If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 2 | 1 |
Trigonometry III
|
Review of Basic Trigonometric Ratios
|
By the end of the
lesson, the learner
should be able to:
-Recall sin, cos, tan from right-angled triangles -Apply Pythagoras theorem with trigonometry -Use basic trigonometric ratios to solve problems -Establish relationship between trigonometric ratios |
-Review right-angled triangle ratios from Form 2 -Practice calculating unknown sides and angles -Work through examples using SOH-CAH-TOA -Solve simple practical problems |
Exercise books
-Manila paper -Rulers -Calculators (if available) |
KLB Secondary Mathematics Form 4, Pages 99-103
|
|
| 2 | 2 |
Trigonometry III
|
Deriving the Identity sin²θ + cos²θ = 1
Applications of sin²θ + cos²θ = 1 |
By the end of the
lesson, the learner
should be able to:
-Understand the derivation of fundamental identity -Apply Pythagoras theorem to unit circle -Use the identity to solve trigonometric equations -Convert between sin, cos using the identity |
-Demonstrate using right-angled triangle with hypotenuse 1 -Show algebraic derivation step by step -Practice substituting values to verify identity -Solve equations using the fundamental identity |
Exercise books
-Manila paper -Unit circle diagrams -Calculators -Trigonometric tables -Real-world examples |
KLB Secondary Mathematics Form 4, Pages 99-103
|
|
| 2 | 3 |
Trigonometry III
|
Additional Trigonometric Identities
|
By the end of the
lesson, the learner
should be able to:
-Derive and apply tan θ = sin θ/cos θ -Use reciprocal ratios (sec, cosec, cot) -Apply multiple identities in problem solving -Verify trigonometric identities algebraically |
-Demonstrate relationship between tan, sin, cos -Introduce reciprocal ratios with examples -Practice identity verification techniques -Solve composite identity problems |
Exercise books
-Manila paper -Identity reference sheet -Calculators |
KLB Secondary Mathematics Form 4, Pages 99-103
|
|
| 2 | 4 |
Trigonometry III
|
Introduction to Waves
|
By the end of the
lesson, the learner
should be able to:
-Define amplitude and period of waves -Understand wave characteristics and properties -Identify amplitude and period from graphs -Connect waves to trigonometric functions |
-Use physical demonstrations with string/rope -Draw simple wave patterns on manila paper -Measure amplitude and period from wave diagrams -Discuss real-world wave examples (sound, light) |
Exercise books
-Manila paper -String/rope -Wave diagrams |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
| 2 | 5 |
Trigonometry III
|
Sine and Cosine Waves
|
By the end of the
lesson, the learner
should be able to:
-Plot graphs of y = sin x and y = cos x -Identify amplitude and period of basic functions -Compare sine and cosine wave patterns -Read values from trigonometric graphs |
-Plot sin x and cos x on same axes using manila paper -Mark key points (0°, 90°, 180°, 270°, 360°) -Measure and compare wave characteristics -Practice reading values from completed graphs |
Exercise books
-Manila paper -Rulers -Graph paper (if available) |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
| 2 | 6 |
Trigonometry III
|
Transformations of Sine Waves
Period Changes in Trigonometric Functions |
By the end of the
lesson, the learner
should be able to:
-Understand effect of coefficient on amplitude -Plot graphs of y = k sin x for different values of k -Compare transformed waves with basic sine wave -Apply amplitude changes to real situations |
-Plot y = 2 sin x, y = 3 sin x on manila paper -Compare amplitudes with y = sin x -Demonstrate stretching effect of coefficient -Apply to sound volume or signal strength examples |
Exercise books
-Manila paper -Colored pencils -Rulers -Period calculation charts |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
| 2 | 7 |
Trigonometry III
|
Combined Amplitude and Period Transformations
|
By the end of the
lesson, the learner
should be able to:
-Plot graphs of y = a sin(bx) functions -Identify both amplitude and period changes -Solve problems with multiple transformations -Apply to complex wave phenomena |
-Plot y = 2 sin(3x), y = 3 sin(x/2) on manila paper -Calculate both amplitude and period for each function -Compare multiple transformed waves -Apply to radio waves or tidal patterns |
Exercise books
-Manila paper -Rulers -Transformation examples |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
| 3 | 1 |
Trigonometry III
|
Phase Angles and Wave Shifts
|
By the end of the
lesson, the learner
should be able to:
-Understand concept of phase angle -Plot graphs of y = sin(x + θ) functions -Identify horizontal shifts in wave patterns -Apply phase differences to wave analysis |
-Plot y = sin(x + 45°), y = sin(x - 30°) -Demonstrate horizontal shifting of waves -Compare leading and lagging waves -Apply to electrical circuits or sound waves |
Exercise books
-Manila paper -Colored pencils -Phase shift examples |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
| 3 | 2 |
Trigonometry III
|
General Trigonometric Functions
Cosine Wave Transformations |
By the end of the
lesson, the learner
should be able to:
-Work with y = a sin(bx + c) functions -Identify amplitude, period, and phase angle -Plot complex trigonometric functions -Solve problems involving all transformations |
-Plot y = 2 sin(3x + 60°) step by step -Identify all transformation parameters -Practice reading values from complex waves -Apply to real-world periodic phenomena |
Exercise books
-Manila paper -Rulers -Complex function examples -Temperature data |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
| 3 | 3 |
Trigonometry III
|
Introduction to Trigonometric Equations
|
By the end of the
lesson, the learner
should be able to:
-Understand concept of trigonometric equations -Identify that trig equations have multiple solutions -Solve simple equations like sin x = 0.5 -Find all solutions in given ranges |
-Demonstrate using unit circle or graphs -Show why sin x = 0.5 has multiple solutions -Practice finding principal values -Use graphs to identify all solutions in range |
Exercise books
