If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 2 | 1 |
Thin Lenses
|
Types of Lenses and Effects on Light
|
By the end of the
lesson, the learner
should be able to:
Define a lens and distinguish between convex and concave lenses; Describe the effect of lenses on parallel rays of light; Explain convergence and divergence of light rays; Identify practical examples of different lens types |
Q/A on refraction concepts; Experiment 1.1 - investigating effects of lenses on parallel rays using sunlight and ray box; Demonstration of convergence and divergence; Group identification of lens types in everyday objects; Drawing and analysis of ray diagrams
|
Ray box; Various convex and concave lenses; White screen; Plane mirror; Card with parallel slits; Sunlight or strong lamp
|
KLB Secondary Physics Form 4, Pages 1-6
|
|
| 2 | 2 |
Thin Lenses
|
Definition of Terms and Ray Diagrams
|
By the end of the
lesson, the learner
should be able to:
Define centre of curvature, principal axis, optical centre, principal focus and focal length; Distinguish between real and virtual focus; State and apply the three important rays for lens diagrams; Construct basic ray diagrams for lenses |
Q/A review of lens effects; Guided discovery of lens terminology using practical demonstrations; Step-by-step construction of ray diagrams using the three important rays; Practice drawing ray paths for parallel rays, rays through focus, and rays through optical centre; Group work on ray diagram construction
|
Various lenses; Rulers; Graph paper; Ray boxes; Charts showing lens terminology; Drawing materials; Laser pointers (if available)
|
KLB Secondary Physics Form 4, Pages 3-8
|
|
| 2 | 3 |
Thin Lenses
|
Image Formation by Converging Lenses
|
By the end of the
lesson, the learner
should be able to:
Locate images for different object positions using ray diagrams; Describe image characteristics (real/virtual, erect/inverted, magnified/diminished); Explain applications in telescope, camera, projector and magnifying glass; Understand relationship between object position and image properties |
Review of ray construction rules; Systematic ray diagram construction for objects at infinity, beyond 2F, at 2F, between F and 2F, at F, and between F and lens; Analysis of image characteristics for each position; Discussion of practical applications; Demonstration using lens, object and screen
|
Converging lenses; Objects; White screen; Metre rule; Candle; Graph paper; Charts showing applications; Camera (if available)
|
KLB Secondary Physics Form 4, Pages 8-12
|
|
| 2 | 4 |
Thin Lenses
|
Image Formation by Diverging Lenses and Linear Magnification
|
By the end of the
lesson, the learner
should be able to:
Construct ray diagrams for diverging lenses; Explain why diverging lenses always form virtual, erect, diminished images; Define linear magnification and derive its formula; Calculate magnification using height and distance ratios; Solve Examples 1, 2, and 3 from textbook |
Q/A on converging lens images; Ray diagram construction for diverging lenses; Mathematical derivation of magnification formulae; Step-by-step solution of textbook examples; Scale drawing practice; Group problem-solving on magnification calculations
|
Diverging lenses; Graph paper; Rulers; Calculators; Examples from textbook; Objects of known heights; Measuring equipment
|
KLB Secondary Physics Form 4, Pages 11-14
|
|
| 2 | 5 |
Electromagnetic Induction
|
Introduction and Historical Background
|
By the end of the
lesson, the learner
should be able to:
Define electromagnetic induction and its significance; Explain Faraday's discovery and its impact on modern technology; Understand the relationship between magnetism and electricity; Identify examples of electromagnetic induction in daily life; Appreciate the importance of relative motion in electromagnetic phenomena |
Q/A on magnetic fields and electric current relationships from previous studies; Introduction to Michael Faraday's discovery and its historical significance; Discussion of electromagnetic induction examples in daily life (generators, transformers, motors); Overview of chapter content and learning objectives; Introduction to practical applications in power generation and electronics
|
Charts showing Faraday's experiments; Pictures of power stations; Transformers; Generators; Historical timeline of electromagnetic discoveries; Real-world applications display
|
KLB Secondary Physics Form 4, Pages 86
|
|
| 3 | 1 |
Electromagnetic Induction
|
Conditions for Electromagnetic Induction - Straight Conductor
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.1 using straight conductor; Identify conditions necessary for inducing e.m.f. in a straight conductor; Observe effects of different types of motion on induced current; Understand the importance of relative motion between conductor and magnetic field; Analyze galvanometer deflections |
Performance of Experiment 5.1 using straight conductor AB in U-shaped magnet; Systematic investigation of conductor movement (vertical up/down, parallel to field, stationary, different angles); Observation and recording of galvanometer deflections; Analysis of current direction changes with motion reversal; Discussion of relative motion importance and field cutting concept
|
Thick electric conductor; U-shaped magnet; Galvanometer; Connecting wires; Clamp and stand setup; Data recording sheets
|
KLB Secondary Physics Form 4, Pages 86-87
|
|
| 3 | 2 |
Electromagnetic Induction
|
Conditions for Electromagnetic Induction - Straight Conductor
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.1 using straight conductor; Identify conditions necessary for inducing e.m.f. in a straight conductor; Observe effects of different types of motion on induced current; Understand the importance of relative motion between conductor and magnetic field; Analyze galvanometer deflections |
