If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 1 |
Reporting and Revision |
|||||||
| 2 |
Revision and Open-up Exams |
|||||||
| 2 | 3 |
Electromagnetic Induction
|
Introduction and Historical Background
|
By the end of the
lesson, the learner
should be able to:
Define electromagnetic induction and its significance; Explain Faraday's discovery and its impact on modern technology; Understand the relationship between magnetism and electricity; Identify examples of electromagnetic induction in daily life; Appreciate the importance of relative motion in electromagnetic phenomena |
Q/A on magnetic fields and electric current relationships from previous studies; Introduction to Michael Faraday's discovery and its historical significance; Discussion of electromagnetic induction examples in daily life (generators, transformers, motors); Overview of chapter content and learning objectives; Introduction to practical applications in power generation and electronics
|
Charts showing Faraday's experiments; Pictures of power stations; Transformers; Generators; Historical timeline of electromagnetic discoveries; Real-world applications display
|
KLB Secondary Physics Form 4, Pages 86
|
|
| 2 | 4 |
Electromagnetic Induction
|
Conditions for Electromagnetic Induction - Straight Conductor
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.1 using straight conductor; Identify conditions necessary for inducing e.m.f. in a straight conductor; Observe effects of different types of motion on induced current; Understand the importance of relative motion between conductor and magnetic field; Analyze galvanometer deflections |
Performance of Experiment 5.1 using straight conductor AB in U-shaped magnet; Systematic investigation of conductor movement (vertical up/down, parallel to field, stationary, different angles); Observation and recording of galvanometer deflections; Analysis of current direction changes with motion reversal; Discussion of relative motion importance and field cutting concept
|
Thick electric conductor; U-shaped magnet; Galvanometer; Connecting wires; Clamp and stand setup; Data recording sheets
|
KLB Secondary Physics Form 4, Pages 86-87
|
|
| 2 | 5 |
Electromagnetic Induction
|
Conditions for Electromagnetic Induction - Coils
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.1 using coils; Compare induction effects in straight conductors vs coils; Observe effects of magnet movement into and out of coils; Understand flux linkage concept; Analyze why coils are more effective than single conductors |
Continuation of Experiment 5.1 using coil instead of straight conductor; Investigation of magnet movement into coil, out of coil, and stationary positions; Comparison of deflection magnitudes between straight conductor and coil setups; Analysis of why coils produce larger induced e.m.f.; Discussion of magnetic flux and flux linkage concepts
|
Coils of different sizes; Magnets of various strengths; Galvanometer; Connecting wires; Comparison data sheets
|
KLB Secondary Physics Form 4, Pages 87-88
|
|
| 3 | 1 |
Electromagnetic Induction
|
Factors Affecting Induced E.M.F. - Rate of Change
Factors Affecting Induced E.M.F. - Magnetic Field Strength |
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.2 investigating rate of change effects; Understand relationship between speed of motion and induced e.m.f.; Collect and analyze data on rate of flux change; Establish that faster changes produce larger e.m.f.; Apply findings to practical situations |
Performance of Experiment 5.2 investigating relationship between rate of change of magnetic flux and induced e.m.f.; Systematic variation of magnet withdrawal speeds (very fast, moderate, very slow); Recording and comparison of galvanometer deflections; Data analysis and conclusion drawing; Discussion of practical implications in generators and other applications
|
Coil of at least 50 turns; Sensitive galvanometer; Magnet; Stopwatch; Data collection tables; Graph paper for analysis
U-shaped electromagnet; Variable resistor; Wire PQ; Galvanometer; Ammeter; Connecting wires; Power supply; Data recording materials |
KLB Secondary Physics Form 4, Pages 88-89
|
|
| 3 | 2 |
Electromagnetic Induction
|
Factors Affecting Induced E.M.F. - Number of Turns
