Home






SCHEME OF WORK
Chemistry
Form 3 2026
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1

REVISION OF PREVIOUS EXAMS

2 1
ACIDS, BASES AND SALTS
Definition of Acids
Strength of Acids
By the end of the lesson, the learner should be able to:
- Define an acid in terms of hydrogen ions
-Investigate reactions of magnesium and zinc carbonate with different acids
-Write equations for reactions taking place
-Explain why magnesium strip should be cleaned
Class experiment: React cleaned magnesium strips with 2M HCl, 2M ethanoic acid, 2M H₂SO₄, 2M ethanedioic acid. Record observations in table. Repeat using zinc carbonate. Write chemical equations. Discuss hydrogen ion displacement and gas evolution.
Magnesium strips, zinc carbonate, 2M HCl, 2M ethanoic acid, 2M H₂SO₄, 2M ethanedioic acid, test tubes, test tube rack
2M HCl, 2M ethanoic acid, universal indicator, pH chart, electrical conductivity apparatus, milliammeter, carbon electrodes, beakers, wires
KLB Secondary Chemistry Form 4, Pages 1-3
2 2
ACIDS, BASES AND SALTS
Definition of Bases
Strength of Bases
Acid-Base Reactions
Effect of Solvent on Acids
Effect of Solvent on Bases
By the end of the lesson, the learner should be able to:
- Define a base in terms of hydroxide ions
-Investigate effect of calcium hydroxide in water
-Test solutions with litmus paper
-Explain dissociation of bases in water
Teacher demonstration: Place dry calcium hydroxide on dry red litmus paper. Dissolve calcium hydroxide in water, test with litmus paper and phenolphthalein. Discuss observations and write dissociation equation. Define bases in terms of OH⁻ ions.
Calcium hydroxide, red litmus paper, phenolphthalein indicator, distilled water, test tubes, spatula, evaporating dish
2M NaOH, 2M ammonia solution, universal indicator, pH chart, electrical conductivity apparatus, milliammeter, carbon electrodes
Various acids and bases from previous lessons, indicators, beakers, measuring cylinders, stirring rods
HCl gas, distilled water, methylbenzene, magnesium ribbon, calcium carbonate, litmus paper, test tubes, gas absorption apparatus
Dry ammonia gas, distilled water, methylbenzene, red litmus paper, test tubes, gas collection apparatus
KLB Secondary Chemistry Form 4, Pages 5-6
2 3
ACIDS, BASES AND SALTS
Amphoteric Oxides and Hydroxides
Definition of Salts and Precipitation
Solubility of Chlorides, Sulphates and Sulphites
By the end of the lesson, the learner should be able to:
- Define amphoteric oxides
-Identify some amphoteric oxides
-Investigate reactions with both acids and alkalis
-Write equations for amphoteric behavior
Class experiment: React Al₂O₃, ZnO, PbO, Zn(OH)₂, Al(OH)₃, Pb(OH)₂ with 2M HNO₃ and 2M NaOH. Warm mixtures. Record observations in table. Write equations showing basic and acidic behavior. Discuss dual nature of amphoteric substances.
Al₂O₃, ZnO, PbO, Zn(OH)₂, Al(OH)₃, Pb(OH)₂, 2M HNO₃, 2M NaOH, boiling tubes, heating source
Na₂CO₃ solution, salt solutions containing various metal ions, test tubes, droppers
2M NaCl, 2M Na₂SO₄, 2M Na₂SO₃, 0.1M salt solutions, dilute HCl, test tubes, heating source
KLB Secondary Chemistry Form 4, Pages 10-11
2

OPENER C.A.T

3 1
ACIDS, BASES AND SALTS
Complex Ions Formation
Solubility and Saturated Solutions
By the end of the lesson, the learner should be able to:
- Explain formation of complex ions
-Investigate reactions with excess sodium hydroxide and ammonia
-Identify metal ions that form complex ions
-Write equations for complex ion formation
Class experiment: Add NaOH dropwise then in excess to Mg²⁺, Ca²⁺, Zn²⁺, Al³⁺, Cu²⁺, Fe²⁺, Fe³⁺, Pb²⁺ solutions. Repeat with NH₃ solution. Record observations showing precipitate formation and dissolution. Write equations for complex ion formation: [Zn(OH)₄]²⁻, [Al(OH)₄]⁻, [Pb(OH)₄]²⁻, [Zn(NH₃)₄]²⁺, [Cu(NH₃)₄]²⁺.
2M NaOH, 2M NH₃ solution, 0.5M salt solutions, test tubes, droppers
Saturated KNO₃ solution, evaporating dish, watch glass, measuring cylinder, thermometer, balance, heating source
KLB Secondary Chemistry Form 4, Pages 15-16
3 2
ACIDS, BASES AND SALTS
Effect of Temperature on Solubility
Solubility Curves and Applications
Fractional Crystallization
By the end of the lesson, the learner should be able to:
- Investigate the effect of temperature on solubility of potassium chlorate
-Record temperature at which crystals appear
-Calculate solubility at different temperatures
-Plot solubility curve
Class experiment: Dissolve 4g KClO₃ in 15cm³ water by warming. Cool while stirring and note crystallization temperature. Add 5cm³ water portions and repeat until total volume is 40cm³. Calculate solubility in g/100g water for each temperature. Plot solubility vs temperature graph.