Performance of Experiment 5.1 using straight conductor AB in U-shaped magnet; Systematic investigation of conductor movement (vertical up/down, parallel to field, stationary, different angles); Observation and recording of galvanometer deflections; Analysis of current direction changes with motion reversal; Discussion of relative motion importance and field cutting concept
|
Thick electric conductor; U-shaped magnet; Galvanometer; Connecting wires; Clamp and stand setup; Data recording sheets
|
KLB Secondary Physics Form 4, Pages 86-87
|
|
| 3 | 3 |
Electromagnetic Induction
|
Conditions for Electromagnetic Induction - Straight Conductor
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.1 using straight conductor; Identify conditions necessary for inducing e.m.f. in a straight conductor; Observe effects of different types of motion on induced current; Understand the importance of relative motion between conductor and magnetic field; Analyze galvanometer deflections |
Performance of Experiment 5.1 using straight conductor AB in U-shaped magnet; Systematic investigation of conductor movement (vertical up/down, parallel to field, stationary, different angles); Observation and recording of galvanometer deflections; Analysis of current direction changes with motion reversal; Discussion of relative motion importance and field cutting concept
|
Thick electric conductor; U-shaped magnet; Galvanometer; Connecting wires; Clamp and stand setup; Data recording sheets
|
KLB Secondary Physics Form 4, Pages 86-87
|
|
| 3 | 4 |
Electromagnetic Induction
|
Conditions for Electromagnetic Induction - Coils
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.1 using coils; Compare induction effects in straight conductors vs coils; Observe effects of magnet movement into and out of coils; Understand flux linkage concept; Analyze why coils are more effective than single conductors |
Continuation of Experiment 5.1 using coil instead of straight conductor; Investigation of magnet movement into coil, out of coil, and stationary positions; Comparison of deflection magnitudes between straight conductor and coil setups; Analysis of why coils produce larger induced e.m.f.; Discussion of magnetic flux and flux linkage concepts
|
Coils of different sizes; Magnets of various strengths; Galvanometer; Connecting wires; Comparison data sheets
|
KLB Secondary Physics Form 4, Pages 87-88
|
|
| 3 | 5 |
Electromagnetic Induction
|
Conditions for Electromagnetic Induction - Coils
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.1 using coils; Compare induction effects in straight conductors vs coils; Observe effects of magnet movement into and out of coils; Understand flux linkage concept; Analyze why coils are more effective than single conductors |
Continuation of Experiment 5.1 using coil instead of straight conductor; Investigation of magnet movement into coil, out of coil, and stationary positions; Comparison of deflection magnitudes between straight conductor and coil setups; Analysis of why coils produce larger induced e.m.f.; Discussion of magnetic flux and flux linkage concepts
|
Coils of different sizes; Magnets of various strengths; Galvanometer; Connecting wires; Comparison data sheets
|
KLB Secondary Physics Form 4, Pages 87-88
|
|
| 4 | 1 |
Electromagnetic Induction
|
Factors Affecting Induced E.M.F. - Rate of Change
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.2 investigating rate of change effects; Understand relationship between speed of motion and induced e.m.f.; Collect and analyze data on rate of flux change; Establish that faster changes produce larger e.m.f.; Apply findings to practical situations |
Performance of Experiment 5.2 investigating relationship between rate of change of magnetic flux and induced e.m.f.; Systematic variation of magnet withdrawal speeds (very fast, moderate, very slow); Recording and comparison of galvanometer deflections; Data analysis and conclusion drawing; Discussion of practical implications in generators and other applications
|
Coil of at least 50 turns; Sensitive galvanometer; Magnet; Stopwatch; Data collection tables; Graph paper for analysis
|
KLB Secondary Physics Form 4, Pages 88-89
|
|
| 4 | 2 |
Electromagnetic Induction
|
Factors Affecting Induced E.M.F. - Rate of Change
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.2 investigating rate of change effects; Understand relationship between speed of motion and induced e.m.f.; Collect and analyze data on rate of flux change; Establish that faster changes produce larger e.m.f.; Apply findings to practical situations |
Performance of Experiment 5.2 investigating relationship between rate of change of magnetic flux and induced e.m.f.; Systematic variation of magnet withdrawal speeds (very fast, moderate, very slow); Recording and comparison of galvanometer deflections; Data analysis and conclusion drawing; Discussion of practical implications in generators and other applications
|
Coil of at least 50 turns; Sensitive galvanometer; Magnet; Stopwatch; Data collection tables; Graph paper for analysis
|
KLB Secondary Physics Form 4, Pages 88-89
|
|
| 4 | 3 |
Electromagnetic Induction
|
Factors Affecting Induced E.M.F. - Magnetic Field Strength
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.3 investigating magnetic field strength effects; Understand relationship between field strength and induced e.m.f.; Control variables in electromagnetic experiments; Use electromagnets to vary field strength; Apply experimental findings to solve problems |
