Home






SCHEME OF WORK
Physics
Form 4 2026
TERM II
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 1
Thin Lenses
Types of Lenses and Effects on Light
By the end of the lesson, the learner should be able to:
Define a lens and distinguish between convex and concave lenses; Describe the effect of lenses on parallel rays of light; Explain convergence and divergence of light rays; Identify practical examples of different lens types
Q/A on refraction concepts; Experiment 1.1 - investigating effects of lenses on parallel rays using sunlight and ray box; Demonstration of convergence and divergence; Group identification of lens types in everyday objects; Drawing and analysis of ray diagrams
Ray box; Various convex and concave lenses; White screen; Plane mirror; Card with parallel slits; Sunlight or strong lamp
KLB Secondary Physics Form 4, Pages 1-6
2 2
Thin Lenses
Definition of Terms and Ray Diagrams
By the end of the lesson, the learner should be able to:
Define centre of curvature, principal axis, optical centre, principal focus and focal length; Distinguish between real and virtual focus; State and apply the three important rays for lens diagrams; Construct basic ray diagrams for lenses
Q/A review of lens effects; Guided discovery of lens terminology using practical demonstrations; Step-by-step construction of ray diagrams using the three important rays; Practice drawing ray paths for parallel rays, rays through focus, and rays through optical centre; Group work on ray diagram construction
Various lenses; Rulers; Graph paper; Ray boxes; Charts showing lens terminology; Drawing materials; Laser pointers (if available)
KLB Secondary Physics Form 4, Pages 3-8
2 3
Thin Lenses
Image Formation by Converging Lenses
By the end of the lesson, the learner should be able to:
Locate images for different object positions using ray diagrams; Describe image characteristics (real/virtual, erect/inverted, magnified/diminished); Explain applications in telescope, camera, projector and magnifying glass; Understand relationship between object position and image properties
Review of ray construction rules; Systematic ray diagram construction for objects at infinity, beyond 2F, at 2F, between F and 2F, at F, and between F and lens; Analysis of image characteristics for each position; Discussion of practical applications; Demonstration using lens, object and screen
Converging lenses; Objects; White screen; Metre rule; Candle; Graph paper; Charts showing applications; Camera (if available)
KLB Secondary Physics Form 4, Pages 8-12
2 4
Thin Lenses
Image Formation by Diverging Lenses and Linear Magnification
By the end of the lesson, the learner should be able to:
Construct ray diagrams for diverging lenses; Explain why diverging lenses always form virtual, erect, diminished images; Define linear magnification and derive its formula; Calculate magnification using height and distance ratios; Solve Examples 1, 2, and 3 from textbook
Q/A on converging lens images; Ray diagram construction for diverging lenses; Mathematical derivation of magnification formulae; Step-by-step solution of textbook examples; Scale drawing practice; Group problem-solving on magnification calculations
Diverging lenses; Graph paper; Rulers; Calculators; Examples from textbook; Objects of known heights; Measuring equipment
KLB Secondary Physics Form 4, Pages 11-14
2 5
Electromagnetic Induction
Introduction and Historical Background
By the end of the lesson, the learner should be able to:
Define electromagnetic induction and its significance; Explain Faraday's discovery and its impact on modern technology; Understand the relationship between magnetism and electricity; Identify examples of electromagnetic induction in daily life; Appreciate the importance of relative motion in electromagnetic phenomena
Q/A on magnetic fields and electric current relationships from previous studies; Introduction to Michael Faraday's discovery and its historical significance; Discussion of electromagnetic induction examples in daily life (generators, transformers, motors); Overview of chapter content and learning objectives; Introduction to practical applications in power generation and electronics
Charts showing Faraday's experiments; Pictures of power stations; Transformers; Generators; Historical timeline of electromagnetic discoveries; Real-world applications display
KLB Secondary Physics Form 4, Pages 86
3 1
Electromagnetic Induction
Conditions for Electromagnetic Induction - Straight Conductor
By the end of the lesson, the learner should be able to:
Perform Experiment 5.1 using straight conductor; Identify conditions necessary for inducing e.m.f. in a straight conductor; Observe effects of different types of motion on induced current; Understand the importance of relative motion between conductor and magnetic field; Analyze galvanometer deflections
Performance of Experiment 5.1 using straight conductor AB in U-shaped magnet; Systematic investigation of conductor movement (vertical up/down, parallel to field, stationary, different angles); Observation and recording of galvanometer deflections; Analysis of current direction changes with motion reversal; Discussion of relative motion importance and field cutting concept
Thick electric conductor; U-shaped magnet; Galvanometer; Connecting wires; Clamp and stand setup; Data recording sheets
KLB Secondary Physics Form 4, Pages 86-87
3 2
Electromagnetic Induction
Conditions for Electromagnetic Induction - Straight Conductor
By the end of the lesson, the learner should be able to:
Perform Experiment 5.1 using straight conductor; Identify conditions necessary for inducing e.m.f. in a straight conductor; Observe effects of different types of motion on induced current; Understand the importance of relative motion between conductor and magnetic field; Analyze galvanometer deflections
Performance of Experiment 5.1 using straight conductor AB in U-shaped magnet; Systematic investigation of conductor movement (vertical up/down, parallel to field, stationary, different angles); Observation and recording of galvanometer deflections; Analysis of current direction changes with motion reversal; Discussion of relative motion importance and field cutting concept