KClO₃, measuring cylinders, thermometer, burette, boiling tubes, heating source, graph paper
Graph paper, ruler, pencil, calculator, data tables from textbook
Calculator, graph paper, data tables, worked examples from textbook
KLB Secondary Chemistry Form 4, Pages 18-20
3 3
ACIDS, BASES AND SALTS
Hardness of Water - Investigation
Types and Causes of Water Hardness
By the end of the lesson, the learner should be able to:
- Determine the effects of various salt solutions on soap
-Identify cations that cause hardness
-Distinguish between hard and soft water
-Investigate effect of boiling on water hardness
Class experiment: Test soap lathering with distilled water, tap water, rainwater, and solutions of MgCl₂, NaCl, Ca(NO₃)₂, CaHCO₃, NaHCO₃, ZnSO₄. Record volumes of soap needed. Boil some solutions and retest. Compare results and identify hardness-causing ions.
Soap solution, burette, various salt solutions, conical flasks, distilled water, tap water, rainwater, heating source
Student books, examples from previous experiment, chalkboard for equations
KLB Secondary Chemistry Form 4, Pages 22-24
3 4
ACIDS, BASES AND SALTS
Effects of Hard Water
Methods of Removing Hardness I
By the end of the lesson, the learner should be able to:
- State disadvantages of hard water
-State advantages of hard water
-Explain formation of scum and fur
-Discuss economic and health implications
Discussion based on practical experience: Soap wastage, scum formation on clothes, fur in kettles and pipes, pipe bursting in boilers. Advantages: calcium for bones, protection of lead pipes, use in brewing. Show examples of fur deposits. Calculate economic costs of hard water in households.
Samples of fur deposits, pictures of scaled pipes, calculator for cost analysis
Hard water samples, heating source, soap solution, distillation apparatus diagram
KLB Secondary Chemistry Form 4, Pages 24-25
3 5
ACIDS, BASES AND SALTS
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
Methods of Removing Hardness II
Endothermic and Exothermic Reactions
Enthalpy Notation and Energy Content
By the end of the lesson, the learner should be able to:
- Explain removal using sodium carbonate
-Describe ion exchange method
-Explain removal using calcium hydroxide and ammonia
-Write equations for all processes
Demonstrate addition of Na₂CO₃ to hard water - observe precipitation. Explain ion exchange using resin (NaX) showing Ca²⁺ + 2NaX → CaX₂ + 2Na⁺. Discuss regeneration with brine. Write equations for Ca(OH)₂ and NH₃ methods. Compare all methods for effectiveness and cost.
Na₂CO₃ solution, hard water samples, ion exchange resin diagram, Ca(OH)₂, NH₃ solution
250ml plastic beakers, tissue paper, rubber bands, NH₄NO₃, NaOH pellets, distilled water, thermometers, spatulas, measuring cylinders
Student books, calculators, worked examples from textbook, chalkboard for calculations
KLB Secondary Chemistry Form 4, Pages 25-26
4 1
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
Bond Breaking and Bond Formation
Latent Heat of Fusion and Vaporization
By the end of the lesson, the learner should be able to:
- Explain that energy changes are due to bond breaking and bond formation
-Describe bond breaking as endothermic and bond formation as exothermic
-Investigate energy changes during melting and boiling
-Plot heating curves for pure substances
Class experiment: Heat crushed ice while stirring with thermometer. Record temperature every minute until ice melts completely, then continue until water boils. Plot temperature-time graph. Explain constant temperature during melting and boiling in terms of bond breaking. Discuss latent heat of fusion and vaporization.
Crushed pure ice, 250ml glass beakers, thermometers, heating source, stopwatch, graph paper, stirring rods
Data tables showing molar heats of fusion/vaporization, calculators, heating curves from previous lesson
KLB Secondary Chemistry Form 4, Pages 32-35
4 2
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
Bond Energy Calculations
Determination of Enthalpy of Solution I
By the end of the lesson, the learner should be able to:
- Calculate energy changes in reactions using bond energies
-Apply the formula: Heat of reaction = Bond breaking energy + Bond formation energy
-Determine whether reactions are exothermic or endothermic
-Use bond energy data to solve problems
Work through formation of HCl from H₂ and Cl₂ using bond energies. Calculate energy required to break H-H and Cl-Cl bonds. Calculate energy released when H-Cl bonds form. Apply formula: ΔH = Energy absorbed - Energy released. Practice with additional examples. Discuss why calculated values may differ from experimental values.
Bond energy data tables, calculators, worked examples, practice problems
250ml plastic beakers, 2.0g samples of NH₄NO₃ and NaOH, distilled water, thermometers, measuring cylinders, analytical balance, calculators
KLB Secondary Chemistry Form 4, Pages 35-36
4 3
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
Thermochemical Equations
Enthalpy of Solution of Concentrated Sulphuric Acid
Enthalpy of Combustion
By the end of the lesson, the learner should be able to:
- Write thermochemical equations including enthalpy changes
-Define molar heat of solution
-Draw energy level diagrams for dissolution reactions
-Interpret thermochemical equations correctly
Using data from previous experiment, write thermochemical equations for NH₄NO₃ and NaOH dissolution. Show proper notation with state symbols and ΔH values. Draw corresponding energy level diagrams. Practice writing thermochemical equations for various reactions. Explain significance of molar quantities in equations.
