase Changes
|
By the end of the
lesson, the learner
should be able to:
- Explain that energy changes are due to bond breaking and bond formation -Investigate energy changes when solids and liquids are heated -Define latent heat of fusion and vaporization -Calculate energy changes using bond energies |
Class experiment: Heat ice to melting then boiling, record temperature every minute. Plot heating curve. Explain constant temperature periods. Define latent heat of fusion/vaporization. Calculate energy changes in H₂ + Cl₂ → 2HCl using bond energies. Apply formula: ΔH = Energy absorbed - Energy released.
|
Ice, glass beakers, thermometers, heating source, graph paper, bond energy data tables
|
KLB Secondary Chemistry Form 4, Pages 32-36
|
|
| 10 | 3 |
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
SULPHUR AND ITS COMPOUNDS SULPHUR AND ITS COMPOUNDS |
Determination of Enthalpy of Solution
Chemical Properties of Sulphur - Reactions with Elements Chemical Properties of Sulphur - Reactions with Acids |
By the end of the
lesson, the learner
should be able to:
- Carry out experiments to determine enthalpy changes of solution -Calculate enthalpy change using ΔH = mcΔT -Write correct thermochemical equations -Define molar heat of solution |
Class experiment: Dissolve exactly 2.0g NH₄NO₃ and 2.0g NaOH separately in 100ml water. Record temperature changes. Calculate enthalpy changes using ΔH = mcΔT. Calculate moles and molar heat of solution. Write thermochemical equations: NH₄NO₃(s) + aq → NH₄NO₃(aq) ΔH = +25.2 kJ mol⁻¹.
|
2.0g samples of NH₄NO₃ and NaOH, plastic beakers, thermometers, analytical balance, calculators
Sulphur, Iron powder, Copper powder, Oxygen gas jar, Deflagrating spoon, Moist litmus papers, Test tubes, Bunsen burner Sulphur powder, Concentrated HNO3, Concentrated H2SO4, Concentrated HCl, Barium chloride solution, Test tubes, Fume cupboard access |
KLB Secondary Chemistry Form 4, Pages 36-39
|
|
| 10 | 4 |
SULPHUR AND ITS COMPOUNDS
|
Uses of Sulphur and Introduction to Oxides
Preparation of Sulphur(IV) Oxide Physical and Chemical Properties of Sulphur(IV) Oxide |
By the end of the
lesson, the learner
should be able to:
List the uses of sulphur in industry and agriculture. Identify the two main oxides of sulphur. Compare sulphur(IV) oxide and sulphur(VI) oxide. Plan laboratory preparation methods for sulphur oxides. |
Discussion: Industrial uses - sulphuric acid manufacture, fungicide, vulcanization of rubber, bleaching agents, dyes and fireworks. Q/A: Review oxidation states of sulphur in compounds. Introduction: SO2 and SO3 as important compounds. Preparation planning: Methods for laboratory preparation of SO
|
Charts showing uses of sulphur, Samples of vulcanized rubber, Fungicides, Industrial photographs, Textbook diagrams
Sodium sulphite, Dilute HCl, Round-bottomed flask, Delivery tubes, Gas jars, Concentrated H2SO4 for drying, Acidified potassium chromate(VI) paper SO2 gas from previous preparation, Litmus papers, Universal indicator, 0.1M NaOH solution, Water, Test tubes, Safety equipment |
KLB Secondary Chemistry Form 4, Pages 168-170
|
|
| 10 | 5 |
SULPHUR AND ITS COMPOUNDS
|
Bleaching Action of Sulphur(IV) Oxide
Reducing Action of Sulphur(IV) Oxide |
By the end of the
lesson, the learner
should be able to:
Investigate the bleaching properties of SO Compare SO2 bleaching with chlorine bleaching. Explain the mechanism of SO2 bleaching. Relate bleaching to paper manufacturing. |
Practical work: Experiment 6 - Placing colored flower petals in SO2 gas. Observation: Temporary bleaching effect. Discussion: SO2 + H2O → H2SO3, reduction of organic dyes. Comparison: Permanent vs temporary bleaching. Application: Paper industry bleaching processes.