Performance of Experiment 5.3 investigating relationship between magnetic field strength and induced e.m.f.; Setup of electromagnet with variable current control; Investigation of wire PQ movement in different field strengths; Recording galvanometer deflections for different electromagnet currents; Analysis of results and relationship establishment
|
U-shaped electromagnet; Variable resistor; Wire PQ; Galvanometer; Ammeter; Connecting wires; Power supply; Data recording materials
|
KLB Secondary Physics Form 4, Pages 89
|
|
| 4 | 4 |
Electromagnetic Induction
|
Factors Affecting Induced E.M.F. - Magnetic Field Strength
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.3 investigating magnetic field strength effects; Understand relationship between field strength and induced e.m.f.; Control variables in electromagnetic experiments; Use electromagnets to vary field strength; Apply experimental findings to solve problems |
Performance of Experiment 5.3 investigating relationship between magnetic field strength and induced e.m.f.; Setup of electromagnet with variable current control; Investigation of wire PQ movement in different field strengths; Recording galvanometer deflections for different electromagnet currents; Analysis of results and relationship establishment
|
U-shaped electromagnet; Variable resistor; Wire PQ; Galvanometer; Ammeter; Connecting wires; Power supply; Data recording materials
|
KLB Secondary Physics Form 4, Pages 89
|
|
| 4 | 5 |
Electromagnetic Induction
|
Factors Affecting Induced E.M.F. - Number of Turns
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.4 investigating effect of coil turns; Understand relationship between number of turns and induced e.m.f.; Construct coils with different numbers of turns; Analyze why more turns produce larger e.m.f.; State Faraday's law of electromagnetic induction |
Performance of Experiment 5.4 investigating relationship between number of turns and induced e.m.f.; Construction of solenoids with 60, 50, 40, 30, and 20 turns; Systematic testing with same magnet withdrawal speed; Recording and analysis of galvanometer readings; Mathematical relationship establishment; Statement of Faraday's law based on experimental evidence
|
Insulated copper wire; Sensitive galvanometer; Magnet; Connecting wires; Wire cutting and measuring tools; Data analysis sheets
|
KLB Secondary Physics Form 4, Pages 89-90
|
|
| 5 | 1 |
Electromagnetic Induction
|
Lenz's Law and Direction of Induced Current
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.5 determining direction of induced current; State Lenz's law and explain its significance; Understand energy conservation in electromagnetic induction; Predict current direction using Lenz's law; Relate Lenz's law to conservation of energy principle |
Performance of Experiment 5.5(a) establishing galvanometer deflection direction; Performance of Experiment 5.5(b) investigating induced current direction with magnet movement; Analysis of current directions and magnetic pole formation; Statement and explanation of Lenz's law; Discussion of energy conservation and opposition principle; Practice in predicting current directions
|
Variable resistor; Sensitive center-zero galvanometer; Connecting wires; Coil; Magnet; Switch; Battery; Direction analysis charts
|
KLB Secondary Physics Form 4, Pages 90-93
|
|
| 5 | 2 |
Electromagnetic Induction
|
Lenz's Law and Direction of Induced Current
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.5 determining direction of induced current; State Lenz's law and explain its significance; Understand energy conservation in electromagnetic induction; Predict current direction using Lenz's law; Relate Lenz's law to conservation of energy principle |
Performance of Experiment 5.5(a) establishing galvanometer deflection direction; Performance of Experiment 5.5(b) investigating induced current direction with magnet movement; Analysis of current directions and magnetic pole formation; Statement and explanation of Lenz's law; Discussion of energy conservation and opposition principle; Practice in predicting current directions
|
Variable resistor; Sensitive center-zero galvanometer; Connecting wires; Coil; Magnet; Switch; Battery; Direction analysis charts
|
KLB Secondary Physics Form 4, Pages 90-93
|
|
| 5 | 3 |
Electromagnetic Induction
|
Lenz's Law and Direction of Induced Current
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.5 determining direction of induced current; State Lenz's law and explain its significance; Understand energy conservation in electromagnetic induction; Predict current direction using Lenz's law; Relate Lenz's law to conservation of energy principle |
Performance of Experiment 5.5(a) establishing galvanometer deflection direction; Performance of Experiment 5.5(b) investigating induced current direction with magnet movement; Analysis of current directions and magnetic pole formation; Statement and explanation of Lenz's law; Discussion of energy conservation and opposition principle; Practice in predicting current directions
|
Variable resistor; Sensitive center-zero galvanometer; Connecting wires; Coil; Magnet; Switch; Battery; Direction analysis charts
|
KLB Secondary Physics Form 4, Pages 90-93
|
|
| 5 | 4 |
Electromagnetic Induction
|
Fleming's Right-Hand Rule
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.6 with straight conductors; State Fleming's right-hand rule (dynamo rule); Apply the rule to determine direction of induced current; Understand relationship between motion, field, and current directions; Solve Example 1 involving square loop movement |
Performance of Experiment 5.6 determining induced current direction in straight conductor; Introduction and demonstration of Fleming's right-hand rule; Practice applying the rule to various conductor movements; Step-by-step solution of Example 1 (square loop in magnetic field); Analysis of current directions in different parts of the loop; Verification of Fleming's rule consistency with Lenz's law