Thick electric conductor; U-shaped magnet; Galvanometer; Connecting wires; Clamp and stand setup; Data recording sheets
KLB Secondary Physics Form 4, Pages 86-87
3 3
Electromagnetic Induction
Conditions for Electromagnetic Induction - Straight Conductor
By the end of the lesson, the learner should be able to:
Perform Experiment 5.1 using straight conductor; Identify conditions necessary for inducing e.m.f. in a straight conductor; Observe effects of different types of motion on induced current; Understand the importance of relative motion between conductor and magnetic field; Analyze galvanometer deflections
Performance of Experiment 5.1 using straight conductor AB in U-shaped magnet; Systematic investigation of conductor movement (vertical up/down, parallel to field, stationary, different angles); Observation and recording of galvanometer deflections; Analysis of current direction changes with motion reversal; Discussion of relative motion importance and field cutting concept
Thick electric conductor; U-shaped magnet; Galvanometer; Connecting wires; Clamp and stand setup; Data recording sheets
KLB Secondary Physics Form 4, Pages 86-87
3 4
Electromagnetic Induction
Conditions for Electromagnetic Induction - Coils
By the end of the lesson, the learner should be able to:
Perform Experiment 5.1 using coils; Compare induction effects in straight conductors vs coils; Observe effects of magnet movement into and out of coils; Understand flux linkage concept; Analyze why coils are more effective than single conductors
Continuation of Experiment 5.1 using coil instead of straight conductor; Investigation of magnet movement into coil, out of coil, and stationary positions; Comparison of deflection magnitudes between straight conductor and coil setups; Analysis of why coils produce larger induced e.m.f.; Discussion of magnetic flux and flux linkage concepts
Coils of different sizes; Magnets of various strengths; Galvanometer; Connecting wires; Comparison data sheets
KLB Secondary Physics Form 4, Pages 87-88
3 5
Electromagnetic Induction
Conditions for Electromagnetic Induction - Coils
By the end of the lesson, the learner should be able to:
Perform Experiment 5.1 using coils; Compare induction effects in straight conductors vs coils; Observe effects of magnet movement into and out of coils; Understand flux linkage concept; Analyze why coils are more effective than single conductors
Continuation of Experiment 5.1 using coil instead of straight conductor; Investigation of magnet movement into coil, out of coil, and stationary positions; Comparison of deflection magnitudes between straight conductor and coil setups; Analysis of why coils produce larger induced e.m.f.; Discussion of magnetic flux and flux linkage concepts
Coils of different sizes; Magnets of various strengths; Galvanometer; Connecting wires; Comparison data sheets
KLB Secondary Physics Form 4, Pages 87-88
4 1
Electromagnetic Induction
Factors Affecting Induced E.M.F. - Rate of Change
By the end of the lesson, the learner should be able to:
Perform Experiment 5.2 investigating rate of change effects; Understand relationship between speed of motion and induced e.m.f.; Collect and analyze data on rate of flux change; Establish that faster changes produce larger e.m.f.; Apply findings to practical situations
Performance of Experiment 5.2 investigating relationship between rate of change of magnetic flux and induced e.m.f.; Systematic variation of magnet withdrawal speeds (very fast, moderate, very slow); Recording and comparison of galvanometer deflections; Data analysis and conclusion drawing; Discussion of practical implications in generators and other applications
Coil of at least 50 turns; Sensitive galvanometer; Magnet; Stopwatch; Data collection tables; Graph paper for analysis
KLB Secondary Physics Form 4, Pages 88-89
4 2
Electromagnetic Induction
Factors Affecting Induced E.M.F. - Rate of Change
By the end of the lesson, the learner should be able to:
Perform Experiment 5.2 investigating rate of change effects; Understand relationship between speed of motion and induced e.m.f.; Collect and analyze data on rate of flux change; Establish that faster changes produce larger e.m.f.; Apply findings to practical situations
Performance of Experiment 5.2 investigating relationship between rate of change of magnetic flux and induced e.m.f.; Systematic variation of magnet withdrawal speeds (very fast, moderate, very slow); Recording and comparison of galvanometer deflections; Data analysis and conclusion drawing; Discussion of practical implications in generators and other applications
Coil of at least 50 turns; Sensitive galvanometer; Magnet; Stopwatch; Data collection tables; Graph paper for analysis
KLB Secondary Physics Form 4, Pages 88-89
4 3
Electromagnetic Induction
Factors Affecting Induced E.M.F. - Magnetic Field Strength
By the end of the lesson, the learner should be able to:
Perform Experiment 5.3 investigating magnetic field strength effects; Understand relationship between field strength and induced e.m.f.; Control variables in electromagnetic experiments; Use electromagnets to vary field strength; Apply experimental findings to solve problems
Performance of Experiment 5.3 investigating relationship between magnetic field strength and induced e.m.f.; Setup of electromagnet with variable current control; Investigation of wire PQ movement in different field strengths; Recording galvanometer deflections for different electromagnet currents; Analysis of results and relationship establishment
U-shaped electromagnet; Variable resistor; Wire PQ; Galvanometer; Ammeter; Connecting wires; Power supply; Data recording materials
KLB Secondary Physics Form 4, Pages 89
4 4
Electromagnetic Induction
Factors Affecting Induced E.M.F. - Magnetic Field Strength
By the end of the lesson, the learner should be able to:
Perform Experiment 5.3 investigating magnetic field strength effects; Understand relationship between field strength and induced e.m.f.; Control variables in electromagnetic experiments; Use electromagnets to vary field strength; Apply experimental findings to solve problems