|
Colored flower petals (red/blue), SO2 gas jars, Hand lens for observation, Charts comparing bleaching agents
SO2 gas, Acidified K2Cr2O7, Acidified KMnO4, Bromine water, Iron(III) chloride solution, Concentrated HNO3, Test tubes |
KLB Secondary Chemistry Form 4, Pages 173
|
|
| 11 | 1 |
SULPHUR AND ITS COMPOUNDS
|
Oxidising Action of Sulphur(IV) Oxide
|
By the end of the
lesson, the learner
should be able to:
Investigate SO2 as an oxidizing agent. Demonstrate reaction with stronger reducing agents. Explain the dual nature of SO Write equations for oxidation reactions by SO |
Practical work: Experiment 8 - Lowering burning magnesium into SO2 gas. Observation: Continued burning, white fumes of MgO, yellow specks of sulphur. Reaction with hydrogen sulphide gas (demonstration). Discussion: SO2 decomposition providing oxygen. Writing equations: 2Mg + SO2 → 2MgO + S.
|
SO2 gas jars, Magnesium ribbon, Deflagrating spoon, Hydrogen sulphide gas, Water droppers, Safety equipment
|
KLB Secondary Chemistry Form 4, Pages 176-177
|
|
| 11 | 2 |
SULPHUR AND ITS COMPOUNDS
|
Test for Sulphate and Sulphite Ions & Uses of SO2
Large-scale Manufacture of Sulphuric(VI) Acid - Contact Process |
By the end of the
lesson, the learner
should be able to:
Carry out confirmatory tests for sulphate and sulphite ions. Distinguish between sulphate and sulphite using chemical tests. List the uses of sulphur(IV) oxide. Explain the applications in industry. |
Practical work: Experiment 9 - Testing sodium sulphate and sodium sulphite with barium chloride. Adding dilute HCl to precipitates. Recording observations in Table 8. Discussion: BaSO4 insoluble in acid, BaSO3 dissolves. Uses: Raw material for H2SO4, bleaching wood pulp, fumigant, preservative.
|
Sodium sulphate solution, Sodium sulphite solution, Barium chloride solution, Dilute HCl, Test tubes, Charts showing industrial uses
Flow chart diagrams, Charts showing industrial plant, Samples of catalyst (V2O5), Photographs of Thika chemical plant, Calculator for percentage calculations |
KLB Secondary Chemistry Form 4, Pages 178-179
|
|
| 11 | 3 |
SULPHUR AND ITS COMPOUNDS
|
Properties of Concentrated Sulphuric(VI) Acid - Dehydrating Properties
Properties of Concentrated Sulphuric(VI) Acid - Oxidizing Properties |
By the end of the
lesson, the learner
should be able to:
Investigate the dehydrating properties of concentrated H2SO Demonstrate removal of water from hydrated salts. Show dehydration of organic compounds. Explain the hygroscopic nature of the acid. |
Practical work: Experiment 10 - Adding concentrated H2SO4 to copper(II) sulphate crystals, sucrose crystals, ethanol. Observations: Blue to white crystals, charring of sugar, formation of ethene. Safety: Proper dilution technique - acid to water. Testing evolved gases. Discussion: Chemical vs physical dehydration.