|
U-shaped magnet; Thick wire AB; Marked center-zero galvanometer; Hand models for rule demonstration; Example 1 setup materials; Direction analysis worksheets
|
KLB Secondary Physics Form 4, Pages 93-97
|
|
| 5 | 5 |
Electromagnetic Induction
|
Fleming's Right-Hand Rule
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.6 with straight conductors; State Fleming's right-hand rule (dynamo rule); Apply the rule to determine direction of induced current; Understand relationship between motion, field, and current directions; Solve Example 1 involving square loop movement |
Performance of Experiment 5.6 determining induced current direction in straight conductor; Introduction and demonstration of Fleming's right-hand rule; Practice applying the rule to various conductor movements; Step-by-step solution of Example 1 (square loop in magnetic field); Analysis of current directions in different parts of the loop; Verification of Fleming's rule consistency with Lenz's law
|
U-shaped magnet; Thick wire AB; Marked center-zero galvanometer; Hand models for rule demonstration; Example 1 setup materials; Direction analysis worksheets
|
KLB Secondary Physics Form 4, Pages 93-97
|
|
| 6 | 1 |
Electromagnetic Induction
|
Applications of Induction Laws
|
By the end of the
lesson, the learner
should be able to:
Solve Examples 2 and 3 involving current direction; Apply Lenz's law to predict current directions in circuits; Understand induced current effects in neighboring circuits; Analyze changing magnetic fields and their effects; Use both Fleming's rule and Lenz's law in problem solving |
Q/A review of Fleming's rule and Lenz's law; Step-by-step solution of Example 2 (current in conductor AB affecting nearby loop); Detailed analysis of Example 3 (magnet movement and coil current direction); Practice problems involving current direction prediction; Group work on applying both laws to various scenarios; Discussion of consistency between different methods
|
Examples 2 and 3 setup materials; Problem-solving worksheets; Charts showing current direction analysis; Group work materials; Calculators
|
KLB Secondary Physics Form 4, Pages 94-97
|
|
| 6 | 2 |
Electromagnetic Induction
|
Applications of Induction Laws
|
By the end of the
lesson, the learner
should be able to:
Solve Examples 2 and 3 involving current direction; Apply Lenz's law to predict current directions in circuits; Understand induced current effects in neighboring circuits; Analyze changing magnetic fields and their effects; Use both Fleming's rule and Lenz's law in problem solving |
Q/A review of Fleming's rule and Lenz's law; Step-by-step solution of Example 2 (current in conductor AB affecting nearby loop); Detailed analysis of Example 3 (magnet movement and coil current direction); Practice problems involving current direction prediction; Group work on applying both laws to various scenarios; Discussion of consistency between different methods
|
Examples 2 and 3 setup materials; Problem-solving worksheets; Charts showing current direction analysis; Group work materials; Calculators
|
KLB Secondary Physics Form 4, Pages 94-97
|
|
| 6 | 3 |
Electromagnetic Induction
|
Mutual Induction
|
By the end of the
lesson, the learner
should be able to:
Define mutual induction and demonstrate its occurrence; Perform Experiment 5.7 showing mutual induction between coils; Explain factors affecting mutual induction; Understand primary and secondary coil relationships; Discuss enhancement methods using iron cores |
Q/A on electromagnetic induction principles; Introduction to mutual induction concept and definition; Performance of Experiment 5.7 demonstrating mutual induction between primary and secondary coils; Investigation of switching effects, current changes, and A.C. source effects; Analysis of mutual induction enhancement using soft iron rod and ring; Discussion of applications in transformers
|
Two coils P and S; Galvanometer; Battery; A.C. power source; Switch; Rheostat; Connecting wires; Soft iron rod; Soft iron ring; Enhancement demonstration materials
|
KLB Secondary Physics Form 4, Pages 97-100
|
|
| 6 | 4 |
Electromagnetic Induction
|
Mutual Induction
|
By the end of the
lesson, the learner
should be able to:
Define mutual induction and demonstrate its occurrence; Perform Experiment 5.7 showing mutual induction between coils; Explain factors affecting mutual induction; Understand primary and secondary coil relationships; Discuss enhancement methods using iron cores |
Q/A on electromagnetic induction principles; Introduction to mutual induction concept and definition; Performance of Experiment 5.7 demonstrating mutual induction between primary and secondary coils; Investigation of switching effects, current changes, and A.C. source effects; Analysis of mutual induction enhancement using soft iron rod and ring; Discussion of applications in transformers
|
Two coils P and S; Galvanometer; Battery; A.C. power source; Switch; Rheostat; Connecting wires; Soft iron rod; Soft iron ring; Enhancement demonstration materials
|
KLB Secondary Physics Form 4, Pages 97-100
|
|
| 6 | 5 |
Electromagnetic Induction
|
Transformers - Basic Principles
|
By the end of the
lesson, the learner
should be able to:
Describe transformer structure and components; Explain working principle based on mutual induction; Perform Experiment 5.10 investigating secondary e.m.f. variation; Understand primary and secondary coil functions; Distinguish between step-up and step-down transformers |
Review of mutual induction through Q/A; Introduction to transformer structure (primary coil, secondary coil, iron core); Performance of Experiment 5.10 - variation of secondary e.m.f. with number of turns; Observation of bulb brightness changes with turn variations; Analysis of step-up vs step-down transformer characteristics; Introduction to transformer symbols and representations