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.4 investigating effect of coil turns; Understand relationship between number of turns and induced e.m.f.; Construct coils with different numbers of turns; Analyze why more turns produce larger e.m.f.; State Faraday's law of electromagnetic induction |
Performance of Experiment 5.4 investigating relationship between number of turns and induced e.m.f.; Construction of solenoids with 60, 50, 40, 30, and 20 turns; Systematic testing with same magnet withdrawal speed; Recording and analysis of galvanometer readings; Mathematical relationship establishment; Statement of Faraday's law based on experimental evidence
|
Insulated copper wire; Sensitive galvanometer; Magnet; Connecting wires; Wire cutting and measuring tools; Data analysis sheets
|
KLB Secondary Physics Form 4, Pages 89-90
|
|
| 3 | 3 |
Electromagnetic Induction
|
Lenz's Law and Direction of Induced Current
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.5 determining direction of induced current; State Lenz's law and explain its significance; Understand energy conservation in electromagnetic induction; Predict current direction using Lenz's law; Relate Lenz's law to conservation of energy principle |
Performance of Experiment 5.5(a) establishing galvanometer deflection direction; Performance of Experiment 5.5(b) investigating induced current direction with magnet movement; Analysis of current directions and magnetic pole formation; Statement and explanation of Lenz's law; Discussion of energy conservation and opposition principle; Practice in predicting current directions
|
Variable resistor; Sensitive center-zero galvanometer; Connecting wires; Coil; Magnet; Switch; Battery; Direction analysis charts
|
KLB Secondary Physics Form 4, Pages 90-93
|
|
| 3 | 4 |
Electromagnetic Induction
|
Fleming's Right-Hand Rule
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.6 with straight conductors; State Fleming's right-hand rule (dynamo rule); Apply the rule to determine direction of induced current; Understand relationship between motion, field, and current directions; Solve Example 1 involving square loop movement |
Performance of Experiment 5.6 determining induced current direction in straight conductor; Introduction and demonstration of Fleming's right-hand rule; Practice applying the rule to various conductor movements; Step-by-step solution of Example 1 (square loop in magnetic field); Analysis of current directions in different parts of the loop; Verification of Fleming's rule consistency with Lenz's law
|
U-shaped magnet; Thick wire AB; Marked center-zero galvanometer; Hand models for rule demonstration; Example 1 setup materials; Direction analysis worksheets
|
KLB Secondary Physics Form 4, Pages 93-97
|
|
| 3 | 5 |
Electromagnetic Induction
|
Applications of Induction Laws
|
By the end of the
lesson, the learner
should be able to:
Solve Examples 2 and 3 involving current direction; Apply Lenz's law to predict current directions in circuits; Understand induced current effects in neighboring circuits; Analyze changing magnetic fields and their effects; Use both Fleming's rule and Lenz's law in problem solving |
Q/A review of Fleming's rule and Lenz's law; Step-by-step solution of Example 2 (current in conductor AB affecting nearby loop); Detailed analysis of Example 3 (magnet movement and coil current direction); Practice problems involving current direction prediction; Group work on applying both laws to various scenarios; Discussion of consistency between different methods
|
Examples 2 and 3 setup materials; Problem-solving worksheets; Charts showing current direction analysis; Group work materials; Calculators
|
KLB Secondary Physics Form 4, Pages 94-97
|
|
| 4 | 1 |
Electromagnetic Induction
|
Mutual Induction
|
By the end of the
lesson, the learner
should be able to:
Define mutual induction and demonstrate its occurrence; Perform Experiment 5.7 showing mutual induction between coils; Explain factors affecting mutual induction; Understand primary and secondary coil relationships; Discuss enhancement methods using iron cores |
Q/A on electromagnetic induction principles; Introduction to mutual induction concept and definition; Performance of Experiment 5.7 demonstrating mutual induction between primary and secondary coils; Investigation of switching effects, current changes, and A.C. source effects; Analysis of mutual induction enhancement using soft iron rod and ring; Discussion of applications in transformers