-Manila paper -Unit circle diagrams -Trigonometric tables |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
| 3 | 4 |
Trigonometry III
|
Solving Basic Trigonometric Equations
|
By the end of the
lesson, the learner
should be able to:
-Solve equations of form sin x = k, cos x = k -Find all solutions in specified ranges -Use symmetry properties of trigonometric functions -Apply inverse trigonometric functions |
-Work through sin x = 0.6 step by step -Find all solutions between 0° and 360° -Use calculator to find inverse trigonometric values -Practice with multiple basic equations |
Exercise books
-Manila paper -Calculators -Solution worksheets |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
| 3 | 5 |
Trigonometry III
|
Quadratic Trigonometric Equations
|
By the end of the
lesson, the learner
should be able to:
-Solve equations like sin²x - sin x = 0 -Apply factoring techniques to trigonometric equations -Use substitution methods for complex equations -Find all solutions systematically |
-Demonstrate substitution method (let y = sin x) -Factor quadratic expressions in trigonometry -Solve resulting quadratic equations -Back-substitute to find angle solutions |
Exercise books
-Manila paper -Factoring techniques -Substitution examples |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
| 3 | 6 |
Trigonometry III
|
Equations Involving Multiple Angles
Using Graphs to Solve Trigonometric Equations |
By the end of the
lesson, the learner
should be able to:
-Solve equations like sin(2x) = 0.5 -Handle double and triple angle cases -Find solutions for compound angle equations -Apply to periodic motion problems |
-Work through sin(2x) = 0.5 systematically -Show relationship between 2x solutions and x solutions -Practice with cos(3x) and tan(x/2) equations -Apply to pendulum and rotation problems |
Exercise books
-Manila paper -Multiple angle examples -Real applications -Rulers -Graphing examples |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
| 3 | 7 |
Trigonometry III
|
Trigonometric Equations with Identities
|
By the end of the
lesson, the learner
should be able to:
-Use trigonometric identities to solve equations -Apply sin²θ + cos²θ = 1 in equation solving -Convert between different trigonometric functions -Solve equations using multiple identities |
-Solve equations using fundamental identity -Convert tan equations to sin/cos form -Practice identity-based equation solving -Work through complex multi-step problems |
Exercise books
-Manila paper -Identity reference sheets -Complex examples |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
| 4 | 1 |
Three Dimensional Geometry
|
Introduction to 3D Concepts
|
By the end of the
lesson, the learner
should be able to:
-Distinguish between 1D, 2D, and 3D objects -Identify vertices, edges, and faces of 3D solids -Understand concepts of points, lines, and planes in space -Recognize real-world 3D objects and their properties |
-Use classroom objects to demonstrate dimensions -Count vertices, edges, faces of cardboard models -Identify 3D shapes in school environment -Discuss difference between area and volume |
Exercise books
-Cardboard boxes -Manila paper -Real 3D objects |
KLB Secondary Mathematics Form 4, Pages 113-115
|
|
| 4 | 2 |
Three Dimensional Geometry
|
Properties of Common Solids
|
By the end of the
lesson, the learner
should be able to:
-Identify properties of cubes, cuboids, pyramids -Count faces, edges, vertices systematically -Apply Euler's formula (V - E + F = 2) -Classify solids by their geometric properties |
-Make models using cardboard and tape -Create table of properties for different solids -Verify Euler's formula with physical models -Compare prisms and pyramids systematically |
Exercise books
-Cardboard -Scissors -Tape/glue |
KLB Secondary Mathematics Form 4, Pages 113-115
|
|
| 4 | 3 |
Three Dimensional Geometry
|
Understanding Planes in 3D Space
Lines in 3D Space |
By the end of the
lesson, the learner
should be able to:
-Define planes and their properties in 3D -Identify parallel and intersecting planes -Understand that planes extend infinitely -Recognize planes formed by faces of solids |
-Use books/boards to represent planes -Demonstrate parallel planes using multiple books -Show intersecting planes using book corners -Identify planes in classroom architecture |
Exercise books
-Manila paper -Books/boards -Classroom examples -Rulers/sticks -3D models |
KLB Secondary Mathematics Form 4, Pages 113-115
|
|
| 4 | 4 |
Three Dimensional Geometry
|
Introduction to Projections
|
By the end of the
lesson, the learner
should be able to:
-Understand concept of projection in 3D geometry -Find projections of points onto planes -Identify foot of perpendicular from point to plane -Apply projection concept to shadow problems |
-Use light source to create shadows (projections) -Drop perpendiculars from corners to floor -Identify projections in architectural drawings -Practice finding feet of perpendiculars |
Exercise books
-Manila paper -Light source -3D models |
KLB Secondary Mathematics Form 4, Pages 115-123
|
|
| 4 | 5 |
Three Dimensional Geometry
|
Angle Between Line and Plane - Concept
|
By the end of the
lesson, the learner
should be able to:
-Define angle between line and plane -Understand that angle is measured with projection -Identify the projection of line on plane -Recognize when line is perpendicular to plane |
-Demonstrate using stick against book (plane) -Show that angle is with projection, not plane itself -Use protractor to measure angles with projections -Identify perpendicular lines to planes |
Exercise books
-Manila paper -Protractor -Rulers/sticks |
KLB Secondary Mathematics Form 4, Pages 115-123
|
|
| 4 | 6 |
Three Dimensional Geometry
|
Calculating Angles Between Lines and Planes
|
By the end of the
lesson, the learner
should be able to:
-Calculate angles using right-angled triangles -Apply trigonometry to 3D angle problems -Use Pythagoras theorem in 3D contexts -Solve problems involving cuboids and pyramids |