|
Long insulated copper wire; Soft iron rod; Low frequency A.C. source; A.C. voltmeter; Switch; Bulb; Transformer construction materials; Symbol charts
|
KLB Secondary Physics Form 4, Pages 100-102
|
|
| 7 | 1 |
Electromagnetic Induction
|
Transformer Equations and Calculations
|
By the end of the
lesson, the learner
should be able to:
Derive transformer turns rule equation; Apply transformer equations for voltage and current relationships; Calculate transformer efficiency; Solve Examples 4 and 5 involving transformer problems; Understand ideal vs practical transformer differences |
Q/A on transformer working principles; Mathematical derivation of turns rule (Vp/Vs = Np/Ns); Development of current relationship (IpVp = IsVs for ideal transformer); Introduction to efficiency calculations; Step-by-step solution of Examples 4 and 5; Discussion of ideal transformer assumptions vs practical limitations
|
Calculators; Examples 4 and 5 materials; Mathematical derivation charts; Efficiency calculation worksheets; Transformer specification data
|
KLB Secondary Physics Form 4, Pages 102-105
|
|
| 7 | 2 |
Electromagnetic Induction
|
Transformer Equations and Calculations
|
By the end of the
lesson, the learner
should be able to:
Derive transformer turns rule equation; Apply transformer equations for voltage and current relationships; Calculate transformer efficiency; Solve Examples 4 and 5 involving transformer problems; Understand ideal vs practical transformer differences |
Q/A on transformer working principles; Mathematical derivation of turns rule (Vp/Vs = Np/Ns); Development of current relationship (IpVp = IsVs for ideal transformer); Introduction to efficiency calculations; Step-by-step solution of Examples 4 and 5; Discussion of ideal transformer assumptions vs practical limitations
|
Calculators; Examples 4 and 5 materials; Mathematical derivation charts; Efficiency calculation worksheets; Transformer specification data
|
KLB Secondary Physics Form 4, Pages 102-105
|
|
| 7 | 3 |
Electromagnetic Induction
|
Transformer Equations and Calculations
|
By the end of the
lesson, the learner
should be able to:
Derive transformer turns rule equation; Apply transformer equations for voltage and current relationships; Calculate transformer efficiency; Solve Examples 4 and 5 involving transformer problems; Understand ideal vs practical transformer differences |
Q/A on transformer working principles; Mathematical derivation of turns rule (Vp/Vs = Np/Ns); Development of current relationship (IpVp = IsVs for ideal transformer); Introduction to efficiency calculations; Step-by-step solution of Examples 4 and 5; Discussion of ideal transformer assumptions vs practical limitations
|
Calculators; Examples 4 and 5 materials; Mathematical derivation charts; Efficiency calculation worksheets; Transformer specification data
|
KLB Secondary Physics Form 4, Pages 102-105
|
|
| 7 | 4 |
Electromagnetic Induction
|
Transformer Equations and Calculations
|
By the end of the
lesson, the learner
should be able to:
Derive transformer turns rule equation; Apply transformer equations for voltage and current relationships; Calculate transformer efficiency; Solve Examples 4 and 5 involving transformer problems; Understand ideal vs practical transformer differences |
Q/A on transformer working principles; Mathematical derivation of turns rule (Vp/Vs = Np/Ns); Development of current relationship (IpVp = IsVs for ideal transformer); Introduction to efficiency calculations; Step-by-step solution of Examples 4 and 5; Discussion of ideal transformer assumptions vs practical limitations
|
Calculators; Examples 4 and 5 materials; Mathematical derivation charts; Efficiency calculation worksheets; Transformer specification data
|
KLB Secondary Physics Form 4, Pages 102-105
|
|
| 7 | 5 |
Electromagnetic Induction
|
Transformer Energy Losses and Example 6
|
By the end of the
lesson, the learner
should be able to:
Identify four main energy losses in transformers; Explain methods to minimize each type of energy loss; Understand lamination and its purpose; Solve Example 6 involving power transmission system; Calculate efficiency and power losses in practical systems |
Review of ideal transformer equations; Analysis of energy losses (flux leakage, copper losses, eddy currents, hysteresis loss); Study of loss minimization techniques including core lamination; Discussion of practical transformer efficiency; Step-by-step solution of Example 6 (complex power transmission system); Analysis of step-up and step-down transformer roles
|
Charts showing energy losses; Laminated core samples; Example 6 complex setup; Power transmission diagrams; Efficiency calculation materials; Loss minimization demonstration aids
|
KLB Secondary Physics Form 4, Pages 105-108
|
|
| 8 | 1 |
Electromagnetic Induction
|
Applications - Generators, Microphones, and Induction Coils
|
By the end of the
lesson, the learner
should be able to:
Explain structure and working of A.C. and D.C. generators; Describe moving-coil microphone operation; Understand induction coil structure and applications; Compare slip rings with split ring commutators; Analyze generator output waveforms and applications |
Review of electromagnetic induction in rotating systems; Detailed study of A.C. generator structure and sinusoidal output; Analysis of D.C. generator with split ring commutator; Explanation of moving-coil microphone components and sound conversion; Description of induction coil operation and high voltage generation; Discussion of applications in car ignition systems
|