|
Two coils P and S; Galvanometer; Battery; A.C. power source; Switch; Rheostat; Connecting wires; Soft iron rod; Soft iron ring; Enhancement demonstration materials
|
KLB Secondary Physics Form 4, Pages 97-100
|
|
| 4 | 2 |
Electromagnetic Induction
|
Transformers - Basic Principles
|
By the end of the
lesson, the learner
should be able to:
Describe transformer structure and components; Explain working principle based on mutual induction; Perform Experiment 5.10 investigating secondary e.m.f. variation; Understand primary and secondary coil functions; Distinguish between step-up and step-down transformers |
Review of mutual induction through Q/A; Introduction to transformer structure (primary coil, secondary coil, iron core); Performance of Experiment 5.10 - variation of secondary e.m.f. with number of turns; Observation of bulb brightness changes with turn variations; Analysis of step-up vs step-down transformer characteristics; Introduction to transformer symbols and representations
|
Long insulated copper wire; Soft iron rod; Low frequency A.C. source; A.C. voltmeter; Switch; Bulb; Transformer construction materials; Symbol charts
|
KLB Secondary Physics Form 4, Pages 100-102
|
|
| 4 | 3 |
Electromagnetic Induction
|
Transformer Equations and Calculations
|
By the end of the
lesson, the learner
should be able to:
Derive transformer turns rule equation; Apply transformer equations for voltage and current relationships; Calculate transformer efficiency; Solve Examples 4 and 5 involving transformer problems; Understand ideal vs practical transformer differences |
Q/A on transformer working principles; Mathematical derivation of turns rule (Vp/Vs = Np/Ns); Development of current relationship (IpVp = IsVs for ideal transformer); Introduction to efficiency calculations; Step-by-step solution of Examples 4 and 5; Discussion of ideal transformer assumptions vs practical limitations
|
Calculators; Examples 4 and 5 materials; Mathematical derivation charts; Efficiency calculation worksheets; Transformer specification data
|
KLB Secondary Physics Form 4, Pages 102-105
|
|
| 4 | 4 |
Electromagnetic Induction
|
Transformer Energy Losses and Example 6
|
By the end of the
lesson, the learner
should be able to:
Identify four main energy losses in transformers; Explain methods to minimize each type of energy loss; Understand lamination and its purpose; Solve Example 6 involving power transmission system; Calculate efficiency and power losses in practical systems |
Review of ideal transformer equations; Analysis of energy losses (flux leakage, copper losses, eddy currents, hysteresis loss); Study of loss minimization techniques including core lamination; Discussion of practical transformer efficiency; Step-by-step solution of Example 6 (complex power transmission system); Analysis of step-up and step-down transformer roles
|
Charts showing energy losses; Laminated core samples; Example 6 complex setup; Power transmission diagrams; Efficiency calculation materials; Loss minimization demonstration aids
|
KLB Secondary Physics Form 4, Pages 105-108
|
|
| 4 | 5 |
Electromagnetic Induction
Mains Electricity Mains Electricity |
Applications - Generators, Microphones, and Induction Coils
Sources of Mains Electricity The Grid System and Power Transmission |
By the end of the
lesson, the learner
should be able to:
Explain structure and working of A.C. and D.C. generators; Describe moving-coil microphone operation; Understand induction coil structure and applications; Compare slip rings with split ring commutators; Analyze generator output waveforms and applications |
Review of electromagnetic induction in rotating systems; Detailed study of A.C. generator structure and sinusoidal output; Analysis of D.C. generator with split ring commutator; Explanation of moving-coil microphone components and sound conversion; Description of induction coil operation and high voltage generation; Discussion of applications in car ignition systems
|
A.C. generator model; D.C. generator model; Moving-coil microphone demonstration; Induction coil setup; Output waveform charts; Slip ring and commutator comparisons; Bicycle dynamo