-Work through step-by-step calculations -Use trigonometric ratios in 3D problems -Practice with cuboid diagonal problems -Apply to pyramid and cone angle calculations |
Exercise books
-Manila paper -Calculators -3D problem diagrams |
KLB Secondary Mathematics Form 4, Pages 115-123
|
|
| 4 | 7 |
Three Dimensional Geometry
|
Advanced Line-Plane Angle Problems
Introduction to Plane-Plane Angles |
By the end of the
lesson, the learner
should be able to:
-Solve complex angle problems systematically -Apply coordinate geometry methods where helpful -Use multiple right-angled triangles in solutions -Verify answers using different approaches |
-Practice with tent and roof angle problems -Solve ladder against wall problems in 3D -Work through architectural angle calculations -Use real-world engineering applications |
Exercise books
-Manila paper -Real scenarios -Problem sets -Books -Folded paper |
KLB Secondary Mathematics Form 4, Pages 115-123
|
|
| 5 | 1 |
Three Dimensional Geometry
|
Finding Angles Between Planes
|
By the end of the
lesson, the learner
should be able to:
-Construct perpendiculars to find plane angles -Apply trigonometry to calculate dihedral angles -Use right-angled triangles in plane intersection -Solve angle problems in prisms and pyramids |
-Work through construction method step-by-step -Practice finding intersection lines first -Calculate angles in triangular prisms -Apply to roof and building angle problems |
Exercise books
-Manila paper -Protractor -Building examples |
KLB Secondary Mathematics Form 4, Pages 123-128
|
|
| 5 | 2 |
Three Dimensional Geometry
|
Complex Plane-Plane Angle Problems
|
By the end of the
lesson, the learner
should be able to:
-Solve advanced dihedral angle problems -Apply to frustums and compound solids -Use systematic approach for complex shapes -Verify solutions using geometric properties |
-Work with frustum of pyramid problems -Solve wedge and compound shape angles -Practice with architectural applications -Use geometric reasoning to check answers |
Exercise books
-Manila paper -Complex 3D models -Architecture examples |
KLB Secondary Mathematics Form 4, Pages 123-128
|
|
| 5 | 3 |
Three Dimensional Geometry
|
Practical Applications of Plane Angles
Understanding Skew Lines |
By the end of the
lesson, the learner
should be able to:
-Apply plane angles to real-world problems -Solve engineering and construction problems -Calculate angles in roof structures -Use in navigation and surveying contexts |
-Calculate roof pitch angles -Solve bridge construction angle problems -Apply to mining and tunnel excavation -Use in aerial navigation problems |
Exercise books
-Manila paper -Real engineering data -Construction examples -Rulers -Building frameworks |
KLB Secondary Mathematics Form 4, Pages 123-128
|
|
| 5 | 4 |
Three Dimensional Geometry
|
Angle Between Skew Lines
|
By the end of the
lesson, the learner
should be able to:
-Understand how to find angle between skew lines -Apply translation method for skew line angles -Use parallel line properties in 3D -Calculate angles by creating intersecting lines |
-Demonstrate translation method using rulers -Translate one line to intersect the other -Practice with cuboid edge problems -Apply to framework and structure problems |
Exercise books
-Manila paper -Rulers -Translation examples |
KLB Secondary Mathematics Form 4, Pages 128-135
|
|
| 5 | 5 |
Three Dimensional Geometry
|
Advanced Skew Line Problems
|
By the end of the
lesson, the learner
should be able to:
-Solve complex skew line angle calculations -Apply to engineering and architectural problems -Use systematic approach for difficult problems -Combine with other 3D geometric concepts |
-Work through power line and cable problems -Solve bridge and tower construction angles -Practice with space frame structures -Apply to antenna and communication tower problems |
Exercise books
-Manila paper -Engineering examples -Structure diagrams |
KLB Secondary Mathematics Form 4, Pages 128-135
|
|
| 5 | 6 |
Three Dimensional Geometry
|
Distance Calculations in 3D
|
By the end of the
lesson, the learner
should be able to:
-Calculate distances between points in 3D -Find shortest distances between lines and planes -Apply 3D Pythagoras theorem -Use distance formula in coordinate geometry |
-Calculate space diagonals in cuboids -Find distances from points to planes -Apply 3D distance formula systematically -Solve minimum distance problems |
Exercise books
-Manila paper -Distance calculation charts -3D coordinate examples |
KLB Secondary Mathematics Form 4, Pages 115-135
|
|
| 5 | 7 |
Three Dimensional Geometry
|
Volume and Surface Area Applications
Coordinate Geometry in 3D |
By the end of the
lesson, the learner
should be able to:
-Connect 3D geometry to volume calculations -Apply angle calculations to surface area problems -Use 3D relationships in optimization -Solve practical volume and area problems |
-Calculate slant heights using 3D angles -Find surface areas of pyramids using angles -Apply to packaging and container problems -Use in architectural space planning |
Exercise books
-Manila paper -Volume formulas -Real containers -3D coordinate grid -Room corner reference |
KLB Secondary Mathematics Form 4, Pages 115-135
|
|
| 6 | 1 |
Three Dimensional Geometry
|
Integration with Trigonometry
|
By the end of the
lesson, the learner
should be able to:
-Apply trigonometry extensively to 3D problems -Use multiple trigonometric ratios in solutions -Combine trigonometry with 3D geometric reasoning -Solve complex problems requiring trig and geometry |
-Work through problems requiring sin, cos, tan -Use trigonometric identities in 3D contexts -Practice angle calculations in pyramids -Apply to navigation and astronomy problems |
Exercise books
-Manila paper -Trigonometric tables -Astronomy examples |
KLB Secondary Mathematics Form 4, Pages 115-135
|
|
| 6 | 2 |
Longitudes and Latitudes
|
Introduction to Earth as a Sphere
|
By the end of the
lesson, the learner
should be able to:
-Understand Earth as a sphere for mathematical purposes -Identify poles, equator, and axis of rotation -Recognize Earth's dimensions and basic structure -Connect Earth's rotation to day-night cycle |