A.C. generator model; D.C. generator model; Moving-coil microphone demonstration; Induction coil setup; Output waveform charts; Slip ring and commutator comparisons; Bicycle dynamo
|
KLB Secondary Physics Form 4, Pages 108-112
|
|
| 8 | 2 |
Electromagnetic Induction
|
Applications - Generators, Microphones, and Induction Coils
|
By the end of the
lesson, the learner
should be able to:
Explain structure and working of A.C. and D.C. generators; Describe moving-coil microphone operation; Understand induction coil structure and applications; Compare slip rings with split ring commutators; Analyze generator output waveforms and applications |
Review of electromagnetic induction in rotating systems; Detailed study of A.C. generator structure and sinusoidal output; Analysis of D.C. generator with split ring commutator; Explanation of moving-coil microphone components and sound conversion; Description of induction coil operation and high voltage generation; Discussion of applications in car ignition systems
|
A.C. generator model; D.C. generator model; Moving-coil microphone demonstration; Induction coil setup; Output waveform charts; Slip ring and commutator comparisons; Bicycle dynamo
|
KLB Secondary Physics Form 4, Pages 108-112
|
|
| 8 | 3 |
Electromagnetic Induction
|
Applications - Generators, Microphones, and Induction Coils
|
By the end of the
lesson, the learner
should be able to:
Explain structure and working of A.C. and D.C. generators; Describe moving-coil microphone operation; Understand induction coil structure and applications; Compare slip rings with split ring commutators; Analyze generator output waveforms and applications |
Review of electromagnetic induction in rotating systems; Detailed study of A.C. generator structure and sinusoidal output; Analysis of D.C. generator with split ring commutator; Explanation of moving-coil microphone components and sound conversion; Description of induction coil operation and high voltage generation; Discussion of applications in car ignition systems
|
A.C. generator model; D.C. generator model; Moving-coil microphone demonstration; Induction coil setup; Output waveform charts; Slip ring and commutator comparisons; Bicycle dynamo
|
KLB Secondary Physics Form 4, Pages 108-112
|
|
| 8 | 4 |
Mains Electricity
|
Sources of Mains Electricity
|
By the end of the
lesson, the learner
should be able to:
State the main sources of mains electricity Explain how different sources generate electrical energy Compare advantages and disadvantages of different power sources Describe the environmental impact of various power sources |
Prior knowledge review on electrical energy
Discussion on local power sources in Kenya Field trip planning to nearby power station Group presentations on different power sources Q&A session on power generation methods |
Pictures of power stations
Charts showing different energy sources Videos of power generation Maps of Kenya's power grid Sample coal, biomass materials |
KLB Secondary Physics Form 4, Pages 117
|
|
| 8 | 5 |
Mains Electricity
|
The Grid System and Power Transmission
|
By the end of the
lesson, the learner
should be able to:
Define the national grid system Explain the need for interconnected power stations Describe high voltage transmission State the voltage levels in power transmission |
Q&A on previous lesson
Drawing and labeling the grid system Discussion on power transmission in Kenya Explaining voltage step-up process Problem-solving on power transmission |
Chart of national grid system
Transmission line models Maps showing power lines Transformer models Voltage measurement devices |
KLB Secondary Physics Form 4, Pages 117-118
|
|
| 9 | 1 |
Mains Electricity
|
High Voltage Transmission and Power Losses
|
By the end of the
lesson, the learner
should be able to:
Explain why power is transmitted at high voltage Calculate power losses in transmission State dangers of high voltage transmission Apply the formula P = I²R to transmission problems |
Review of Ohm's law and power formulas
Demonstration of power loss calculations Worked examples on transmission efficiency Discussion on safety measures for transmission lines Group problem-solving activities |
Calculators
Worked example sheets Pictures of transmission towers Safety warning signs Formula charts |
KLB Secondary Physics Form 4, Pages 118-121
|
|
| 9 | 2 |
Mains Electricity
|
Domestic Wiring System
|
By the end of the
lesson, the learner
should be able to:
Describe the domestic wiring system Identify components of consumer fuse box Explain the function of live, neutral and earth wires Draw simple domestic wiring circuits |
Q&A on transmission systems
Examination of house wiring components Drawing domestic wiring diagrams Identification of electrical safety features Practical observation of electrical installations |
House wiring components
Fuse box model Different types of fuses Electrical cables (samples) Circuit diagrams Multimeter |
KLB Secondary Physics Form 4, Pages 121-124
|
|
| 9 | 3 |
Mains Electricity
|
Fuses, Circuit Breakers and Safety Devices
|
By the end of the
lesson, the learner
should be able to:
Explain the function of fuses in electrical circuits Compare fuses and circuit breakers Select appropriate fuse ratings for different appliances Describe safety measures in electrical installations |
Review of domestic wiring components
Examination of different fuse types Calculation of appropriate fuse ratings Demonstration of circuit breaker operation Discussion on electrical safety |
Various fuses (2A, 5A, 13A)
Circuit breakers Fuse wire samples Electrical appliances Calculators Safety equipment samples |
KLB Secondary Physics Form 4, Pages 122-123
|
|
| 9 | 4 |
Mains Electricity
|
Ring Mains Circuit and Three-Pin Plugs
|
By the end of the
lesson, the learner
should be able to:
Describe the ring mains circuit Explain advantages of ring mains system Wire a three-pin plug correctly Identify wire color coding in electrical systems |
Q&A on fuses and safety devices
Drawing ring mains circuit diagrams Practical wiring of three-pin plugs Color coding identification exercise Safety demonstration with earthing |
Three-pin plugs
Electrical cables Wire strippers Screwdrivers Ring mains circuit model Color-coded wires |
KLB Secondary Physics Form 4, Pages 124-125
|
|
| 9 | 5 |
Mains Electricity
|
Electrical Energy Consumption and Costing
|
By the end of the
lesson, the learner
should be able to:
Define kilowatt-hour (kWh) Calculate electrical energy consumption Determine cost of electrical energy Apply energy formulas to practical problems |
Review of power and energy concepts
Introduction to kilowatt-hour unit Worked examples on energy calculations Practice problems on electricity billing Analysis of electricity bills |
Calculators
Sample electricity bills Electrical appliances with ratings Stop watches Energy meter model Formula charts |
KLB Secondary Physics Form 4, Pages 125-128
|
|
| 10 | 1 |
Mains Electricity
|
Problem Solving and Applications
|
By the end of the
lesson, the learner
should be able to:
Solve complex problems on power transmission Calculate energy consumption for multiple appliances Analyze electricity costs and savings Apply knowledge to real-life situations |
Review of all chapter concepts
Problem-solving sessions Group work on complex calculations Discussion on energy conservation Preparation for assessment |
Calculators
Problem sheets Past examination questions Real electricity bills Energy conservation charts |
KLB Secondary Physics Form 4, Pages 117-128
|
|
| 10 | 2 |
Cathode Rays and Cathode Ray Tube
|
Thermionic Emission
|
By the end of the
lesson, the learner
should be able to:
Define thermionic emission Explain the process of electron emission from heated metals Describe a simple experiment to demonstrate thermionic emission State factors affecting thermionic emission |
Q&A on electron structure and energy
Demonstration of thermionic emission using simple circuit Discussion on work function of different metals Explanation of electron emission process Identification of materials used in cathodes |
Simple thermionic emission apparatus
Low voltage power supply (6V) Milliammeter Evacuated glass bulb Heated filament Charts showing electron emission |
KLB Secondary Physics Form 4, Pages 131-132
|
|
| 10 | 3 |
Cathode Rays and Cathode Ray Tube
|
Production and Properties of Cathode Rays
|
By the end of the
lesson, the learner
should be able to:
Describe how cathode rays are produced State the properties of cathode rays Explain evidence that cathode rays are streams of electrons Demonstrate properties using simple experiments |
Review of thermionic emission
Description of cathode ray tube construction Demonstration of cathode ray properties Experiments showing straight line travel and shadow formation Discussion on deflection by electric and magnetic fields |
Cathode ray tube (simple)
High voltage supply (EHT) Fluorescent screen Maltese cross or opaque object Bar magnets Charged plates |
KLB Secondary Physics Form 4, Pages 131-133
|
|
| 10 | 4 |
Cathode Rays and Cathode Ray Tube
|
Structure of Cathode Ray Oscilloscope
|
By the end of the
lesson, the learner
should be able to:
Identify the main parts of a CRO Describe the function of the electron gun Explain the focusing system in CRO Describe the deflection system (X and Y plates) |
Q&A on cathode ray properties
Examination of CRO structure using diagrams Identification of CRO components Drawing and labeling CRO parts Explanation of electron gun operation |
CRO (demonstration model)
Charts showing CRO structure Diagrams of electron gun Models of deflection plates High voltage power supply |
KLB Secondary Physics Form 4, Pages 133-135
|
|
| 10 | 5 |
Cathode Rays and Cathode Ray Tube
|
CRO Controls and Operation
|
By the end of the
lesson, the learner
should be able to:
Explain the function of brightness and focus controls Describe vertical and horizontal deflection systems Explain the time base operation Demonstrate basic CRO operation |
Review of CRO structure
Demonstration of CRO controls Explanation of time base voltage Practice with focus and brightness adjustment Observation of spot movement across screen |
Working CRO
Signal generator Connecting leads Various input signals Time base control charts Oscilloscope manual |
KLB Secondary Physics Form 4, Pages 135-137
|
|
| 11 | 1 |
Cathode Rays and Cathode Ray Tube
|
CRO as a Voltmeter
|
By the end of the
lesson, the learner
should be able to:
Use CRO to measure DC and AC voltages Calculate voltage using deflection and sensitivity Compare CRO with conventional voltmeters Apply the formula: Voltage = deflection × sensitivity |
Q&A on CRO operation
Demonstration of voltage measurement using CRO Practical measurement of known voltages Calculation exercises using CRO readings Comparison with digital voltmeter readings |
Working CRO
DC power supplies AC signal sources Digital voltmeter Connecting leads Graph paper Calculators |
KLB Secondary Physics Form 4, Pages 137-139
|
|
| 11 | 2 |
Cathode Rays and Cathode Ray Tube
|
Frequency Measurement using CRO
|
By the end of the
lesson, the learner
should be able to:
Measure frequency of AC signals using CRO Calculate period and frequency from CRO traces Apply the relationship f = 1/T Determine peak voltage of AC signals |
Review of voltage measurement with CRO
Demonstration of AC signal display on CRO Measurement of wavelength and period Calculation of frequency from time base setting Practice problems on frequency determination |
Working CRO with time base