|
Concentrated H2SO4, Copper(II) sulphate crystals, Sucrose, Ethanol, KMnO4 solution, Test tubes, Beakers, Safety equipment, Fume cupboard
Copper foil, Zinc granules, Charcoal powder, Concentrated H2SO4, Acidified K2Cr2O7 paper, Lime water, Test tubes, Bunsen burner |
KLB Secondary Chemistry Form 4, Pages 181-183
|
|
| 11 | 4 |
SULPHUR AND ITS COMPOUNDS
|
Properties of Concentrated Sulphuric(VI) Acid - Displacement Reactions
|
By the end of the
lesson, the learner
should be able to:
Investigate acid displacement reactions. Demonstrate formation of volatile acids. Test the evolved gases for identification. Write equations for displacement reactions. |
Practical work: Experiment 10 (continued) - Reactions with potassium nitrate and sodium chloride. Testing evolved gases with moist blue litmus, concentrated ammonia. Observations: Brown fumes (NO2), white fumes (HCl). Discussion: Less volatile acid displacing more volatile acids. Industrial applications.
|
Potassium nitrate crystals, Sodium chloride crystals, Concentrated H2SO4, Moist blue litmus paper, Concentrated ammonia, Test tubes, Bunsen burner
|
KLB Secondary Chemistry Form 4, Pages 184
|
|
| 11 | 5 |
SULPHUR AND ITS COMPOUNDS
|
Reactions of Dilute Sulphuric(VI) Acid - With Metals
Reactions of Dilute Sulphuric(VI) Acid - With Carbonates |
By the end of the
lesson, the learner
should be able to:
Investigate reactions of dilute H2SO4 with metals. Compare reactivity of different metals. Test for hydrogen gas evolution. Relate reactions to reactivity series. |
Practical work: Experiment 11 - Reactions with magnesium, zinc, copper. Testing evolved gas with burning splint. Recording observations in Table 10. Discussion: More reactive metals above hydrogen displace it. Vigour of reaction decreases down reactivity series. Writing ionic equations.
|
Magnesium ribbon, Zinc granules, Copper turnings, Dilute H2SO4, Test tubes, Burning splints, Reactivity series chart
Sodium carbonate, Zinc carbonate, Calcium carbonate, Copper(II) carbonate, Dilute H2SO4, Lime water, Test tubes |
KLB Secondary Chemistry Form 4, Pages 184-185
|
|
| 12 | 1 |
SULPHUR AND ITS COMPOUNDS
|
Reactions of Dilute Sulphuric(VI) Acid - With Oxides and Hydroxides
Hydrogen Sulphide - Preparation and Physical Properties |
By the end of the
lesson, the learner
should be able to:
Investigate reactions of dilute H2SO4 with metal oxides and hydroxides. Identify neutralization reactions. Explain formation of insoluble sulphates. Write equations for acid-base reactions. |
Practical work: Experiment 13 - Reactions with magnesium oxide, zinc oxide, copper(II) oxide, lead(II) oxide, sodium hydroxide. Recording observations in Table 1 Discussion: Salt and water formation, immediate stopping with lead(II) oxide due to insoluble PbSO Acid-base neutralization concept.
|
Metal oxides (MgO, ZnO, CuO, PbO), NaOH solution, 2M H2SO4, Test tubes, Bunsen burner for warming
Iron(II) sulphide, Dilute HCl, Apparatus for gas generation, Anhydrous CaCl2, Gas jars, Safety equipment, Fume cupboard |
KLB Secondary Chemistry Form 4, Pages 186-187
|
|
| 12 | 2 |
SULPHUR AND ITS COMPOUNDS
|
Chemical Properties of Hydrogen Sulphide
|
By the end of the
lesson, the learner
should be able to:
Investigate H2S as a reducing agent. Test reactions with oxidizing agents. Demonstrate precipitation of metal sulphides. Write ionic equations for redox reactions. |
Practical demonstrations: H2S with bromine water, iron(III) chloride, acidified KMnO4, K2Cr2O7. Precipitation tests: H2S with copper(II) sulphate, lead(II) nitrate, zinc sulphate. Color changes: Brown to colorless, yellow to green, purple to colorless. Formation of black, yellow, and white precipitates.