-Use globe or spherical ball to demonstrate Earth -Identify North Pole, South Pole, and equator -Discuss Earth's rotation and its effects -Show axis of rotation through poles |
Exercise books
-Globe/spherical ball -Manila paper -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 136-139
|
|
| 6 | 3 |
Longitudes and Latitudes
|
Great and Small Circles
|
By the end of the
lesson, the learner
should be able to:
-Define great circles and small circles on a sphere -Identify properties of great and small circles -Understand that great circles divide sphere into hemispheres -Recognize examples of great and small circles on Earth |
-Demonstrate great circles using globe and string -Show that great circles pass through center -Compare radii of great and small circles -Identify equator as the largest circle |
Exercise books
-Globe -String -Manila paper |
KLB Secondary Mathematics Form 4, Pages 136-139
|
|
| 6 | 4 |
Longitudes and Latitudes
|
Understanding Latitude
Properties of Latitude Lines |
By the end of the
lesson, the learner
should be able to:
-Define latitude and its measurement -Identify equator as 0° latitude reference -Understand North and South latitude designations -Recognize that latitude ranges from 0° to 90° |
-Mark latitude lines on globe using tape -Show equator as reference line (0°) -Demonstrate measurement from equator to poles -Practice identifying latitude positions |
Exercise books
-Globe -Tape/string -Protractor -Calculator -Manila paper |
KLB Secondary Mathematics Form 4, Pages 136-139
|
|
| 6 | 5 |
Longitudes and Latitudes
|
Understanding Longitude
|
By the end of the
lesson, the learner
should be able to:
-Define longitude and its measurement -Identify Greenwich Meridian as 0° longitude reference -Understand East and West longitude designations -Recognize that longitude ranges from 0° to 180° |
-Mark longitude lines on globe using string -Show Greenwich Meridian as reference line -Demonstrate measurement East and West from Greenwich -Practice identifying longitude positions |
Exercise books
-Globe -String -World map |
KLB Secondary Mathematics Form 4, Pages 136-139
|
|
| 6 | 6 |
Longitudes and Latitudes
|
Properties of Longitude Lines
|
By the end of the
lesson, the learner
should be able to:
-Understand that longitude lines are great circles -Recognize that all longitude lines pass through poles -Understand that longitude lines converge at poles -Identify that opposite longitudes differ by 180° |
-Show longitude lines converging at poles -Demonstrate that longitude lines are great circles -Find opposite longitude positions -Compare longitude and latitude line properties |
Exercise books
-Globe -String -Manila paper |
KLB Secondary Mathematics Form 4, Pages 136-139
|
|
| 6 | 7 |
Longitudes and Latitudes
|
Position of Places on Earth
|
By the end of the
lesson, the learner
should be able to:
-Express position using latitude and longitude coordinates -Use correct notation for positions (e.g., 1°S, 37°E) -Identify positions of major Kenyan cities -Locate places given their coordinates |
-Find positions of Nairobi, Mombasa, Kisumu on globe -Practice writing coordinates in correct format -Locate cities worldwide using coordinates -Use maps to verify coordinate positions |
Exercise books
-Globe -World map -Kenya map |
KLB Secondary Mathematics Form 4, Pages 139-143
|
|
| 7 | 1 |
Longitudes and Latitudes
|
Latitude and Longitude Differences
Introduction to Distance Calculations |
By the end of the
lesson, the learner
should be able to:
-Calculate latitude differences between two points -Calculate longitude differences between two points -Understand angular differences on same and opposite sides -Apply difference calculations to navigation problems |
-Calculate difference between Nairobi and Cairo -Practice with points on same and opposite sides -Work through systematic calculation methods -Apply to real navigation scenarios |
Exercise books
-Manila paper -Calculator -Navigation examples -Globe -Conversion charts |
KLB Secondary Mathematics Form 4, Pages 139-143
|
|
| 7 | 2 |
Longitudes and Latitudes
|
Distance Along Great Circles
|
By the end of the
lesson, the learner
should be able to:
-Calculate distances along meridians (longitude lines) -Calculate distances along equator -Apply formula: distance = angle × 60 nm -Convert distances between nautical miles and kilometers |
-Calculate distance from Nairobi to Cairo (same longitude) -Find distance between two points on equator -Practice conversion between units -Apply to real geographical examples |
Exercise books
-Manila paper -Calculator -Real examples |
KLB Secondary Mathematics Form 4, Pages 143-156
|
|
| 7 | 3 |
Longitudes and Latitudes
|
Distance Along Small Circles (Parallels)
|
By the end of the
lesson, the learner
should be able to:
-Understand that parallel distances use different formula -Apply formula: distance = longitude difference × 60 × cos(latitude) -Calculate radius of latitude circles -Solve problems involving parallel of latitude distances |
-Derive formula using trigonometry -Calculate distance between Mombasa and Lagos -Show why latitude affects distance calculations -Practice with various latitude examples |
Exercise books
-Manila paper -Calculator -African city examples |
KLB Secondary Mathematics Form 4, Pages 143-156
|
|
| 7 | 4 |
Longitudes and Latitudes
|
Shortest Distance Problems
Advanced Distance Calculations |
By the end of the
lesson, the learner
should be able to:
-Understand that shortest distance is along great circle -Compare great circle and parallel distances -Calculate shortest distances between any two points -Apply to navigation and flight path problems |
-Compare distances: parallel vs great circle routes -Calculate shortest distance between London and New York -Apply to aircraft flight planning -Discuss practical navigation implications |
Exercise books
-Manila paper -Calculator -Flight path examples -Surveying examples |
KLB Secondary Mathematics Form 4, Pages 143-156
|
|
| 7 | 5 |
Longitudes and Latitudes
|
Introduction to Time and Longitude
|