Pictures of power stations Charts showing different energy sources Videos of power generation Maps of Kenya's power grid Sample coal, biomass materials Chart of national grid system Transmission line models Maps showing power lines Transformer models Voltage measurement devices |
KLB Secondary Physics Form 4, Pages 108-112
|
|
| 5 | 1 |
Mains Electricity
|
High Voltage Transmission and Power Losses
Domestic Wiring System |
By the end of the
lesson, the learner
should be able to:
Explain why power is transmitted at high voltage Calculate power losses in transmission State dangers of high voltage transmission Apply the formula P = I²R to transmission problems |
Review of Ohm's law and power formulas
Demonstration of power loss calculations Worked examples on transmission efficiency Discussion on safety measures for transmission lines Group problem-solving activities |
Calculators
Worked example sheets Pictures of transmission towers Safety warning signs Formula charts House wiring components Fuse box model Different types of fuses Electrical cables (samples) Circuit diagrams Multimeter |
KLB Secondary Physics Form 4, Pages 118-121
|
|
| 5 | 2 |
Mains Electricity
|
Fuses, Circuit Breakers and Safety Devices
Ring Mains Circuit and Three-Pin Plugs |
By the end of the
lesson, the learner
should be able to:
Explain the function of fuses in electrical circuits Compare fuses and circuit breakers Select appropriate fuse ratings for different appliances Describe safety measures in electrical installations |
Review of domestic wiring components
Examination of different fuse types Calculation of appropriate fuse ratings Demonstration of circuit breaker operation Discussion on electrical safety |
Various fuses (2A, 5A, 13A)
Circuit breakers Fuse wire samples Electrical appliances Calculators Safety equipment samples Three-pin plugs Electrical cables Wire strippers Screwdrivers Ring mains circuit model Color-coded wires |
KLB Secondary Physics Form 4, Pages 122-123
|
|
| 5 | 3 |
Mains Electricity
|
Electrical Energy Consumption and Costing
Problem Solving and Applications |
By the end of the
lesson, the learner
should be able to:
Define kilowatt-hour (kWh) Calculate electrical energy consumption Determine cost of electrical energy Apply energy formulas to practical problems |
Review of power and energy concepts
Introduction to kilowatt-hour unit Worked examples on energy calculations Practice problems on electricity billing Analysis of electricity bills |
Calculators
Sample electricity bills Electrical appliances with ratings Stop watches Energy meter model Formula charts Problem sheets Past examination questions Real electricity bills Energy conservation charts |
KLB Secondary Physics Form 4, Pages 125-128
|
|
| 5 | 4 |
Cathode Rays and Cathode Ray Tube
|
Thermionic Emission
Production and Properties of Cathode Rays Structure of Cathode Ray Oscilloscope |
By the end of the
lesson, the learner
should be able to:
Define thermionic emission Explain the process of electron emission from heated metals Describe a simple experiment to demonstrate thermionic emission State factors affecting thermionic emission |
Q&A on electron structure and energy
Demonstration of thermionic emission using simple circuit Discussion on work function of different metals Explanation of electron emission process Identification of materials used in cathodes |
Simple thermionic emission apparatus
Low voltage power supply (6V) Milliammeter Evacuated glass bulb Heated filament Charts showing electron emission Cathode ray tube (simple) High voltage supply (EHT) Fluorescent screen Maltese cross or opaque object Bar magnets Charged plates CRO (demonstration model) Charts showing CRO structure Diagrams of electron gun Models of deflection plates High voltage power supply |
KLB Secondary Physics Form 4, Pages 131-132
|
|
| 5 | 5 |
Cathode Rays and Cathode Ray Tube
|
CRO Controls and Operation
CRO as a Voltmeter |
By the end of the
lesson, the learner
should be able to:
Explain the function of brightness and focus controls Describe vertical and horizontal deflection systems Explain the time base operation Demonstrate basic CRO operation |
Review of CRO structure
Demonstration of CRO controls Explanation of time base voltage Practice with focus and brightness adjustment Observation of spot movement across screen |