|
H2S gas, Bromine water, Iron(III) chloride, KMnO4, K2Cr2O7, Metal salt solutions, Test tubes, Droppers
|
KLB Secondary Chemistry Form 4, Pages 188-190
|
|
| 12 | 3 |
SULPHUR AND ITS COMPOUNDS
CHLORINE AND ITS COMPOUNDS CHLORINE AND ITS COMPOUNDS |
Pollution Effects and Summary
Introduction and Preparation of Chlorine Physical Properties of Chlorine |
By the end of the
lesson, the learner
should be able to:
Explain environmental pollution by sulphur compounds. Describe formation and effects of acid rain. Suggest methods to reduce sulphur pollution. Summarize key concepts of sulphur chemistry. |
Discussion: Sources of SO2 pollution - burning fossil fuels, metal extraction, H2SO4 manufacture. Formation of acid rain: SO2 + H2O → H2SO3 → H2SO Effects: Plant damage, aquatic life destruction, building corrosion, soil acidification. Control measures: Scrubbing with Ca(OH)2, catalytic converters. Revision: Key reactions, properties, uses.
|
Charts showing pollution effects, Photographs of acid rain damage, Environmental data, Summary charts of reactions, Industrial pollution control diagrams
Manganese(IV) oxide, Concentrated HCl, Gas collection apparatus, Water, Concentrated H2SO4, Blue litmus paper, Gas jars Preserved chlorine gas, Water trough, Gas jars, Observation tables, Safety equipment |
KLB Secondary Chemistry Form 4, Pages 190-194
|
|
| 12 | 4 |
CHLORINE AND ITS COMPOUNDS
|
Chemical Properties of Chlorine - Reaction with Water
Chemical Properties of Chlorine - Reaction with Metals Chemical Properties of Chlorine - Reaction with Non-metals Oxidising Properties of Chlorine |
By the end of the
lesson, the learner
should be able to:
Investigate the reaction of chlorine with water. Explain the formation of chlorine water. Test the acidic nature of chlorine water. Demonstrate the bleaching action of chlorine. |
Practical work: Experiment 6.3 - Bubbling chlorine through water. Testing with litmus papers (dry vs moist). Testing with colored flower petals. Formation of green-yellow chlorine water. Writing equations: Cl2 + H2O → HCl + HOCl. Discussion: Formation of hypochlorous acid and hydrochloric acid.
|
Chlorine gas, Distilled water, Blue and red litmus papers, Colored flower petals, Gas jars, Boiling tubes
Magnesium ribbon, Iron wire, Chlorine gas, Deflagrating spoon, Combustion tube, Anhydrous CaCl2, Gas jars Red phosphorus, Hydrogen gas, Chlorine gas, Deflagrating spoon, Gas jars, Bunsen burner, Safety equipment Sodium sulphite solution, Barium nitrate, Lead nitrate, Hydrogen sulphide gas, Aqueous ammonia, Chlorine gas, Test tubes |
KLB Secondary Chemistry Form 4, Pages 197-199
|
|
| 12 | 5 |
CHLORINE AND ITS COMPOUNDS
|
Reaction of Chlorine with Alkali Solutions
Oxidising Properties - Displacement Reactions Test for Chloride Ions |
By the end of the
lesson, the learner
should be able to:
Investigate reactions of chlorine with alkalis. Compare reactions with cold dilute and hot concentrated alkalis. Write equations for formation of chlorates and hypochlorites. Explain formation of bleaching powder. |
Practical work: Experiment 6.7 - Bubbling chlorine through cold dilute NaOH and hot concentrated NaOH. Recording observations in Table 6. Formation of pale-yellow solution (cold) vs colorless solution (hot). Equations: 3Cl2 + 6NaOH → 5NaCl + NaClO3 + 3H2O (hot), Cl2 + 2NaOH → NaCl + NaClO + H2O (cold). Discussion: Industrial production of bleaching powder.