Performance of Experiment 5.3 investigating relationship between magnetic field strength and induced e.m.f.; Setup of electromagnet with variable current control; Investigation of wire PQ movement in different field strengths; Recording galvanometer deflections for different electromagnet currents; Analysis of results and relationship establishment
U-shaped electromagnet; Variable resistor; Wire PQ; Galvanometer; Ammeter; Connecting wires; Power supply; Data recording materials
KLB Secondary Physics Form 4, Pages 89
4 5
Electromagnetic Induction
Factors Affecting Induced E.M.F. - Number of Turns
By the end of the lesson, the learner should be able to:
Perform Experiment 5.4 investigating effect of coil turns; Understand relationship between number of turns and induced e.m.f.; Construct coils with different numbers of turns; Analyze why more turns produce larger e.m.f.; State Faraday's law of electromagnetic induction
Performance of Experiment 5.4 investigating relationship between number of turns and induced e.m.f.; Construction of solenoids with 60, 50, 40, 30, and 20 turns; Systematic testing with same magnet withdrawal speed; Recording and analysis of galvanometer readings; Mathematical relationship establishment; Statement of Faraday's law based on experimental evidence
Insulated copper wire; Sensitive galvanometer; Magnet; Connecting wires; Wire cutting and measuring tools; Data analysis sheets
KLB Secondary Physics Form 4, Pages 89-90
5 1
Electromagnetic Induction
Lenz's Law and Direction of Induced Current
By the end of the lesson, the learner should be able to:
Perform Experiment 5.5 determining direction of induced current; State Lenz's law and explain its significance; Understand energy conservation in electromagnetic induction; Predict current direction using Lenz's law; Relate Lenz's law to conservation of energy principle
Performance of Experiment 5.5(a) establishing galvanometer deflection direction; Performance of Experiment 5.5(b) investigating induced current direction with magnet movement; Analysis of current directions and magnetic pole formation; Statement and explanation of Lenz's law; Discussion of energy conservation and opposition principle; Practice in predicting current directions
Variable resistor; Sensitive center-zero galvanometer; Connecting wires; Coil; Magnet; Switch; Battery; Direction analysis charts
KLB Secondary Physics Form 4, Pages 90-93
5 2
Electromagnetic Induction
Lenz's Law and Direction of Induced Current
By the end of the lesson, the learner should be able to:
Perform Experiment 5.5 determining direction of induced current; State Lenz's law and explain its significance; Understand energy conservation in electromagnetic induction; Predict current direction using Lenz's law; Relate Lenz's law to conservation of energy principle
Performance of Experiment 5.5(a) establishing galvanometer deflection direction; Performance of Experiment 5.5(b) investigating induced current direction with magnet movement; Analysis of current directions and magnetic pole formation; Statement and explanation of Lenz's law; Discussion of energy conservation and opposition principle; Practice in predicting current directions
Variable resistor; Sensitive center-zero galvanometer; Connecting wires; Coil; Magnet; Switch; Battery; Direction analysis charts
KLB Secondary Physics Form 4, Pages 90-93
5 3
Electromagnetic Induction
Lenz's Law and Direction of Induced Current
By the end of the lesson, the learner should be able to:
Perform Experiment 5.5 determining direction of induced current; State Lenz's law and explain its significance; Understand energy conservation in electromagnetic induction; Predict current direction using Lenz's law; Relate Lenz's law to conservation of energy principle
Performance of Experiment 5.5(a) establishing galvanometer deflection direction; Performance of Experiment 5.5(b) investigating induced current direction with magnet movement; Analysis of current directions and magnetic pole formation; Statement and explanation of Lenz's law; Discussion of energy conservation and opposition principle; Practice in predicting current directions
Variable resistor; Sensitive center-zero galvanometer; Connecting wires; Coil; Magnet; Switch; Battery; Direction analysis charts
KLB Secondary Physics Form 4, Pages 90-93
5 4
Electromagnetic Induction
Fleming's Right-Hand Rule
By the end of the lesson, the learner should be able to:
Perform Experiment 5.6 with straight conductors; State Fleming's right-hand rule (dynamo rule); Apply the rule to determine direction of induced current; Understand relationship between motion, field, and current directions; Solve Example 1 involving square loop movement
Performance of Experiment 5.6 determining induced current direction in straight conductor; Introduction and demonstration of Fleming's right-hand rule; Practice applying the rule to various conductor movements; Step-by-step solution of Example 1 (square loop in magnetic field); Analysis of current directions in different parts of the loop; Verification of Fleming's rule consistency with Lenz's law
U-shaped magnet; Thick wire AB; Marked center-zero galvanometer; Hand models for rule demonstration; Example 1 setup materials; Direction analysis worksheets
KLB Secondary Physics Form 4, Pages 93-97
5 5
Electromagnetic Induction
Fleming's Right-Hand Rule
By the end of the lesson, the learner should be able to:
Perform Experiment 5.6 with straight conductors; State Fleming's right-hand rule (dynamo rule); Apply the rule to determine direction of induced current; Understand relationship between motion, field, and current directions; Solve Example 1 involving square loop movement
Performance of Experiment 5.6 determining induced current direction in straight conductor; Introduction and demonstration of Fleming's right-hand rule; Practice applying the rule to various conductor movements; Step-by-step solution of Example 1 (square loop in magnetic field); Analysis of current directions in different parts of the loop; Verification of Fleming's rule consistency with Lenz's law
U-shaped magnet; Thick wire AB; Marked center-zero galvanometer; Hand models for rule demonstration; Example 1 setup materials; Direction analysis worksheets