Audio frequency generator Connecting leads Graph paper for measurements Calculators Stop watch |
KLB Secondary Physics Form 4, Pages 139-141
|
|
| 11 | 3 |
Cathode Rays and Cathode Ray Tube
|
The Television Tube
|
By the end of the
lesson, the learner
should be able to:
Describe the structure of a TV tube Explain differences between CRO and TV tube Describe magnetic deflection in TV tubes Explain image formation in television |
Q&A on CRO applications
Comparison of TV tube with CRO Explanation of magnetic deflection coils Description of signal processing in TV Discussion on color TV operation |
TV tube (demonstration model)
Deflection coils TV receiver (old CRT type) Charts comparing TV and CRO Color TV tube diagram |
KLB Secondary Physics Form 4, Pages 141-142
|
|
| 11 | 4 |
Cathode Rays and Cathode Ray Tube
|
Problem Solving and Applications
|
By the end of the
lesson, the learner
should be able to:
Solve numerical problems on CRO measurements Apply CRO principles to practical situations Analyze waveforms displayed on CRO Evaluate the importance of cathode ray technology |
Review of all chapter concepts
Problem-solving exercises on voltage and frequency measurements Analysis of complex waveforms Discussion on modern applications of cathode ray technology Assessment preparation |
Calculators
Problem-solving worksheets Sample CRO traces Past examination questions Graph paper Reference materials |
KLB Secondary Physics Form 4, Pages 131-142
|
|
| 11 | 5 |
X-Rays
|
Production of X-Rays
|
By the end of the
lesson, the learner
should be able to:
Describe the structure of an X-ray tube Explain how X-rays are produced State the conditions necessary for X-ray production Identify the components of an X-ray tube and their functions |
Q&A on cathode rays and electron beams
Drawing and labeling X-ray tube structure Explanation of electron acceleration and collision process Description of anode and cathode materials Discussion on cooling systems in X-ray tubes |
Charts showing X-ray tube structure
Diagram of X-ray production process Models of rotating anode Pictures of medical X-ray equipment Video clips of X-ray tube operation |
KLB Secondary Physics Form 4, Pages 144-145
|
|
| 12 | 1 |
X-Rays
|
Properties of X-Rays and Energy Concepts
|
By the end of the
lesson, the learner
should be able to:
State the properties of X-rays Explain X-rays as electromagnetic radiation Calculate the energy of X-rays using E = hf Relate X-ray energy to accelerating voltage |
Review of X-ray production
Demonstration of X-ray properties using simulations Calculation of X-ray energy and frequency Problem-solving on energy-voltage relationships Comparison with other electromagnetic radiations |
Calculators
Electromagnetic spectrum chart Energy calculation worksheets Constants and formulae charts Sample X-ray images |
KLB Secondary Physics Form 4, Pages 145-147
|
|
| 12 | 2 |
X-Rays
|
Hard and Soft X-Rays
|
By the end of the
lesson, the learner
should be able to:
Distinguish between hard and soft X-rays Explain factors affecting X-ray hardness Relate accelerating voltage to X-ray penetrating power Describe intensity and quantity control of X-rays |
Q&A on X-ray properties and energy
Comparison of hard and soft X-rays characteristics Discussion on penetrating power differences Explanation of voltage effects on X-ray quality Analysis of X-ray intensity control methods |
Comparison charts of hard vs soft X-rays
Penetration demonstration materials Voltage control diagrams Medical X-ray examples Industrial X-ray applications |
KLB Secondary Physics Form 4, Pages 147-148
|
|
| 12 | 3 |
X-Rays
|
Uses of X-Rays in Medicine and Industry
|
By the end of the
lesson, the learner
should be able to:
Describe medical uses of X-rays (radiography and radiotherapy) Explain industrial applications of X-rays Describe use in crystallography and security Analyze the importance of point source X-rays |
Review of hard and soft X-rays
Discussion on medical imaging techniques Explanation of CT scans and their advantages Description of industrial flaw detection Analysis of airport security applications |
Medical X-ray images
CT scan pictures Industrial radiography examples Crystal diffraction patterns Airport security equipment photos Charts of various X-ray applications |
KLB Secondary Physics Form 4, Pages 148-149
|
|
| 12 | 4 |
X-Rays
|
Dangers of X-Rays and Safety Precautions
|
By the end of the
lesson, the learner
should be able to:
Explain the dangers of X-ray exposure Describe cumulative effects of radiation State safety precautions for X-ray workers Explain protective measures in X-ray facilities |
Q&A on X-ray applications
Discussion on biological effects of X-rays Explanation of radiation protection principles Description of lead shielding and protective equipment Analysis of safety protocols in medical facilities |
Safety equipment samples (lead aprons)
Radiation warning signs Pictures of X-ray protection facilities Dosimeter badges Charts showing radiation effects Safety protocol posters |
KLB Secondary Physics Form 4, Pages 149
|
|
| 12 | 5 |
X-Rays
|
Problem Solving and Applications Review
|
By the end of the
lesson, the learner
should be able to:
Solve numerical problems involving X-ray energy and wavelength Apply X-ray principles to practical situations Calculate minimum wavelength of X-rays Evaluate advantages and limitations of X-ray technology |
Review of all X-ray concepts
Problem-solving sessions on energy calculations Analysis of real-world X-ray applications Discussion on modern developments in X-ray technology Assessment and evaluation exercises |
Calculators
Problem-solving worksheets Past examination questions Real X-ray case studies Modern X-ray technology articles Assessment materials |
KLB Secondary Physics Form 4, Pages 144-149
|
Your Name Comes Here