|
Sodium hydroxide solutions (dilute cold, concentrated hot), Chlorine gas, Beakers, Bunsen burner, Thermometer
Potassium bromide solution, Potassium iodide solution, Chlorine gas, Test tubes, Observation charts Sodium chloride, Concentrated H2SO4, Lead(II) nitrate solution, Aqueous ammonia, Glass rod, Test tubes, Bunsen burner |
KLB Secondary Chemistry Form 4, Pages 202-203
|
|
| 13 |
CLOSING C.A.T |
|||||||
| 13 | 3 |
CHLORINE AND ITS COMPOUNDS
|
Uses of Chlorine and its Compounds
|
By the end of the
lesson, the learner
should be able to:
List the industrial uses of chlorine. Explain the use of chlorine in water treatment. Describe manufacture of chlorine compounds. Relate properties to uses of chlorine. |
Discussion: Industrial applications - HCl manufacture, bleaching agents for cotton and paper industries, water treatment and sewage plants. Study Figure 6.3(a) - bleaching chemicals. Applications: Chloroform (anaesthetic), solvents (trichloroethane), CFCs, PVC plastics, pesticides (DDT), germicides and fungicides. Q/A: Relating chemical properties to practical applications.
|
Charts showing industrial uses, Samples of bleaching agents, PVC materials, Photographs of water treatment plants, Industrial application diagrams
|
KLB Secondary Chemistry Form 4, Pages 205-207
|
|
| 13 | 4 |
CHLORINE AND ITS COMPOUNDS
|
Hydrogen Chloride - Laboratory Preparation
Chemical Properties of Hydrogen Chloride |
By the end of the
lesson, the learner
should be able to:
Describe laboratory preparation of hydrogen chloride gas. Set up apparatus for HCl preparation. Investigate physical properties of HCl gas. Explain the method of collection used. |
Practical work: Experiment 6.10 - Preparation using rock salt (NaCl) + concentrated H2SO Setup apparatus as in Figure 6.3(b). Testing physical properties and recording in Table 6.6. Tests: Solubility (fountain experiment), reaction with ammonia, effect on litmus. Collection by downward delivery due to density. Writing equation: NaCl + H2SO4 → NaHSO4 + HCl.
|
Rock salt (NaCl), Concentrated H2SO4, Gas collection apparatus, Ammonia solution, Litmus papers, Water trough, Gas jars
Distilled water, Filter funnel, Metals (Zn, Fe, Mg, Cu), NaOH solution, Carbonates, Lead nitrate, Methylbenzene, Indicators |
KLB Secondary Chemistry Form 4, Pages 207-208
|
|
| 13 | 5 |
CHLORINE AND ITS COMPOUNDS
|
Large-scale Manufacture of Hydrochloric Acid
Uses of Hydrochloric Acid Environmental Pollution by Chlorine Compounds and Summary |
By the end of the
lesson, the learner
should be able to:
Describe industrial production of hydrochloric acid. Identify raw materials and conditions used. Explain the controlled combustion process. Draw flow diagrams of the industrial process. |
Study of Figure 6.4 - Large-scale manufacture setup. Discussion: Raw materials (H2 from electrolysis/cracking, Cl2 from electrolysis). Controlled combustion: H2 + Cl2 → 2HCl in jet burner. Dissolving HCl gas in water over glass beads. Safety: Explosive nature of H2/Cl2 mixture, use of excess chlorine. Industrial considerations: 35% concentration, transport in rubber-lined steel tanks.
|
Flow diagrams, Industrial photographs, Glass beads samples, Charts showing electrolysis processes, Safety equipment models
Samples of rusted and cleaned metals, Photographic materials, pH control charts, Industrial application videos, Water treatment diagrams Environmental pollution charts, Ozone layer diagrams, DDT restriction documents, PVC waste samples, NEMA guidelines, Summary charts of reactions |
KLB Secondary Chemistry Form 4, Pages 211-212
|
|
Your Name Comes Here