Working CRO
Signal generator Connecting leads Various input signals Time base control charts Oscilloscope manual DC power supplies AC signal sources Digital voltmeter Graph paper Calculators |
KLB Secondary Physics Form 4, Pages 135-137
|
|
| 6 | 1 |
Cathode Rays and Cathode Ray Tube
|
Frequency Measurement using CRO
The Television Tube |
By the end of the
lesson, the learner
should be able to:
Measure frequency of AC signals using CRO Calculate period and frequency from CRO traces Apply the relationship f = 1/T Determine peak voltage of AC signals |
Review of voltage measurement with CRO
Demonstration of AC signal display on CRO Measurement of wavelength and period Calculation of frequency from time base setting Practice problems on frequency determination |
Working CRO with time base
Audio frequency generator Connecting leads Graph paper for measurements Calculators Stop watch TV tube (demonstration model) Deflection coils TV receiver (old CRT type) Charts comparing TV and CRO Color TV tube diagram |
KLB Secondary Physics Form 4, Pages 139-141
|
|
| 6 | 2 |
Cathode Rays and Cathode Ray Tube
X-Rays |
Problem Solving and Applications
Production of X-Rays |
By the end of the
lesson, the learner
should be able to:
Solve numerical problems on CRO measurements Apply CRO principles to practical situations Analyze waveforms displayed on CRO Evaluate the importance of cathode ray technology |
Review of all chapter concepts
Problem-solving exercises on voltage and frequency measurements Analysis of complex waveforms Discussion on modern applications of cathode ray technology Assessment preparation |
Calculators
Problem-solving worksheets Sample CRO traces Past examination questions Graph paper Reference materials Charts showing X-ray tube structure Diagram of X-ray production process Models of rotating anode Pictures of medical X-ray equipment Video clips of X-ray tube operation |
KLB Secondary Physics Form 4, Pages 131-142
|
|
| 6 | 3 |
X-Rays
|
Properties of X-Rays and Energy Concepts
Hard and Soft X-Rays |
By the end of the
lesson, the learner
should be able to:
State the properties of X-rays Explain X-rays as electromagnetic radiation Calculate the energy of X-rays using E = hf Relate X-ray energy to accelerating voltage |
Review of X-ray production
Demonstration of X-ray properties using simulations Calculation of X-ray energy and frequency Problem-solving on energy-voltage relationships Comparison with other electromagnetic radiations |
Calculators
Electromagnetic spectrum chart Energy calculation worksheets Constants and formulae charts Sample X-ray images Comparison charts of hard vs soft X-rays Penetration demonstration materials Voltage control diagrams Medical X-ray examples Industrial X-ray applications |
KLB Secondary Physics Form 4, Pages 145-147
|
|
| 6 | 4 |
X-Rays
|
Uses of X-Rays in Medicine and Industry
Dangers of X-Rays and Safety Precautions Problem Solving and Applications Review |
By the end of the
lesson, the learner
should be able to:
Describe medical uses of X-rays (radiography and radiotherapy) Explain industrial applications of X-rays Describe use in crystallography and security Analyze the importance of point source X-rays |
Review of hard and soft X-rays
Discussion on medical imaging techniques Explanation of CT scans and their advantages Description of industrial flaw detection Analysis of airport security applications |
Medical X-ray images
CT scan pictures Industrial radiography examples Crystal diffraction patterns Airport security equipment photos Charts of various X-ray applications Safety equipment samples (lead aprons) Radiation warning signs Pictures of X-ray protection facilities Dosimeter badges Charts showing radiation effects Safety protocol posters Calculators Problem-solving worksheets Past examination questions Real X-ray case studies Modern X-ray technology articles Assessment materials |
KLB Secondary Physics Form 4, Pages 148-149
|
|
| 6 | 5 |
Photoelectric Effect
|
Demonstration and Introduction to Photoelectric Effect
Light Energy and Quantum Theory |
By the end of the
lesson, the learner
should be able to:
Define photoelectric effect Describe experiments to demonstrate photoelectric effect Explain observations from photoelectric experiments Identify conditions necessary for photoelectric emission |