By the end of the
lesson, the learner
should be able to:
-Understand relationship between longitude and time -Learn that Earth rotates 360° in 24 hours -Calculate that 15° longitude = 1 hour time difference -Understand concept of local time |
-Demonstrate Earth's rotation using globe -Show how sun position determines local time -Calculate time differences for various longitudes -Apply to understanding sunrise/sunset times |
Exercise books
-Globe -Light source -Time zone examples |
KLB Secondary Mathematics Form 4, Pages 156-161
|
|
| 7 | 6 |
Longitudes and Latitudes
|
Local Time Calculations
|
By the end of the
lesson, the learner
should be able to:
-Calculate local time differences between places -Understand that places east are ahead in time -Apply rule: 4 minutes per degree of longitude -Solve time problems involving East-West positions |
-Calculate time difference between Nairobi and London -Practice with cities at various longitudes -Apply East-ahead, West-behind rule consistently -Work through systematic time calculation method |
Exercise books
-Manila paper -World time examples -Calculator |
KLB Secondary Mathematics Form 4, Pages 156-161
|
|
| 7 | 7 |
Longitudes and Latitudes
|
Greenwich Mean Time (GMT)
|
By the end of the
lesson, the learner
should be able to:
-Understand Greenwich as reference for world time -Calculate local times relative to GMT -Apply GMT to solve international time problems -Understand time zones and their practical applications |
-Use Greenwich as time reference point -Calculate local times for cities worldwide -Apply to international business scenarios -Discuss practical applications of GMT |
Exercise books
-Manila paper -World map -Time zone charts |
KLB Secondary Mathematics Form 4, Pages 156-161
|
|
| 8 | 1 |
Longitudes and Latitudes
|
Complex Time Problems
Speed Calculations |
By the end of the
lesson, the learner
should be able to:
-Solve time problems involving date changes -Handle calculations crossing International Date Line -Apply to travel and communication scenarios -Calculate arrival times for international flights |
-Work through International Date Line problems -Calculate flight arrival times across time zones -Apply to international communication timing -Practice with business meeting scheduling |
Exercise books
-Manila paper -International examples -Travel scenarios -Calculator -Navigation examples |
KLB Secondary Mathematics Form 4, Pages 156-161
|
|
| 8 | 2 |
Linear Programming
|
Introduction to Linear Programming
|
By the end of the
lesson, the learner
should be able to:
-Understand the concept of optimization in real life -Identify decision variables in practical situations -Recognize constraints and objective functions -Understand applications of linear programming |
-Discuss resource allocation problems in daily life -Identify optimization scenarios in business and farming -Introduce decision-making with limited resources -Use simple examples from student experiences |
Exercise books
-Manila paper -Real-life examples -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 165-167
|
|
| 8 | 3 |
Linear Programming
|
Forming Linear Inequalities from Word Problems
|
By the end of the
lesson, the learner
should be able to:
-Translate real-world constraints into mathematical inequalities -Identify decision variables in word problems -Form inequalities from resource limitations -Use correct mathematical notation for constraints |
-Work through farmer's crop planning problem -Practice translating budget constraints into inequalities -Form inequalities from production capacity limits -Use Kenyan business examples for relevance |
Exercise books
-Manila paper -Local business examples -Agricultural scenarios |
KLB Secondary Mathematics Form 4, Pages 165-167
|
|
| 8 | 4 |
Linear Programming
|
Types of Constraints
|
By the end of the
lesson, the learner
should be able to:
-Identify non-negativity constraints -Understand resource constraints and their implications -Form demand and supply constraints -Apply constraint formation to various industries |
-Practice with non-negativity constraints (x ≥ 0, y ≥ 0) -Form material and labor constraints -Apply to manufacturing and service industries -Use school resource allocation examples |
Exercise books
-Manila paper -Industry examples -School scenarios |
KLB Secondary Mathematics Form 4, Pages 165-167
|
|
| 8 | 5 |
Linear Programming
|
Objective Functions
Complete Problem Formulation |
By the end of the
lesson, the learner
should be able to:
-Define objective functions for maximization problems -Define objective functions for minimization problems -Understand profit, cost, and other objective measures -Connect objective functions to real-world goals |
-Form profit maximization functions -Create cost minimization functions -Practice with revenue and efficiency objectives -Apply to business and production scenarios |
Exercise books
-Manila paper -Business examples -Production scenarios -Complete examples -Systematic templates |
KLB Secondary Mathematics Form 4, Pages 165-167
|
|
| 8 | 6 |
Linear Programming
|
Introduction to Graphical Solution Method
|
By the end of the
lesson, the learner
should be able to:
-Understand graphical representation of inequalities -Plot constraint lines on coordinate plane -Identify feasible and infeasible regions -Understand boundary lines and their significance |
-Plot simple inequality x + y ≤ 10 on graph -Shade feasible regions systematically -Distinguish between ≤ and < inequalities -Practice with multiple examples on manila paper |
Exercise books
-Manila paper -Rulers -Colored pencils |
KLB Secondary Mathematics Form 4, Pages 166-172
|
|
| 8 | 7 |
Linear Programming
|
Plotting Multiple Constraints
|
By the end of the
lesson, the learner
should be able to:
-Plot multiple inequalities on same graph -Find intersection of constraint lines -Identify feasible region bounded by multiple constraints -Handle cases with no feasible solution |
-Plot system of 3-4 constraints simultaneously -Find intersection points of constraint lines -Identify and shade final feasible region -Discuss unbounded and empty feasible regions |