Results from previous experiment, graph paper for energy level diagrams, practice examples
Concentrated H₂SO₄, distilled water, 250ml plastic beaker, tissue paper, measuring cylinders, thermometer, safety equipment
Ethanol, small bottles with wicks, 250ml glass beakers, tripod stands, wire gauze, thermometers, analytical balance, measuring cylinders
KLB Secondary Chemistry Form 4, Pages 38-39
4 4
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
Enthalpy of Displacement
Enthalpy of Neutralization
By the end of the lesson, the learner should be able to:
- Define molar heat of displacement
-Investigate displacement of copper(II) ions by zinc
-Calculate molar heat of displacement
-Explain relationship between position in reactivity series and heat of displacement
Class experiment: Add 4.0g zinc powder to 100cm³ of 0.5M CuSO₄ solution in wrapped plastic beaker. Record temperature change and observations. Calculate moles of Zn used and Cu²⁺ displaced. Determine molar heat of displacement. Write ionic equation. Discuss why excess zinc is used. Compare with theoretical value.
Zinc powder, 0.5M CuSO₄ solution, 250ml plastic beakers, tissue paper, thermometers, analytical balance, stirring rods
2M HCl, 2M NaOH, 2M ethanoic acid, 2M ammonia solution, measuring cylinders, thermometers, 250ml plastic beakers, tissue paper
KLB Secondary Chemistry Form 4, Pages 44-47
4 5
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
Standard Conditions and Standard Enthalpy Changes
Hess's Law - Introduction and Theory
By the end of the lesson, the learner should be able to:
- Identify standard conditions for measuring enthalpy changes
-Define standard enthalpy changes using ΔH° notation
-Explain importance of standard conditions
-Use subscripts to denote different types of enthalpy changes
Q/A: Review previous enthalpy measurements. Introduce standard conditions: 25°C (298K) and 1 atmosphere pressure (101.325 kPa). Explain ΔH° notation and subscripts (ΔH°c for combustion, ΔH°f for formation, etc.). Discuss why standard conditions are necessary for comparison. Practice using correct notation.
Student books, examples of standard enthalpy data, notation practice exercises
Energy cycle diagrams for methane formation, chalkboard illustrations, worked examples from textbook
KLB Secondary Chemistry Form 4, Pages 49
5 1
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
Energy Cycle Diagrams
Hess's Law Calculations
Lattice Energy and Hydration Energy
By the end of the lesson, the learner should be able to:
- Draw energy cycle diagrams
-Link enthalpy of formation with enthalpy of combustion
-Calculate unknown enthalpy changes using energy cycles
-Apply Hess's Law to determine enthalpy of formation
Work through energy cycle for formation of CO from carbon and oxygen using combustion data. Draw cycle showing Route 1 (direct combustion) and Route 2 (formation then combustion). Calculate ΔH°f(CO) = ΔH°c(C) - ΔH°c(CO). Practice with additional examples including ethanol formation.
Graph paper, energy cycle templates, combustion data tables, calculators
Worked examples, combustion data, calculators, step-by-step calculation sheets
Energy cycle diagrams, lattice energy and hydration energy data tables, calculators
KLB Secondary Chemistry Form 4, Pages 52-54
5 2
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
Factors Affecting Lattice and Hydration Energies
Definition and Types of Fuels
By the end of the lesson, the learner should be able to:
- Explain factors affecting lattice energy
-Explain factors affecting hydration energy
-Use data tables to identify trends
-Calculate enthalpies of solution for various ionic compounds
Analyze data tables showing lattice energies (Table 2.7) and hydration energies (Table 2.6). Identify trends: smaller ions and higher charges give larger lattice energies and hydration energies. Calculate heat of solution for MgCl₂ using: ΔH(solution) = +2489 + (-1891 + 2×(-384)) = -170 kJ/mol. Practice with other compounds.
Data tables from textbook, calculators, trend analysis exercises
Examples of different fuels, classification charts, pictures of fuel types
KLB Secondary Chemistry Form 4, Pages 54-56
5 3
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
Heating Values of Fuels
Factors in Fuel Selection
By the end of the lesson, the learner should be able to:
- Define heating value of a fuel
-Calculate heating values from molar enthalpies of combustion
-Compare heating values of different fuels
-Explain units of heating value (kJ/g)
Calculate heating value of ethanol: ΔH°c = -1360 kJ/mol, Molar mass = 46 g/mol, Heating value = 1360/46 = 30 kJ/g. Compare heating values from Table 2.8: methane (55 kJ/g), fuel oil (45 kJ/g), charcoal (33 kJ/g), wood (17 kJ/g). Discuss significance of these values for fuel selection.
Heating value data table, calculators, fuel comparison charts
Fuel comparison tables, local fuel availability data, cost analysis sheets
KLB Secondary Chemistry Form 4, Pages 56-57
5 4
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
Environmental Effects of Fuels
Fuel Safety and Precautions
Endothermic and Exothermic Reactions
By the end of the lesson, the learner should be able to:
- Identify environmental effects of burning fuels
-Explain formation and effects of acid rain
-Describe contribution to global warming
-State measures to reduce pollution from fuels
Discuss pollutants from fossil fuels: SO₂, SO₃, CO, NO₂ causing acid rain. Effects: damage to buildings, corrosion, acidification of lakes, soil leaching. CO₂ and hydrocarbons cause global warming leading to ice melting, climate change. Pollution reduction measures: catalytic converters, unleaded petrol, zero emission vehicles, alternative fuels.