Q&A on electromagnetic radiation and light
Demonstration using zinc plate and UV lamp Experiment with charged electroscope and UV radiation Observation and explanation of leaf divergence changes Discussion on electron emission from metal surfaces |
UV lamp (mercury vapor)
Zinc plate Gold leaf electroscope Glass barrier Metal plates Galvanometer Connecting wires Calculators Electromagnetic spectrum chart Planck's constant reference Worked example sheets Wave equation materials Color filters |
KLB Secondary Physics Form 4, Pages 151-153
|
|
| 7 | 1 |
Photoelectric Effect
|
Einstein's Photoelectric Equation and Work Function
Factors Affecting Photoelectric Effect |
By the end of the
lesson, the learner
should be able to:
State Einstein's photoelectric equation Define work function and threshold frequency Explain the relationship between photon energy and kinetic energy Calculate work function and threshold frequency for different metals |
Q&A on quantum theory and photon energy
Derivation of Einstein's photoelectric equation Explanation of work function concept Worked examples using Einstein's equation Analysis of work function table for various metals |
Work function data table
Einstein's equation reference Calculators Metal samples (theoretical) Energy level diagrams Problem-solving worksheets Experimental setup diagrams Graph paper Stopping potential data Frequency vs energy graphs Different metal characteristics |
KLB Secondary Physics Form 4, Pages 153-156
|
|
| 7 | 2 |
Photoelectric Effect
|
Applications of Photoelectric Effect
Problem Solving and Applications Review |
By the end of the
lesson, the learner
should be able to:
Describe the working of photoemissive cells Explain photovoltaic and photoconductive cells Analyze applications in counting, alarms, and sound reproduction Compare different types of photoelectric devices |
Q&A on factors affecting photoelectric effect
Demonstration of photocell operation Explanation of different photoelectric device types Analysis of practical applications in industry Discussion on solar cells and light-dependent resistors |
Photoemissive cell samples
Light-dependent resistor (LDR) Solar panel demonstration Application circuit diagrams Conveyor belt counting model Burglar alarm circuit Calculators Comprehensive problem sets Past examination questions Constants and formulae sheets Graph paper Assessment materials |
KLB Secondary Physics Form 4, Pages 160-163
|
|
| 7 | 3 |
Radioactivity
|
Atomic Structure and Nuclear Notation
Nuclear Stability and Discovery of Radioactivity Types of Radiations |
By the end of the
lesson, the learner
should be able to:
Describe the structure of atoms Define atomic number and mass number Use nuclear notation to represent atoms Explain isotopes and their significance |
Q&A on atomic theory and electron structure
Drawing atomic structures of hydrogen, helium, and neon Practice with nuclear notation and symbol writing Discussion on isotopes and their properties Identification of protons, neutrons, and electrons |
Atomic structure models
Periodic table Nuclear notation examples Isotope charts Atomic structure diagrams Element samples (safe) Historical pictures of scientists Stability curve graph Nuclear stability charts Uranium compound samples (pictures) Photographic plate demonstrations Magnetic field demonstration setup Radiation source (simulation) Lead box model Nuclear equation examples Property comparison charts Deflection diagrams |
KLB Secondary Physics Form 4, Pages 166-167
|
|
| 7 | 4 |
Radioactivity
|
Alpha and Beta Decay Processes
Penetrating Power of Radiations |
By the end of the
lesson, the learner
should be able to:
Write nuclear equations for alpha decay Write nuclear equations for beta decay Calculate changes in mass and atomic numbers Solve problems involving radioactive decay chains |
Review of radiation types and properties
Step-by-step writing of alpha decay equations Practice with beta decay equation writing Problem-solving on decay processes Analysis of decay chain examples |
Nuclear equation worksheets
Decay chain diagrams Calculators Periodic table Practice problem sets Worked examples Absorber materials (paper, aluminum, lead) Radiation detector simulation Absorption curve graphs Range measurement diagrams Safety equipment models Penetration demonstration setup |