Exercise books
-Manila paper -Rulers -Different colored pencils |
KLB Secondary Mathematics Form 4, Pages 166-172
|
|
| 9 | 1 |
Linear Programming
|
Properties of Feasible Regions
|
By the end of the
lesson, the learner
should be able to:
-Understand that feasible region is convex -Identify corner points (vertices) of feasible region -Understand significance of corner points -Calculate coordinates of corner points |
-Identify all corner points of feasible region -Calculate intersection points algebraically -Verify corner points satisfy all constraints -Understand why corner points are important |
Exercise books
-Manila paper -Calculators -Algebraic methods |
KLB Secondary Mathematics Form 4, Pages 166-172
|
|
| 9 | 2 |
Linear Programming
|
Introduction to Optimization
The Corner Point Method |
By the end of the
lesson, the learner
should be able to:
-Understand concept of optimal solution -Recognize that optimal solution occurs at corner points -Learn to evaluate objective function at corner points -Compare values to find maximum or minimum |
-Evaluate objective function at each corner point -Compare values to identify optimal solution -Practice with both maximization and minimization -Verify optimal solution satisfies all constraints |
Exercise books
-Manila paper -Calculators -Evaluation tables -Evaluation templates -Systematic approach |
KLB Secondary Mathematics Form 4, Pages 172-176
|
|
| 9 | 3 |
Linear Programming
|
The Iso-Profit/Iso-Cost Line Method
|
By the end of the
lesson, the learner
should be able to:
-Understand concept of iso-profit and iso-cost lines -Draw family of parallel objective function lines -Use slope to find optimal point graphically -Apply sliding line method for optimization |
-Draw iso-profit lines for given objective function -Show family of parallel lines with different values -Find optimal point by sliding line to extreme position -Practice with both maximization and minimization |
Exercise books
-Manila paper -Rulers -Sliding technique |
KLB Secondary Mathematics Form 4, Pages 172-176
|
|
| 9 | 4 |
Linear Programming
|
Comparing Solution Methods
|
By the end of the
lesson, the learner
should be able to:
-Compare corner point and iso-line methods -Understand when each method is most efficient -Verify solutions using both methods -Choose appropriate method for different problems |
-Solve same problem using both methods -Compare efficiency and accuracy of methods -Practice method selection based on problem type -Verify consistency of results |
Exercise books
-Manila paper -Method comparison -Verification examples |
KLB Secondary Mathematics Form 4, Pages 172-176
|
|
| 9 | 5 |
Linear Programming
Differentiation |
Business Applications - Production Planning
Introduction to Rate of Change |
By the end of the
lesson, the learner
should be able to:
-Apply linear programming to production problems -Solve manufacturing optimization problems -Handle resource allocation in production -Apply to Kenyan manufacturing scenarios |
-Solve factory production optimization problem -Apply to textile or food processing examples -Use local manufacturing scenarios -Calculate optimal production mix |
Exercise books
-Manila paper -Manufacturing examples -Kenyan industry data -Real-world examples -Graph examples |
KLB Secondary Mathematics Form 4, Pages 172-176
|
|
| 9 | 6 |
Differentiation
|
Average Rate of Change
|
By the end of the
lesson, the learner
should be able to:
-Calculate average rate of change between two points -Use formula: average rate = Δy/Δx -Apply to distance-time and other practical graphs -Understand limitations of average rate calculations |
-Calculate average speed between two time points -Find average rate of population change -Use coordinate points to find average rates -Compare average rates over different intervals |
Exercise books
-Manila paper -Calculators -Graph paper |
KLB Secondary Mathematics Form 4, Pages 177-182
|
|
| 9 | 7 |
Differentiation
|
Instantaneous Rate of Change
|
By the end of the
lesson, the learner
should be able to:
-Understand concept of instantaneous rate -Recognize instantaneous rate as limit of average rates -Connect to tangent line gradients -Apply to real-world motion problems |
-Demonstrate instantaneous speed using car speedometer -Show limiting process using smaller intervals -Connect to tangent line slopes on curves -Practice with motion and growth examples |
Exercise books
-Manila paper -Tangent demonstrations -Motion examples |
KLB Secondary Mathematics Form 4, Pages 177-182
|
|
| 10 | 1 |
Differentiation
|
Gradient of Curves at Points
|
By the end of the
lesson, the learner
should be able to:
-Find gradient of curve at specific points -Use tangent line method for gradient estimation -Apply limiting process to find exact gradients -Practice with various curve types |
-Draw tangent lines to curves on manila paper -Estimate gradients using tangent slopes -Use the limiting approach with chord sequences -Practice with parabolas and other curves |
Exercise books
-Manila paper -Rulers -Curve examples |
KLB Secondary Mathematics Form 4, Pages 178-182
|
|
| 10 | 2 |
Differentiation
|
Introduction to Delta Notation
The Limiting Process |
By the end of the
lesson, the learner
should be able to:
-Understand delta (Δ) notation for small changes -Use Δx and Δy for coordinate changes -Apply delta notation to rate calculations -Practice reading and writing delta expressions |
-Introduce delta as symbol for "change in" -Practice writing Δx, Δy, Δt expressions -Use delta notation in rate of change formulas -Apply to coordinate geometry problems |
Exercise books
-Manila paper -Delta notation examples -Symbol practice -Limit tables -Systematic examples |
KLB Secondary Mathematics Form 4, Pages 182-184
|
|
| 10 | 3 |
Differentiation
|
Introduction to Derivatives
|
By the end of the
lesson, the learner
should be able to:
-Define derivative as limit of rate of change -Use dy/dx notation for derivatives -Understand derivative as gradient function -Connect derivatives to tangent line slopes |