Pictures of environmental damage, pollution data, examples of clean technology
Safety guideline charts, examples of fuel accidents, local safety case studies
250ml plastic beakers, tissue paper, NH₄NO₃, NaOH pellets, distilled water, thermometers, calculators
KLB Secondary Chemistry Form 4, Pages 57-58
5 5
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
Bond Breaking, Formation and Phase Changes
Determination of Enthalpy of Solution
By the end of the lesson, the learner should be able to:
- Explain that energy changes are due to bond breaking and bond formation
-Investigate energy changes when solids and liquids are heated
-Define latent heat of fusion and vaporization
-Calculate energy changes using bond energies
Class experiment: Heat ice to melting then boiling, record temperature every minute. Plot heating curve. Explain constant temperature periods. Define latent heat of fusion/vaporization. Calculate energy changes in H₂ + Cl₂ → 2HCl using bond energies. Apply formula: ΔH = Energy absorbed - Energy released.
Ice, glass beakers, thermometers, heating source, graph paper, bond energy data tables
2.0g samples of NH₄NO₃ and NaOH, plastic beakers, thermometers, analytical balance, calculators
KLB Secondary Chemistry Form 4, Pages 32-36
6-7

MIDTERM EXAM

8

MIDTERM BREAK

9 1
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
Enthalpy of Solution of H₂SO₄ and Safety
Enthalpy of Combustion
By the end of the lesson, the learner should be able to:
- Determine heat of solution of concentrated sulphuric(VI) acid
-Apply safety precautions when handling concentrated acids
-Calculate enthalpy considering density and percentage purity
-Explain why experimental values differ from theoretical values
Teacher demonstration: Add 2cm³ concentrated H₂SO₄ to 98cm³ water (NEVER vice versa). Record temperature change. Calculate mass using density (1.84 g/cm³) and purity (98%). Calculate molar heat of solution. Emphasize safety: always add acid to water. Discuss sources of experimental error.
Concentrated H₂SO₄, distilled water, plastic beaker, tissue paper, thermometer, safety equipment
Ethanol, bottles with wicks, glass beakers, tripod stands, thermometers, analytical balance
KLB Secondary Chemistry Form 4, Pages 39-41
9 2
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
Enthalpy of Displacement
Enthalpy of Neutralization
Standard Conditions and Standard Enthalpy Changes
By the end of the lesson, the learner should be able to:
- Investigate enthalpy change when zinc reacts with copper(II) sulphate
-Define molar heat of displacement
-Calculate molar heat of displacement from experimental data
-Explain relationship between reactivity series and heat evolved
Class experiment: Add 4.0g zinc powder to 100cm³ of 0.5M CuSO₄. Record temperature change and observations (blue color fades, brown solid). Calculate moles and molar heat of displacement. Write ionic equation: Zn(s) + Cu²⁺(aq) → Zn²⁺(aq) + Cu(s). Explain why excess zinc is used.
Zinc powder, 0.5M CuSO₄ solution, plastic beakers, thermometers, analytical balance
2M HCl, 2M NaOH, 2M ethanoic acid, 2M ammonia solution, measuring cylinders, thermometers, plastic beakers
Student books, standard enthalpy data examples, notation practice exercises
KLB Secondary Chemistry Form 4, Pages 44-47
9 3
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
Hess's Law - Theory and Energy Cycles
Hess's Law Calculations
By the end of the lesson, the learner should be able to:
- State Hess's Law
-Explain that enthalpy change is independent of reaction route
-Draw energy cycle diagrams
-Apply Hess's Law to determine enthalpy of formation
Introduce Hess's Law: "Energy change in converting reactants to products is same regardless of route." Use methane formation showing Route 1 (direct combustion) vs Route 2 (formation then combustion). Draw energy cycle. Calculate ΔH°f(CH₄) = -965 + (-890) - (-75) = -75 kJ/mol. Practice with CO formation example.
Energy cycle diagrams for methane and CO formation, combustion data, calculators
Worked examples, combustion data tables, graph paper for diagrams, calculators
KLB Secondary Chemistry Form 4, Pages 49-52
9 4
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
Lattice Energy and Hydration Energy
Definition and Types of Fuels
By the end of the lesson, the learner should be able to:
- Explain relationship between heat of solution, hydration and lattice energy
-Define lattice energy and hydration energy
-Draw energy cycles for dissolving ionic compounds
-Calculate heat of solution using energy cycles
Explain NaCl dissolution: lattice breaks (endothermic) then ions hydrate (exothermic). Define lattice energy as energy when ionic compound forms from gaseous ions. Define hydration energy as energy when gaseous ions become hydrated. Draw energy cycle: ΔH(solution) = ΔH(lattice) + ΔH(hydration). Calculate for NaCl: +781 + (-774) = +7 kJ/mol.