KLB Secondary Physics Form 4, Pages 168-170
|
|
| 7 | 5 |
Radioactivity
|
Ionising Effects of Radiations
Radiation Detectors - Photographic Emulsions and Cloud Chambers |
By the end of the
lesson, the learner
should be able to:
Explain how radiations cause ionization Compare ionizing abilities of different radiations Relate ionization to radiation energy and speed Describe applications of ionization effects |
Review of penetrating power concepts
Explanation of ionization process Comparison of ionizing powers of alpha, beta, and gamma Discussion on relationship between ionization and energy loss Analysis of ionization applications |
Ionization chamber models
Ion formation diagrams Comparison charts of ionizing power Air molecule models Energy transfer illustrations Ionization applications examples Photographic film samples Cloud chamber diagrams Track pattern examples Dry ice demonstration setup Alcohol vapor materials Detection comparison charts |
KLB Secondary Physics Form 4, Pages 172
|
|
| 8 | 1 |
Radioactivity
|
Geiger-Muller Tube and Background Radiation
Decay Law and Mathematical Treatment |
By the end of the
lesson, the learner
should be able to:
Describe the structure and operation of G-M tubes Explain gas amplification and pulse detection Define background radiation and its sources Account for background radiation in measurements |
Review of cloud chamber operation
Detailed explanation of G-M tube construction Description of avalanche effect and electron multiplication Discussion on background radiation sources Practice with count rate corrections |
G-M tube model/diagram
High voltage supply diagrams Pulse amplification illustrations Background radiation source charts Count rate measurement examples Cosmic ray detection materials Mathematical formula charts Decay curve examples Calculators Exponential function graphs Statistical concepts illustrations Decay constant calculations |
KLB Secondary Physics Form 4, Pages 175-176
|
|
| 8 | 2 |
Radioactivity
|
Half-life Calculations and Applications
|
By the end of the
lesson, the learner
should be able to:
Define half-life of radioactive materials Calculate half-life from experimental data Use half-life in decay calculations Plot and interpret decay graphs |
Review of decay law and mathematical concepts
Explanation of half-life concept with examples Practice calculations using half-life formula Graph plotting and interpretation exercises Problem-solving with half-life applications |
Graph paper
Calculators Half-life data tables Decay curve examples Sample calculation problems Radioactive material half-life charts |
KLB Secondary Physics Form 4, Pages 178-181
|
|
| 8 | 3 |
Radioactivity
|
Applications of Radioactivity - Carbon Dating and Medicine
|
By the end of the
lesson, the learner
should be able to:
Explain carbon dating principles Describe medical uses of radioisotopes Analyze radiotherapy and diagnostic applications Calculate ages using carbon-14 dating |
Q&A on half-life calculations
Explanation of carbon-14 formation and decay Worked examples of carbon dating calculations Discussion on medical applications of radiation Analysis of radiotherapy and sterilization uses |
Carbon dating examples
Archaeological samples (pictures) Medical radioisotope charts Gamma ray therapy illustrations Dating calculation worksheets Medical application diagrams |
KLB Secondary Physics Form 4, Pages 181-182
|
|
| 8 | 4 |
Radioactivity
|
Industrial and Agricultural Applications
|
By the end of the
lesson, the learner
should be able to:
Describe industrial uses of radioactivity Explain thickness gauging and flaw detection Analyze agricultural applications with tracers Evaluate leak detection methods |
Review of medical applications
Explanation of industrial thickness measurement Description of weld testing and flaw detection Discussion on radioactive tracers in agriculture Analysis of pipe leak detection methods |
Industrial thickness gauge models
Flaw detection examples Tracer experiment diagrams Agricultural application charts Leak detection illustrations Industrial radiography samples |
KLB Secondary Physics Form 4, Pages 181-182
|
|
| 8 | 5 |
Radioactivity
|
Hazards of Radiation and Safety Precautions
|
By the end of the
lesson, the learner