-Introduce derivative notation dy/dx -Show derivative as gradient of tangent -Practice derivative concept with simple functions -Connect to previous gradient work |
Exercise books
-Manila paper -Derivative notation -Function examples |
KLB Secondary Mathematics Form 4, Pages 182-184
|
|
| 10 | 4 |
Differentiation
|
Derivative of Linear Functions
|
By the end of the
lesson, the learner
should be able to:
-Find derivatives of linear functions y = mx + c -Understand that derivative of linear function is constant -Apply to straight line gradient problems -Verify using limiting process |
-Find derivative of y = 3x + 2 using definition -Show that derivative equals the gradient -Practice with various linear functions -Verify results using first principles |
Exercise books
-Manila paper -Linear function examples -Verification methods |
KLB Secondary Mathematics Form 4, Pages 184-188
|
|
| 10 | 5 |
Differentiation
|
Derivative of y = x^n (Basic Powers)
|
By the end of the
lesson, the learner
should be able to:
-Find derivatives of power functions -Apply the rule d/dx(x^n) = nx^(n-1) -Practice with x², x³, x⁴, etc. -Verify using first principles for simple cases |
-Derive d/dx(x²) = 2x using first principles -Apply power rule to various functions -Practice with x³, x⁴, x⁵ examples -Verify selected results using definition |
Exercise books
-Manila paper -Power rule examples -First principles verification |
KLB Secondary Mathematics Form 4, Pages 184-188
|
|
| 10 | 6 |
Differentiation
|
Derivative of Constant Functions
Derivative of Coefficient Functions |
By the end of the
lesson, the learner
should be able to:
-Understand that derivative of constant is zero -Apply to functions like y = 5, y = -3 -Explain geometric meaning of zero derivative -Combine with other differentiation rules |
-Show that horizontal lines have zero gradient -Find derivatives of constant functions -Explain why rate of change of constant is zero -Apply to mixed functions with constants |
Exercise books
-Manila paper -Constant function graphs -Geometric explanations -Coefficient examples -Rule combinations |
KLB Secondary Mathematics Form 4, Pages 184-188
|
|
| 10 | 7 |
Differentiation
|
Derivative of Polynomial Functions
|
By the end of the
lesson, the learner
should be able to:
-Find derivatives of polynomial functions -Apply term-by-term differentiation -Practice with various polynomial degrees -Verify results using first principles |
-Differentiate y = x³ + 2x² - 5x + 7 -Apply rule to each term separately -Practice with various polynomial types -Check results using definition for simple cases |
Exercise books
-Manila paper -Polynomial examples -Term-by-term method |
KLB Secondary Mathematics Form 4, Pages 184-188
|
|
| 11 | 1 |
Differentiation
|
Applications to Tangent Lines
|
By the end of the
lesson, the learner
should be able to:
-Find equations of tangent lines to curves -Use derivatives to find tangent gradients -Apply point-slope form for tangent equations -Solve problems involving tangent lines |
-Find tangent to y = x² at point (2, 4) -Use derivative to get gradient at specific point -Apply y - y₁ = m(x - x₁) formula -Practice with various curves and points |
Exercise books
-Manila paper -Tangent line examples -Point-slope applications |
KLB Secondary Mathematics Form 4, Pages 187-189
|
|
| 11 | 2 |
Differentiation
|
Applications to Normal Lines
|
By the end of the
lesson, the learner
should be able to:
-Find equations of normal lines to curves -Use negative reciprocal of tangent gradient -Apply to perpendicular line problems -Practice with normal line calculations |
-Find normal to y = x² at point (2, 4) -Use negative reciprocal relationship -Apply perpendicular line concepts -Practice normal line equation finding |
Exercise books
-Manila paper -Normal line examples -Perpendicular concepts |
KLB Secondary Mathematics Form 4, Pages 187-189
|
|
| 11 | 3 |
Differentiation
|
Introduction to Stationary Points
Types of Stationary Points |
By the end of the
lesson, the learner
should be able to:
-Define stationary points as points where dy/dx = 0 -Identify different types of stationary points -Understand geometric meaning of zero gradient -Find stationary points by solving dy/dx = 0 |
-Show horizontal tangents at stationary points -Find stationary points of y = x² - 4x + 3 -Identify maximum, minimum, and inflection points -Practice finding where dy/dx = 0 |
Exercise books
-Manila paper -Curve sketches -Stationary point examples -Sign analysis charts -Classification examples |
KLB Secondary Mathematics Form 4, Pages 189-195
|
|
| 11 | 4 |
Differentiation
|
Finding and Classifying Stationary Points
|
By the end of the
lesson, the learner
should be able to:
-Solve dy/dx = 0 to find stationary points -Apply systematic classification method -Use organized approach for point analysis -Practice with polynomial functions |
-Work through complete stationary point analysis -Use systematic gradient sign testing -Create organized solution format -Practice with cubic and quartic functions |
Exercise books
-Manila paper -Systematic templates -Complete examples |
KLB Secondary Mathematics Form 4, Pages 189-195
|
|
| 11 | 5 |
Differentiation
|
Curve Sketching Using Derivatives
|
By the end of the
lesson, the learner
should be able to:
-Use derivatives to sketch accurate curves -Identify key features: intercepts, stationary points -Apply systematic curve sketching method -Combine algebraic and graphical analysis |
-Sketch y = x³ - 3x² + 2 using derivatives -Find intercepts, stationary points, and behavior -Use systematic curve sketching approach -Verify sketches using derivative information |
Exercise books
-Manila paper -Curve sketching templates -Systematic method |
KLB Secondary Mathematics Form 4, Pages 195-197
|
|
| 11 | 6 |
Differentiation
|
Introduction to Kinematics Applications
Acceleration as Second Derivative |
By the end of the
lesson, the learner
should be able to:
-Apply derivatives to displacement-time relationships -Understand velocity as first derivative of displacement -Find velocity functions from displacement functions -Apply to motion problems |