Energy cycle diagrams, hydration diagram (Fig 2.17), Tables 2.6 and 2.7 with lattice/hydration energies
Examples of local fuels, Table 2.8 showing heating values, calculators
KLB Secondary Chemistry Form 4, Pages 54-56
9 5
ENERGY CHANGES IN PHYSICAL AND CHEMICAL PROCESSES
REACTION RATES AND REVERSIBLE REACTIONS
Fuel Selection Factors
Environmental Effects and Safety
Definition of Reaction Rate and Collision Theory
By the end of the lesson, the learner should be able to:
- State and explain factors that influence choice of a fuel
-Compare suitability of fuels for different purposes
-Explain fuel selection for domestic use vs specialized applications
-Apply selection criteria to local situations
Discuss seven factors: heating value, ease of combustion, availability, transportation, storage, environmental effects, cost. Compare wood/charcoal for domestic use (cheap, available, safe, slow burning) vs methylhydrazine for rockets (rapid burning, high heat 4740 kJ/mol, easy ignition). Students analyze best fuels for their local area.
Fuel comparison tables, local fuel cost data, examples of specialized fuel applications
Pictures of environmental damage, pollution reduction examples, safety guideline charts
Examples of fast/slow reactions, energy diagram templates, chalk/markers for diagrams
KLB Secondary Chemistry Form 4, Pages 57
10 1
REACTION RATES AND REVERSIBLE REACTIONS
Effect of Concentration on Reaction Rate
Change of Reaction Rate with Time
By the end of the lesson, the learner should be able to:
- Explain the effect of concentration on reaction rates
-Investigate reaction of magnesium with different concentrations of sulphuric acid
-Illustrate reaction rates graphically and interpret experimental data
-Calculate concentrations and plot graphs of concentration vs time
Class experiment: Label 4 conical flasks A-D. Add 40cm³ of 2M H₂SO₄ to A, dilute others with water (30+10, 20+20, 10+30 cm³). Drop 2cm magnesium ribbon into each, time complete dissolution. Record in Table 3.1. Calculate concentrations, plot graph. Explain: higher concentration → more collisions → faster reaction.
4 conical flasks, 2M H₂SO₄, distilled water, magnesium ribbon, stopwatch, measuring cylinders, graph paper
0.5M HCl, magnesium ribbon, conical flask, gas collection apparatus, graduated syringe, stopwatch, graph paper
KLB Secondary Chemistry Form 4, Pages 65-67
10 2
REACTION RATES AND REVERSIBLE REACTIONS
Effect of Temperature on Reaction Rate
Effect of Surface Area on Reaction Rate
By the end of the lesson, the learner should be able to:
- Explain the effect of temperature on reaction rates
-Investigate temperature effects using sodium thiosulphate and HCl
-Plot graphs of time vs temperature and 1/time vs temperature
-Apply collision theory to explain temperature effects
Class experiment: Place 30cm³ of 0.15M Na₂S₂O₃ in flasks at room temp, 30°C, 40°C, 50°C, 60°C. Mark cross on paper under flask. Add 5cm³ of 2M HCl, time until cross disappears. Record in Table 3.4. Plot time vs temperature and 1/time vs temperature graphs. Explain: higher temperature → more kinetic energy → more effective collisions.
0.15M Na₂S₂O₃, 2M HCl, conical flasks, water baths at different temperatures, paper with cross marked, stopwatch, thermometers
Marble chips, marble powder, 1M HCl, gas collection apparatus, balance, conical flasks, measuring cylinders, graph paper
KLB Secondary Chemistry Form 4, Pages 70-73
10 3
REACTION RATES AND REVERSIBLE REACTIONS
Effect of Catalysts on Reaction Rate
Effect of Light and Pressure on Reaction Rate
Reversible Reactions
By the end of the lesson, the learner should be able to:
- Explain effects of suitable catalysts on reaction rates
-Investigate decomposition of hydrogen peroxide with and without catalyst
-Define catalyst and explain how catalysts work
-Compare activation energies in catalyzed vs uncatalyzed reactions
Class experiment: Decompose 5cm³ of 20-volume H₂O₂ in 45cm³ water without catalyst, collect O₂ gas. Repeat adding 2g MnO₂ powder. Record gas volumes as in Fig 3.12. Compare rates and final mass of MnO₂. Write equation: 2H₂O₂ → 2H₂O + O₂. Define catalyst and explain how it lowers activation energy. Show energy diagrams for both pathways.
20-volume H₂O₂, MnO₂ powder, gas collection apparatus, balance, conical flasks, filter paper, measuring cylinders
0.1M KBr, 0.05M AgNO₃, test tubes, dark cupboard, direct light source, examples of photochemical reactions
CuSO₄·5H₂O crystals, boiling tubes, delivery tube, heating source, test tube holder
KLB Secondary Chemistry Form 4, Pages 76-78
10 4
REACTION RATES AND REVERSIBLE REACTIONS
Chemical Equilibrium
Le Chatelier's Principle and Effect of Concentration
By the end of the lesson, the learner should be able to:
- Explain chemical equilibrium
-Define dynamic equilibrium
-Investigate acid-base equilibrium using indicators
-Explain why equilibrium appears static but is actually dynamic
Experiment: Add 0.5M NaOH to 2cm³ in boiling tube with universal indicator. Add 0.5M HCl dropwise until green color (neutralization point). Continue adding base then acid alternately, observe color changes. Explain equilibrium as state where forward and backward reaction rates are equal. Use NH₄Cl ⇌ NH₃ + HCl example to show dynamic nature. Introduce equilibrium symbol ⇌.