KLB Secondary Physics Form 4, Pages 93-97
6 1
Electromagnetic Induction
Applications of Induction Laws
By the end of the lesson, the learner should be able to:
Solve Examples 2 and 3 involving current direction; Apply Lenz's law to predict current directions in circuits; Understand induced current effects in neighboring circuits; Analyze changing magnetic fields and their effects; Use both Fleming's rule and Lenz's law in problem solving
Q/A review of Fleming's rule and Lenz's law; Step-by-step solution of Example 2 (current in conductor AB affecting nearby loop); Detailed analysis of Example 3 (magnet movement and coil current direction); Practice problems involving current direction prediction; Group work on applying both laws to various scenarios; Discussion of consistency between different methods
Examples 2 and 3 setup materials; Problem-solving worksheets; Charts showing current direction analysis; Group work materials; Calculators
KLB Secondary Physics Form 4, Pages 94-97
6 2
Electromagnetic Induction
Applications of Induction Laws
By the end of the lesson, the learner should be able to:
Solve Examples 2 and 3 involving current direction; Apply Lenz's law to predict current directions in circuits; Understand induced current effects in neighboring circuits; Analyze changing magnetic fields and their effects; Use both Fleming's rule and Lenz's law in problem solving
Q/A review of Fleming's rule and Lenz's law; Step-by-step solution of Example 2 (current in conductor AB affecting nearby loop); Detailed analysis of Example 3 (magnet movement and coil current direction); Practice problems involving current direction prediction; Group work on applying both laws to various scenarios; Discussion of consistency between different methods
Examples 2 and 3 setup materials; Problem-solving worksheets; Charts showing current direction analysis; Group work materials; Calculators
KLB Secondary Physics Form 4, Pages 94-97
6 3
Electromagnetic Induction
Mutual Induction
By the end of the lesson, the learner should be able to:
Define mutual induction and demonstrate its occurrence; Perform Experiment 5.7 showing mutual induction between coils; Explain factors affecting mutual induction; Understand primary and secondary coil relationships; Discuss enhancement methods using iron cores
Q/A on electromagnetic induction principles; Introduction to mutual induction concept and definition; Performance of Experiment 5.7 demonstrating mutual induction between primary and secondary coils; Investigation of switching effects, current changes, and A.C. source effects; Analysis of mutual induction enhancement using soft iron rod and ring; Discussion of applications in transformers
Two coils P and S; Galvanometer; Battery; A.C. power source; Switch; Rheostat; Connecting wires; Soft iron rod; Soft iron ring; Enhancement demonstration materials
KLB Secondary Physics Form 4, Pages 97-100
6 4
Electromagnetic Induction
Mutual Induction
By the end of the lesson, the learner should be able to:
Define mutual induction and demonstrate its occurrence; Perform Experiment 5.7 showing mutual induction between coils; Explain factors affecting mutual induction; Understand primary and secondary coil relationships; Discuss enhancement methods using iron cores
Q/A on electromagnetic induction principles; Introduction to mutual induction concept and definition; Performance of Experiment 5.7 demonstrating mutual induction between primary and secondary coils; Investigation of switching effects, current changes, and A.C. source effects; Analysis of mutual induction enhancement using soft iron rod and ring; Discussion of applications in transformers
Two coils P and S; Galvanometer; Battery; A.C. power source; Switch; Rheostat; Connecting wires; Soft iron rod; Soft iron ring; Enhancement demonstration materials
KLB Secondary Physics Form 4, Pages 97-100
6 5
Electromagnetic Induction
Transformers - Basic Principles
By the end of the lesson, the learner should be able to:
Describe transformer structure and components; Explain working principle based on mutual induction; Perform Experiment 5.10 investigating secondary e.m.f. variation; Understand primary and secondary coil functions; Distinguish between step-up and step-down transformers
Review of mutual induction through Q/A; Introduction to transformer structure (primary coil, secondary coil, iron core); Performance of Experiment 5.10 - variation of secondary e.m.f. with number of turns; Observation of bulb brightness changes with turn variations; Analysis of step-up vs step-down transformer characteristics; Introduction to transformer symbols and representations
Long insulated copper wire; Soft iron rod; Low frequency A.C. source; A.C. voltmeter; Switch; Bulb; Transformer construction materials; Symbol charts
KLB Secondary Physics Form 4, Pages 100-102
7 1
Electromagnetic Induction
Transformer Equations and Calculations
By the end of the lesson, the learner should be able to:
Derive transformer turns rule equation; Apply transformer equations for voltage and current relationships; Calculate transformer efficiency; Solve Examples 4 and 5 involving transformer problems; Understand ideal vs practical transformer differences
Q/A on transformer working principles; Mathematical derivation of turns rule (Vp/Vs = Np/Ns); Development of current relationship (IpVp = IsVs for ideal transformer); Introduction to efficiency calculations; Step-by-step solution of Examples 4 and 5; Discussion of ideal transformer assumptions vs practical limitations
Calculators; Examples 4 and 5 materials; Mathematical derivation charts; Efficiency calculation worksheets; Transformer specification data
KLB Secondary Physics Form 4, Pages 102-105
7 2
Electromagnetic Induction
Transformer Equations and Calculations
By the end of the lesson, the learner should be able to:
Derive transformer turns rule equation; Apply transformer equations for voltage and current relationships; Calculate transformer efficiency; Solve Examples 4 and 5 involving transformer problems; Understand ideal vs practical transformer differences