-Find velocity from s = t³ - 2t² + 5t -Apply v = ds/dt to motion problems -Practice with various displacement functions -Connect to real-world motion scenarios |
Exercise books
-Manila paper -Motion examples -Kinematics applications -Second derivative examples -Motion analysis |
KLB Secondary Mathematics Form 4, Pages 197-201
|
|
| 11 | 7 |
Differentiation
|
Motion Problems and Applications
|
By the end of the
lesson, the learner
should be able to:
-Solve complete motion analysis problems -Find displacement, velocity, acceleration relationships -Apply to real-world motion scenarios -Use derivatives for motion optimization |
-Analyze complete motion of falling object -Find when particle changes direction -Calculate maximum height in projectile motion -Apply to vehicle motion problems |
Exercise books
-Manila paper -Complete motion examples -Real scenarios |
KLB Secondary Mathematics Form 4, Pages 197-201
|
|
| 12 | 1 |
Differentiation
|
Introduction to Optimization
|
By the end of the
lesson, the learner
should be able to:
-Apply derivatives to find maximum and minimum values -Understand optimization in real-world contexts -Use calculus for practical optimization problems -Connect to business and engineering applications |
-Find maximum area of rectangle with fixed perimeter -Apply calculus to profit maximization -Use derivatives for cost minimization -Practice with geometric optimization |
Exercise books
-Manila paper -Optimization examples -Real applications |
KLB Secondary Mathematics Form 4, Pages 201-204
|
|
| 12 | 2 |
Differentiation
|
Geometric Optimization Problems
|
By the end of the
lesson, the learner
should be able to:
-Apply calculus to geometric optimization -Find maximum areas and minimum perimeters -Use derivatives for shape optimization -Apply to construction and design problems |
-Find dimensions for maximum area enclosure -Optimize container volumes and surface areas -Apply to architectural design problems -Practice with various geometric constraints |
Exercise books
-Manila paper -Geometric examples -Design applications |
KLB Secondary Mathematics Form 4, Pages 201-204
|
|
| 12 | 3 |
Differentiation
|
Business and Economic Applications
Advanced Optimization Problems |
By the end of the
lesson, the learner
should be able to:
-Apply derivatives to profit and cost functions -Find marginal cost and marginal revenue -Use calculus for business optimization -Apply to Kenyan business scenarios |
-Find maximum profit using calculus -Calculate marginal cost and revenue -Apply to agricultural and manufacturing examples -Use derivatives for business decision-making |
Exercise books
-Manila paper -Business examples -Economic applications -Complex examples -Engineering applications |
KLB Secondary Mathematics Form 4, Pages 201-204
|
|
| 12 | 4 |
Integration
|
Introduction to Reverse Differentiation
Basic Integration Rules - Power Functions |
By the end of the
lesson, the learner
should be able to:
-Define integration as reverse of differentiation -Understand the concept of antiderivative -Recognize the relationship between gradient functions and original functions -Apply reverse thinking to simple differentiation examples |
-Q/A review on differentiation formulas and rules -Demonstration of reverse process using simple examples -Working backwards from derivatives to find original functions -Discussion on why multiple functions can have same derivative -Introduction to integration symbol ∫ |
Graph papers
-Differentiation charts -Exercise books -Function examples Calculators -Graph papers -Power rule charts |
KLB Secondary Mathematics Form 4, Pages 221-223
|
|
| 12 | 5 |
Integration
|
Integration of Polynomial Functions
Finding Particular Solutions Introduction to Definite Integrals |
By the end of the
lesson, the learner
should be able to:
-Integrate polynomial functions with multiple terms -Apply linearity: ∫[af(x) + bg(x)]dx = a∫f(x)dx + b∫g(x)dx -Handle constant coefficients and addition/subtraction -Solve integration problems requiring algebraic simplification |
-Step-by-step integration of polynomials like 3x² + 5x - 7 -Working with coefficients and constants -Integration of expanded expressions: (x+2)(x-3) -Practice with mixed positive and negative terms -Exercises from textbook Exercise 10.1 |
Calculators
-Algebraic worksheets -Polynomial examples -Exercise books Graph papers -Calculators -Curve examples -Geometric models -Integration notation charts |
KLB Secondary Mathematics Form 4, Pages 223-225
|
|
| 12 | 6 |
Integration
|
Evaluating Definite Integrals
Area Under Curves - Single Functions |
By the end of the
lesson, the learner
should be able to:
-Apply Fundamental Theorem of Calculus -Evaluate definite integrals using [F(x)]ₐᵇ = F(b) - F(a) -Understand why constant of integration cancels -Practice numerical evaluation of definite integrals |
-Step-by-step evaluation process demonstration -Multiple worked examples showing limit substitution -Verification that constant c cancels out -Practice with various polynomial and power functions -Exercises from textbook Exercise 10.2 |
Calculators
-Step-by-step worksheets -Exercise books -Evaluation charts Graph papers -Curve sketching tools -Colored pencils -Calculators -Area grids |
KLB Secondary Mathematics Form 4, Pages 226-230
|
|
| 12 | 7 |
Integration
|
Areas Below X-axis and Mixed Regions
Area Between Two Curves |
By the end of the
lesson, the learner
should be able to:
-Handle negative areas when curve is below x-axis -Understand absolute value consideration for areas -Calculate areas of regions crossing x-axis -Apply integration to mixed positive/negative regions |
-Demonstration of negative integrals and their meaning -Working with curves that cross x-axis multiple times -Finding total area vs net area -Practice with functions like y = x³ - x -Problem-solving with complex area calculations |
Graph papers
-Calculators -Curve examples -Colored materials -Exercise books -Equation solving aids -Colored pencils |
KLB Secondary Mathematics Form 4, Pages 230-235
|
Your Name Comes Here