0.5M NaOH, 0.5M HCl, universal indicator, boiling tubes, droppers, examples of equilibrium systems
Bromine water, 2M NaOH, 2M HCl, beakers, chromate/dichromate solutions for demonstration
KLB Secondary Chemistry Form 4, Pages 80-82
10 5
REACTION RATES AND REVERSIBLE REACTIONS
Effect of Pressure and Temperature on Equilibrium
Industrial Applications - Haber Process
Industrial Applications - Contact Process
By the end of the lesson, the learner should be able to:
- Explain effect of pressure changes on equilibrium
-Explain effect of temperature changes on equilibrium
-Investigate NO₂/N₂O₄ equilibrium with temperature
-Apply Le Chatelier's Principle to industrial processes
Teacher demonstration: React copper turnings with concentrated HNO₃ to produce NO₂ gas in test tube. Heat and cool the tube, observe color changes: brown ⇌ pale yellow representing 2NO₂ ⇌ N₂O₄. Explain pressure effects using molecule count. Show Table 3.7 with pressure effects. Discuss temperature effects: heating favors endothermic direction, cooling favors exothermic direction. Use Table 3.8.
Copper turnings, concentrated HNO₃, test tubes, heating source, ice bath, gas collection apparatus, safety equipment
Haber Process flow diagram, equilibrium data showing temperature/pressure effects on NH₃ yield, industrial catalyst information
Contact Process flow diagram, comparison table with Haber Process, catalyst effectiveness data
KLB Secondary Chemistry Form 4, Pages 84-87
11 1
SULPHUR AND ITS COMPOUNDS
Chemical Properties of Sulphur - Reactions with Elements
Chemical Properties of Sulphur - Reactions with Acids
Uses of Sulphur and Introduction to Oxides
Preparation of Sulphur(IV) Oxide
By the end of the lesson, the learner should be able to:
Investigate the reaction of sulphur with oxygen. Investigate the reaction of sulphur with metals. Write balanced equations for reactions of sulphur. Explain the formation of sulphides.
Practical work: Experiment 3(a) - Burning sulphur in oxygen using deflagrating spoon. Testing with moist litmus paper. Practical work: Heating mixtures of sulphur with iron powder and copper powder. Observation: Exothermic reactions and color changes. Writing equations: Fe + S → FeS, 2Cu + S → Cu2S.
Sulphur, Iron powder, Copper powder, Oxygen gas jar, Deflagrating spoon, Moist litmus papers, Test tubes, Bunsen burner
Sulphur powder, Concentrated HNO3, Concentrated H2SO4, Concentrated HCl, Barium chloride solution, Test tubes, Fume cupboard access
Charts showing uses of sulphur, Samples of vulcanized rubber, Fungicides, Industrial photographs, Textbook diagrams
Sodium sulphite, Dilute HCl, Round-bottomed flask, Delivery tubes, Gas jars, Concentrated H2SO4 for drying, Acidified potassium chromate(VI) paper
KLB Secondary Chemistry Form 4, Pages 165-167
11 2
SULPHUR AND ITS COMPOUNDS
Physical and Chemical Properties of Sulphur(IV) Oxide
Bleaching Action of Sulphur(IV) Oxide
Reducing Action of Sulphur(IV) Oxide
By the end of the lesson, the learner should be able to:
Investigate the physical properties of SO2 gas. Test the solubility and acidity of SO Write equations for formation of sulphurous acid. Identify the acidic nature of SO
Practical work: Experiment 5 - Testing color, smell, solubility in water. Testing with dry and moist litmus papers. Universal indicator tests with water and NaOH. Formation of normal and acid salts. Recording observations in Table Safety: Proper ventilation due to toxic nature.
SO2 gas from previous preparation, Litmus papers, Universal indicator, 0.1M NaOH solution, Water, Test tubes, Safety equipment
Colored flower petals (red/blue), SO2 gas jars, Hand lens for observation, Charts comparing bleaching agents
SO2 gas, Acidified K2Cr2O7, Acidified KMnO4, Bromine water, Iron(III) chloride solution, Concentrated HNO3, Test tubes
KLB Secondary Chemistry Form 4, Pages 171-173
11 3
SULPHUR AND ITS COMPOUNDS
Oxidising Action of Sulphur(IV) Oxide
Test for Sulphate and Sulphite Ions & Uses of SO2
By the end of the lesson, the learner should be able to:
Investigate SO2 as an oxidizing agent. Demonstrate reaction with stronger reducing agents. Explain the dual nature of SO Write equations for oxidation reactions by SO
Practical work: Experiment 8 - Lowering burning magnesium into SO2 gas. Observation: Continued burning, white fumes of MgO, yellow specks of sulphur. Reaction with hydrogen sulphide gas (demonstration). Discussion: SO2 decomposition providing oxygen. Writing equations: 2Mg + SO2 → 2MgO + S.