Q/A on transformer working principles; Mathematical derivation of turns rule (Vp/Vs = Np/Ns); Development of current relationship (IpVp = IsVs for ideal transformer); Introduction to efficiency calculations; Step-by-step solution of Examples 4 and 5; Discussion of ideal transformer assumptions vs practical limitations
Calculators; Examples 4 and 5 materials; Mathematical derivation charts; Efficiency calculation worksheets; Transformer specification data
KLB Secondary Physics Form 4, Pages 102-105
7 3
Electromagnetic Induction
Transformer Equations and Calculations
By the end of the lesson, the learner should be able to:
Derive transformer turns rule equation; Apply transformer equations for voltage and current relationships; Calculate transformer efficiency; Solve Examples 4 and 5 involving transformer problems; Understand ideal vs practical transformer differences
Q/A on transformer working principles; Mathematical derivation of turns rule (Vp/Vs = Np/Ns); Development of current relationship (IpVp = IsVs for ideal transformer); Introduction to efficiency calculations; Step-by-step solution of Examples 4 and 5; Discussion of ideal transformer assumptions vs practical limitations
Calculators; Examples 4 and 5 materials; Mathematical derivation charts; Efficiency calculation worksheets; Transformer specification data
KLB Secondary Physics Form 4, Pages 102-105
7 4
Electromagnetic Induction
Transformer Equations and Calculations
By the end of the lesson, the learner should be able to:
Derive transformer turns rule equation; Apply transformer equations for voltage and current relationships; Calculate transformer efficiency; Solve Examples 4 and 5 involving transformer problems; Understand ideal vs practical transformer differences
Q/A on transformer working principles; Mathematical derivation of turns rule (Vp/Vs = Np/Ns); Development of current relationship (IpVp = IsVs for ideal transformer); Introduction to efficiency calculations; Step-by-step solution of Examples 4 and 5; Discussion of ideal transformer assumptions vs practical limitations
Calculators; Examples 4 and 5 materials; Mathematical derivation charts; Efficiency calculation worksheets; Transformer specification data
KLB Secondary Physics Form 4, Pages 102-105
7 5
Electromagnetic Induction
Transformer Energy Losses and Example 6
By the end of the lesson, the learner should be able to:
Identify four main energy losses in transformers; Explain methods to minimize each type of energy loss; Understand lamination and its purpose; Solve Example 6 involving power transmission system; Calculate efficiency and power losses in practical systems
Review of ideal transformer equations; Analysis of energy losses (flux leakage, copper losses, eddy currents, hysteresis loss); Study of loss minimization techniques including core lamination; Discussion of practical transformer efficiency; Step-by-step solution of Example 6 (complex power transmission system); Analysis of step-up and step-down transformer roles
Charts showing energy losses; Laminated core samples; Example 6 complex setup; Power transmission diagrams; Efficiency calculation materials; Loss minimization demonstration aids
KLB Secondary Physics Form 4, Pages 105-108
8 1
Electromagnetic Induction
Applications - Generators, Microphones, and Induction Coils
By the end of the lesson, the learner should be able to:
Explain structure and working of A.C. and D.C. generators; Describe moving-coil microphone operation; Understand induction coil structure and applications; Compare slip rings with split ring commutators; Analyze generator output waveforms and applications
Review of electromagnetic induction in rotating systems; Detailed study of A.C. generator structure and sinusoidal output; Analysis of D.C. generator with split ring commutator; Explanation of moving-coil microphone components and sound conversion; Description of induction coil operation and high voltage generation; Discussion of applications in car ignition systems
A.C. generator model; D.C. generator model; Moving-coil microphone demonstration; Induction coil setup; Output waveform charts; Slip ring and commutator comparisons; Bicycle dynamo
KLB Secondary Physics Form 4, Pages 108-112
8 2
Electromagnetic Induction
Applications - Generators, Microphones, and Induction Coils
By the end of the lesson, the learner should be able to:
Explain structure and working of A.C. and D.C. generators; Describe moving-coil microphone operation; Understand induction coil structure and applications; Compare slip rings with split ring commutators; Analyze generator output waveforms and applications
Review of electromagnetic induction in rotating systems; Detailed study of A.C. generator structure and sinusoidal output; Analysis of D.C. generator with split ring commutator; Explanation of moving-coil microphone components and sound conversion; Description of induction coil operation and high voltage generation; Discussion of applications in car ignition systems
A.C. generator model; D.C. generator model; Moving-coil microphone demonstration; Induction coil setup; Output waveform charts; Slip ring and commutator comparisons; Bicycle dynamo
KLB Secondary Physics Form 4, Pages 108-112
8 3
Electromagnetic Induction
Applications - Generators, Microphones, and Induction Coils
By the end of the lesson, the learner should be able to:
Explain structure and working of A.C. and D.C. generators; Describe moving-coil microphone operation; Understand induction coil structure and applications; Compare slip rings with split ring commutators; Analyze generator output waveforms and applications
Review of electromagnetic induction in rotating systems; Detailed study of A.C. generator structure and sinusoidal output; Analysis of D.C. generator with split ring commutator; Explanation of moving-coil microphone components and sound conversion; Description of induction coil operation and high voltage generation; Discussion of applications in car ignition systems
A.C. generator model; D.C. generator model; Moving-coil microphone demonstration; Induction coil setup; Output waveform charts; Slip ring and commutator comparisons; Bicycle dynamo
KLB Secondary Physics Form 4, Pages 108-112
8 4
Mains Electricity
Sources of Mains Electricity
By the end of the lesson, the learner should be able to:

State the main sources of mains electricity
Explain how different sources generate electrical energy
Compare advantages and disadvantages of different power sources
Describe the environmental impact of various power sources
Prior knowledge review on electrical energy
Discussion on local power sources in Kenya
Field trip planning to nearby power station
Group presentations on different power sources
Q&A session on power generation methods
Pictures of power stations
Charts showing different energy sources
Videos of power generation
Maps of Kenya's power grid
Sample coal, biomass materials
KLB Secondary Physics Form 4, Pages 117
8 5
Mains Electricity
The Grid System and Power Transmission
By the end of the lesson, the learner should be able to:

Define the national grid system
Explain the need for interconnected power stations
Describe high voltage transmission
State the voltage levels in power transmission
Q&A on previous lesson
Drawing and labeling the grid system
Discussion on power transmission in Kenya
Explaining voltage step-up process
Problem-solving on power transmission
Chart of national grid system
Transmission line models
Maps showing power lines
Transformer models
Voltage measurement devices
KLB Secondary Physics Form 4, Pages 117-118
9 1
Mains Electricity
High Voltage Transmission and Power Losses
By the end of the lesson, the learner should be able to:

Explain why power is transmitted at high voltage
Calculate power losses in transmission
State dangers of high voltage transmission
Apply the formula P = I²R to transmission problems
Review of Ohm's law and power formulas
Demonstration of power loss calculations
Worked examples on transmission efficiency
Discussion on safety measures for transmission lines
Group problem-solving activities
Calculators
Worked example sheets
Pictures of transmission towers
Safety warning signs
Formula charts
KLB Secondary Physics Form 4, Pages 118-121
9 2
Mains Electricity
Domestic Wiring System
By the end of the lesson, the learner should be able to:

Describe the domestic wiring system
Identify components of consumer fuse box
Explain the function of live, neutral and earth wires
Draw simple domestic wiring circuits
Q&A on transmission systems
Examination of house wiring components
Drawing domestic wiring diagrams
Identification of electrical safety features
Practical observation of electrical installations
House wiring components
Fuse box model
Different types of fuses
Electrical cables (samples)
Circuit diagrams
Multimeter
KLB Secondary Physics Form 4, Pages 121-124
9 3
Mains Electricity
Fuses, Circuit Breakers and Safety Devices
By the end of the lesson, the learner should be able to:

Explain the function of fuses in electrical circuits
Compare fuses and circuit breakers
Select appropriate fuse ratings for different appliances
Describe safety measures in electrical installations
Review of domestic wiring components
Examination of different fuse types
Calculation of appropriate fuse ratings
Demonstration of circuit breaker operation
Discussion on electrical safety
Various fuses (2A, 5A, 13A)
Circuit breakers
Fuse wire samples
Electrical appliances
Calculators
Safety equipment samples
KLB Secondary Physics Form 4, Pages 122-123
9 4
Mains Electricity
Ring Mains Circuit and Three-Pin Plugs
By the end of the lesson, the learner should be able to:

Describe the ring mains circuit
Explain advantages of ring mains system
Wire a three-pin plug correctly
Identify wire color coding in electrical systems
Q&A on fuses and safety devices
Drawing ring mains circuit diagrams
Practical wiring of three-pin plugs
Color coding identification exercise
Safety demonstration with earthing
Three-pin plugs
Electrical cables
Wire strippers
Screwdrivers
Ring mains circuit model
Color-coded wires
KLB Secondary Physics Form 4, Pages 124-125
9 5
Mains Electricity
Electrical Energy Consumption and Costing
By the end of the lesson, the learner should be able to:

Define kilowatt-hour (kWh)
Calculate electrical energy consumption
Determine cost of electrical energy
Apply energy formulas to practical problems
Review of power and energy concepts
Introduction to kilowatt-hour unit
Worked examples on energy calculations
Practice problems on electricity billing
Analysis of electricity bills
Calculators
Sample electricity bills
Electrical appliances with ratings
Stop watches
Energy meter model
Formula charts
KLB Secondary Physics Form 4, Pages 125-128
10 1
Mains Electricity
Problem Solving and Applications
By the end of the lesson, the learner should be able to:

Solve complex problems on power transmission
Calculate energy consumption for multiple appliances
Analyze electricity costs and savings
Apply knowledge to real-life situations
Review of all chapter concepts
Problem-solving sessions
Group work on complex calculations
Discussion on energy conservation
Preparation for assessment
Calculators
Problem sheets
Past examination questions
Real electricity bills
Energy conservation charts
KLB Secondary Physics Form 4, Pages 117-128
10 2
Cathode Rays and Cathode Ray Tube
Thermionic Emission
By the end of the lesson, the learner should be able to:

Define thermionic emission
Explain the process of electron emission from heated metals
Describe a simple experiment to demonstrate thermionic emission
State factors affecting thermionic emission
Q&A on electron structure and energy
Demonstration of thermionic emission using simple circuit
Discussion on work function of different metals
Explanation of electron emission process
Identification of materials used in cathodes
Simple thermionic emission apparatus
Low voltage power supply (6V)
Milliammeter
Evacuated glass bulb
Heated filament
Charts showing electron emission
KLB Secondary Physics Form 4, Pages 131-132
10 3
Cathode Rays and Cathode Ray Tube
Production and Properties of Cathode Rays
By the end of the lesson, the learner should be able to:

Describe how cathode rays are produced
State the properties of cathode rays
Explain evidence that cathode rays are streams of electrons
Demonstrate properties using simple experiments
Review of thermionic emission
Description of cathode ray tube construction
Demonstration of cathode ray properties
Experiments showing straight line travel and shadow formation
Discussion on deflection by electric and magnetic fields
Cathode ray tube (simple)
High voltage supply (EHT)
Fluorescent screen
Maltese cross or opaque object
Bar magnets
Charged plates
KLB Secondary Physics Form 4, Pages 131-133
10 4
Cathode Rays and Cathode Ray Tube
Structure of Cathode Ray Oscilloscope
By the end of the lesson, the learner should be able to:

Identify the main parts of a CRO
Describe the function of the electron gun
Explain the focusing system in CRO
Describe the deflection system (X and Y plates)
Q&A on cathode ray properties
Examination of CRO structure using diagrams
Identification of CRO components
Drawing and labeling CRO parts
Explanation of electron gun operation
CRO (demonstration model)
Charts showing CRO structure
Diagrams of electron gun
Models of deflection plates
High voltage power supply
KLB Secondary Physics Form 4, Pages 133-135
10 5
Cathode Rays and Cathode Ray Tube
CRO Controls and Operation
By the end of the lesson, the learner should be able to:

Explain the function of brightness and focus controls
Describe vertical and horizontal deflection systems
Explain the time base operation
Demonstrate basic CRO operation
Review of CRO structure
Demonstration of CRO controls
Explanation of time base voltage
Practice with focus and brightness adjustment
Observation of spot movement across screen
Working CRO
Signal generator
Connecting leads
Various input signals
Time base control charts
Oscilloscope manual
KLB Secondary Physics Form 4, Pages 135-137
11 1
Cathode Rays and Cathode Ray Tube
CRO as a Voltmeter
By the end of the lesson, the learner should be able to:

Use CRO to measure DC and AC voltages
Calculate voltage using deflection and sensitivity
Compare CRO with conventional voltmeters
Apply the formula: Voltage = deflection × sensitivity
Q&A on CRO operation
Demonstration of voltage measurement using CRO
Practical measurement of known voltages
Calculation exercises using CRO readings
Comparison with digital voltmeter readings
Working CRO
DC power supplies
AC signal sources
Digital voltmeter
Connecting leads
Graph paper
Calculators
KLB Secondary Physics Form 4, Pages 137-139
11 2
Cathode Rays and Cathode Ray Tube
Frequency Measurement using CRO
By the end of the lesson, the learner should be able to:

Measure frequency of AC signals using CRO
Calculate period and frequency from CRO traces
Apply the relationship f = 1/T
Determine peak voltage of AC signals
Review of voltage measurement with CRO
Demonstration of AC signal display on CRO
Measurement of wavelength and period
Calculation of frequency from time base setting
Practice problems on frequency determination
Working CRO with time base
Audio frequency generator
Connecting leads
Graph paper for measurements
Calculators
Stop watch
KLB Secondary Physics Form 4, Pages 139-141
11 3
Cathode Rays and Cathode Ray Tube
The Television Tube
By the end of the lesson, the learner should be able to:

Describe the structure of a TV tube
Explain differences between CRO and TV tube
Describe magnetic deflection in TV tubes
Explain image formation in television
Q&A on CRO applications
Comparison of TV tube with CRO
Explanation of magnetic deflection coils
Description of signal processing in TV
Discussion on color TV operation
TV tube (demonstration model)
Deflection coils
TV receiver (old CRT type)
Charts comparing TV and CRO
Color TV tube diagram
KLB Secondary Physics Form 4, Pages 141-142
11 4
Cathode Rays and Cathode Ray Tube
Problem Solving and Applications
By the end of the lesson, the learner should be able to:

Solve numerical problems on CRO measurements
Apply CRO principles to practical situations
Analyze waveforms displayed on CRO
Evaluate the importance of cathode ray technology
Review of all chapter concepts
Problem-solving exercises on voltage and frequency measurements
Analysis of complex waveforms
Discussion on modern applications of cathode ray technology
Assessment preparation
Calculators
Problem-solving worksheets
Sample CRO traces
Past examination questions
Graph paper
Reference materials
KLB Secondary Physics Form 4, Pages 131-142
11 5
X-Rays
Production of X-Rays
By the end of the lesson, the learner should be able to:

Describe the structure of an X-ray tube
Explain how X-rays are produced
State the conditions necessary for X-ray production
Identify the components of an X-ray tube and their functions
Q&A on cathode rays and electron beams
Drawing and labeling X-ray tube structure
Explanation of electron acceleration and collision process
Description of anode and cathode materials
Discussion on cooling systems in X-ray tubes
Charts showing X-ray tube structure
Diagram of X-ray production process
Models of rotating anode
Pictures of medical X-ray equipment
Video clips of X-ray tube operation
KLB Secondary Physics Form 4, Pages 144-145
12 1
X-Rays
Properties of X-Rays and Energy Concepts
By the end of the lesson, the learner should be able to:

State the properties of X-rays
Explain X-rays as electromagnetic radiation
Calculate the energy of X-rays using E = hf
Relate X-ray energy to accelerating voltage
Review of X-ray production
Demonstration of X-ray properties using simulations
Calculation of X-ray energy and frequency
Problem-solving on energy-voltage relationships
Comparison with other electromagnetic radiations
Calculators
Electromagnetic spectrum chart
Energy calculation worksheets
Constants and formulae charts
Sample X-ray images
KLB Secondary Physics Form 4, Pages 145-147
12 2
X-Rays
Hard and Soft X-Rays
By the end of the lesson, the learner should be able to:

Distinguish between hard and soft X-rays
Explain factors affecting X-ray hardness
Relate accelerating voltage to X-ray penetrating power
Describe intensity and quantity control of X-rays
Q&A on X-ray properties and energy
Comparison of hard and soft X-rays characteristics
Discussion on penetrating power differences
Explanation of voltage effects on X-ray quality
Analysis of X-ray intensity control methods
Comparison charts of hard vs soft X-rays
Penetration demonstration materials
Voltage control diagrams
Medical X-ray examples
Industrial X-ray applications
KLB Secondary Physics Form 4, Pages 147-148
12 3
X-Rays
Uses of X-Rays in Medicine and Industry
By the end of the lesson, the learner should be able to:

Describe medical uses of X-rays (radiography and radiotherapy)
Explain industrial applications of X-rays
Describe use in crystallography and security
Analyze the importance of point source X-rays
Review of hard and soft X-rays
Discussion on medical imaging techniques
Explanation of CT scans and their advantages
Description of industrial flaw detection
Analysis of airport security applications
Medical X-ray images
CT scan pictures
Industrial radiography examples
Crystal diffraction patterns
Airport security equipment photos
Charts of various X-ray applications
KLB Secondary Physics Form 4, Pages 148-149
12 4
X-Rays
Dangers of X-Rays and Safety Precautions
By the end of the lesson, the learner should be able to:

Explain the dangers of X-ray exposure
Describe cumulative effects of radiation
State safety precautions for X-ray workers
Explain protective measures in X-ray facilities
Q&A on X-ray applications
Discussion on biological effects of X-rays
Explanation of radiation protection principles
Description of lead shielding and protective equipment
Analysis of safety protocols in medical facilities
Safety equipment samples (lead aprons)
Radiation warning signs
Pictures of X-ray protection facilities
Dosimeter badges
Charts showing radiation effects
Safety protocol posters
KLB Secondary Physics Form 4, Pages 149
12 5
X-Rays
Problem Solving and Applications Review
By the end of the lesson, the learner should be able to:

Solve numerical problems involving X-ray energy and wavelength
Apply X-ray principles to practical situations
Calculate minimum wavelength of X-rays
Evaluate advantages and limitations of X-ray technology
Review of all X-ray concepts
Problem-solving sessions on energy calculations
Analysis of real-world X-ray applications
Discussion on modern developments in X-ray technology
Assessment and evaluation exercises
Calculators
Problem-solving worksheets
Past examination questions
Real X-ray case studies
Modern X-ray technology articles
Assessment materials
KLB Secondary Physics Form 4, Pages 144-149

Your Name Comes Here


Download

Feedback