SO2 gas jars, Magnesium ribbon, Deflagrating spoon, Hydrogen sulphide gas, Water droppers, Safety equipment
Sodium sulphate solution, Sodium sulphite solution, Barium chloride solution, Dilute HCl, Test tubes, Charts showing industrial uses
KLB Secondary Chemistry Form 4, Pages 176-177
11 4
SULPHUR AND ITS COMPOUNDS
Large-scale Manufacture of Sulphuric(VI) Acid - Contact Process
Properties of Concentrated Sulphuric(VI) Acid - Dehydrating Properties
By the end of the lesson, the learner should be able to:
Describe the contact process for manufacturing H2SO Identify raw materials and conditions used. Explain the role of catalyst in the process. Draw flow diagrams of the contact process.
Study of flow diagram: Figure 12 - Contact process. Discussion: Raw materials (sulphur, air), burning sulphur to SO Purification: Electrostatic precipitation, drying with H2SO Catalytic chamber: V2O5 catalyst at 450°C, 2-3 atmospheres. Formation of oleum: H2S2O7. Safety and environmental considerations.
Flow chart diagrams, Charts showing industrial plant, Samples of catalyst (V2O5), Photographs of Thika chemical plant, Calculator for percentage calculations
Concentrated H2SO4, Copper(II) sulphate crystals, Sucrose, Ethanol, KMnO4 solution, Test tubes, Beakers, Safety equipment, Fume cupboard
KLB Secondary Chemistry Form 4, Pages 179-181
11 5
SULPHUR AND ITS COMPOUNDS
Properties of Concentrated Sulphuric(VI) Acid - Oxidizing Properties
Properties of Concentrated Sulphuric(VI) Acid - Displacement Reactions
Reactions of Dilute Sulphuric(VI) Acid - With Metals
By the end of the lesson, the learner should be able to:
Investigate the oxidizing properties of concentrated H2SO Test reactions with metals and non-metals. Identify the products of oxidation reactions. Write balanced equations for redox reactions.
Practical work: Experiment 10 (continued) - Reactions with copper foil, zinc granules, charcoal. Testing evolved gases with acidified K2Cr2O7 paper, lime water. Observations: SO2 evolution, color changes. Discussion: H2SO4 → SO2 + H2O + [O]. Writing half-equations and overall equations.
Copper foil, Zinc granules, Charcoal powder, Concentrated H2SO4, Acidified K2Cr2O7 paper, Lime water, Test tubes, Bunsen burner
Potassium nitrate crystals, Sodium chloride crystals, Concentrated H2SO4, Moist blue litmus paper, Concentrated ammonia, Test tubes, Bunsen burner
Magnesium ribbon, Zinc granules, Copper turnings, Dilute H2SO4, Test tubes, Burning splints, Reactivity series chart
KLB Secondary Chemistry Form 4, Pages 183-184
12 1
SULPHUR AND ITS COMPOUNDS
Reactions of Dilute Sulphuric(VI) Acid - With Carbonates
Reactions of Dilute Sulphuric(VI) Acid - With Oxides and Hydroxides
By the end of the lesson, the learner should be able to:
Investigate reactions of dilute H2SO4 with carbonates. Test for carbon dioxide evolution. Explain why some reactions stop prematurely. Compare reactions of different metal carbonates.
Practical work: Experiment 12 - Reactions with sodium carbonate, zinc carbonate, calcium carbonate, copper(II) carbonate. Testing evolved gas with lime water. Recording observations in Table 1 Discussion: Formation of insoluble calcium sulphate coating. Effervescence and CO2 identification.
Sodium carbonate, Zinc carbonate, Calcium carbonate, Copper(II) carbonate, Dilute H2SO4, Lime water, Test tubes
Metal oxides (MgO, ZnO, CuO, PbO), NaOH solution, 2M H2SO4, Test tubes, Bunsen burner for warming
KLB Secondary Chemistry Form 4, Pages 185-186
12 2
SULPHUR AND ITS COMPOUNDS
Hydrogen Sulphide - Preparation and Physical Properties
Chemical Properties of Hydrogen Sulphide
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of hydrogen sulphide. Set up apparatus for H2S preparation. State the physical properties of H2S. Explain the toxicity and safety precautions.
Demonstration: Figure 13 apparatus setup for H2S preparation. Reaction: FeS + 2HCl → FeCl2 + H2S. Collection over warm water due to solubility. Drying: Using anhydrous CaCl2 (not H2SO4). Properties: Colorless, rotten egg smell, poisonous, denser than air. Safety precautions in handling.
Iron(II) sulphide, Dilute HCl, Apparatus for gas generation, Anhydrous CaCl2, Gas jars, Safety equipment, Fume cupboard
H2S gas, Bromine water, Iron(III) chloride, KMnO4, K2Cr2O7, Metal salt solutions, Test tubes, Droppers
KLB Secondary Chemistry Form 4, Pages 187-188
12 3
SULPHUR AND ITS COMPOUNDS
CHLORINE AND ITS COMPOUNDS
CHLORINE AND ITS COMPOUNDS
CHLORINE AND ITS COMPOUNDS
CHLORINE AND ITS COMPOUNDS
Pollution Effects and Summary
Introduction and Preparation of Chlorine
Physical Properties of Chlorine
Chemical Properties of Chlorine - Reaction with Water
Chemical Properties of Chlorine - Reaction with Metals
By the end of the lesson, the learner should be able to:
Explain environmental pollution by sulphur compounds. Describe formation and effects of acid rain. Suggest methods to reduce sulphur pollution. Summarize key concepts of sulphur chemistry.
Discussion: Sources of SO2 pollution - burning fossil fuels, metal extraction, H2SO4 manufacture. Formation of acid rain: SO2 + H2O → H2SO3 → H2SO Effects: Plant damage, aquatic life destruction, building corrosion, soil acidification. Control measures: Scrubbing with Ca(OH)2, catalytic converters. Revision: Key reactions, properties, uses.
Charts showing pollution effects, Photographs of acid rain damage, Environmental data, Summary charts of reactions, Industrial pollution control diagrams
Manganese(IV) oxide, Concentrated HCl, Gas collection apparatus, Water, Concentrated H2SO4, Blue litmus paper, Gas jars
Preserved chlorine gas, Water trough, Gas jars, Observation tables, Safety equipment
Chlorine gas, Distilled water, Blue and red litmus papers, Colored flower petals, Gas jars, Boiling tubes
Magnesium ribbon, Iron wire, Chlorine gas, Deflagrating spoon, Combustion tube, Anhydrous CaCl2, Gas jars
KLB Secondary Chemistry Form 4, Pages 190-194
12 4
CHLORINE AND ITS COMPOUNDS
Chemical Properties of Chlorine - Reaction with Non-metals
Oxidising Properties of Chlorine
Reaction of Chlorine with Alkali Solutions
Oxidising Properties - Displacement Reactions
Test for Chloride Ions
By the end of the lesson, the learner should be able to:
Investigate reactions of chlorine with non-metals. Demonstrate reaction with phosphorus and hydrogen. Write equations for non-metal chloride formation. Explain the vigorous nature of these reactions.
Practical work: Experiment 6.5 - Warming red phosphorus and lowering into chlorine. Demonstration: Burning hydrogen jet in chlorine. Observations: White fumes of phosphorus chlorides, hydrogen chloride formation. Writing equations: P4 + 6Cl2 → 4PCl3, H2 + Cl2 → 2HCl. Discussion: Formation of covalent chlorides.
Red phosphorus, Hydrogen gas, Chlorine gas, Deflagrating spoon, Gas jars, Bunsen burner, Safety equipment
Sodium sulphite solution, Barium nitrate, Lead nitrate, Hydrogen sulphide gas, Aqueous ammonia, Chlorine gas, Test tubes
Sodium hydroxide solutions (dilute cold, concentrated hot), Chlorine gas, Beakers, Bunsen burner, Thermometer
Potassium bromide solution, Potassium iodide solution, Chlorine gas, Test tubes, Observation charts
Sodium chloride, Concentrated H2SO4, Lead(II) nitrate solution, Aqueous ammonia, Glass rod, Test tubes, Bunsen burner
KLB Secondary Chemistry Form 4, Pages 201
12 5
CHLORINE AND ITS COMPOUNDS
Uses of Chlorine and its Compounds
Hydrogen Chloride - Laboratory Preparation
By the end of the lesson, the learner should be able to:
List the industrial uses of chlorine. Explain the use of chlorine in water treatment. Describe manufacture of chlorine compounds. Relate properties to uses of chlorine.
Discussion: Industrial applications - HCl manufacture, bleaching agents for cotton and paper industries, water treatment and sewage plants. Study Figure 6.3(a) - bleaching chemicals. Applications: Chloroform (anaesthetic), solvents (trichloroethane), CFCs, PVC plastics, pesticides (DDT), germicides and fungicides. Q/A: Relating chemical properties to practical applications.
Charts showing industrial uses, Samples of bleaching agents, PVC materials, Photographs of water treatment plants, Industrial application diagrams
Rock salt (NaCl), Concentrated H2SO4, Gas collection apparatus, Ammonia solution, Litmus papers, Water trough, Gas jars
KLB Secondary Chemistry Form 4, Pages 205-207
13

CLOSING C.A.T

13 3
CHLORINE AND ITS COMPOUNDS
Chemical Properties of Hydrogen Chloride
Large-scale Manufacture of Hydrochloric Acid
Uses of Hydrochloric Acid
Environmental Pollution by Chlorine Compounds and Summary
By the end of the lesson, the learner should be able to:
Prepare aqueous hydrogen chloride (hydrochloric acid). Investigate acid properties of HCl solution. Test reactions with metals, bases, and carbonates. Compare HCl in water vs organic solvents.
Practical work: Experiment 6.11 - Preparation of aqueous HCl using apparatus in Figure 6. Testing with metals (Zn, Fe, Mg, Cu), NaOH, carbonates, lead nitrate. Recording observations in Table 6.7. Testing HCl in methylbenzene - no acid properties. Discussion: Ionization in water vs molecular existence in organic solvents. Writing equations for acid reactions.
Distilled water, Filter funnel, Metals (Zn, Fe, Mg, Cu), NaOH solution, Carbonates, Lead nitrate, Methylbenzene, Indicators
Flow diagrams, Industrial photographs, Glass beads samples, Charts showing electrolysis processes, Safety equipment models
Samples of rusted and cleaned metals, Photographic materials, pH control charts, Industrial application videos, Water treatment diagrams
Environmental pollution charts, Ozone layer diagrams, DDT restriction documents, PVC waste samples, NEMA guidelines, Summary charts of reactions
KLB Secondary Chemistry Form 4, Pages 208-211

Your Name Comes Here


Download

Feedback