should be able to:
Explain biological effects of radiation exposure Describe acute and chronic radiation effects State safety precautions for handling radioactive materials Analyze radiation protection principles |
Q&A on radioactivity applications
Discussion on radiation damage to living cells Explanation of radiation sickness and cancer risks Description of safety equipment and procedures Analysis of radiation protection in hospitals and labs |
Safety equipment samples
Radiation warning signs Protective clothing examples Lead shielding materials Dosimeter badges Safety protocol posters |
KLB Secondary Physics Form 4, Pages 182-183
|
|
| 9 |
Revision and Midterm Exams |
|||||||
| 10 | 1 |
Radioactivity
|
Nuclear Fission Process and Chain Reactions
Nuclear Fusion and Energy Applications |
By the end of the
lesson, the learner
should be able to:
Define nuclear fission Describe the fission of uranium-235 Explain chain reactions and critical mass Analyze energy release in nuclear fission |
Review of radiation safety concepts
Explanation of nuclear fission mechanism Description of uranium-235 bombardment and splitting Analysis of chain reaction development Discussion on controlled vs uncontrolled reactions |
Nuclear fission diagrams
Chain reaction illustrations Uranium nucleus models Neutron bombardment demonstrations Energy release calculations Nuclear reactor pictures Nuclear fusion reaction diagrams Stellar fusion illustrations Fusion reactor concepts Energy comparison charts Temperature and pressure requirement data Fusion research pictures |
KLB Secondary Physics Form 4, Pages 183-184
|
|
| 10 | 2 |
Radioactivity
|
Comprehensive Review and Problem Solving
|
By the end of the
lesson, the learner
should be able to:
Solve complex radioactivity problems Apply all radioactivity concepts to practical situations Analyze examination-type questions Evaluate nuclear technology benefits and risks |
Comprehensive review of all chapter concepts
Problem-solving sessions covering decay, half-life, and applications Analysis of nuclear equations and calculations Discussion on future of nuclear technology Assessment and evaluation exercises |
Calculators
Comprehensive problem sets Past examination questions Nuclear data tables Assessment materials Reference books |
KLB Secondary Physics Form 4, Pages 166-184
|
|
| 10 | 3 |
Electronics
|
Introduction to Electronics and Energy Band Theory
Conductors, Semiconductors, and Insulators |
By the end of the
lesson, the learner
should be able to:
Define electronics and its importance in modern technology Explain energy levels in atoms and band formation Distinguish between valence and conduction bands Define forbidden energy gap |
Q&A on atomic structure and electron energy levels
Discussion on electronic devices in daily life Explanation of energy level splitting in crystals Drawing energy band diagrams Introduction to valence and conduction band concepts |
Electronic devices samples
Energy level diagrams Band theory charts Atomic structure models Crystal lattice illustrations Energy band comparison charts Material samples (metals, semiconductors, insulators) Energy band diagrams for each type Conductivity measurement setup Temperature effect illustrations Comparison charts Multimeter for resistance testing |
KLB Secondary Physics Form 4, Pages 187-188
|
|
| 10 | 4 |
Electronics
|
Intrinsic Semiconductors and Crystal Structure
Doping Process and Extrinsic Semiconductors |
By the end of the
lesson, the learner
should be able to:
Define intrinsic semiconductors Describe silicon and germanium crystal structures Explain covalent bonding in semiconductor crystals Analyze electron-hole pair formation |
Q&A on material classification
Examination of silicon crystal structure Drawing covalent bonding diagrams Explanation of electron-hole pair creation Analysis of temperature effects on intrinsic semiconductors |
Silicon crystal models
Covalent bonding diagrams Semiconductor samples Crystal lattice structures Electron-hole illustrations Temperature demonstration materials Doping process diagrams Pure vs doped semiconductor samples Impurity atom models Conductivity comparison charts Doping concentration illustrations Electronic structure diagrams |
KLB Secondary Physics Form 4, Pages 189-190
|
|
| 10 | 5 |
Electronics
|
n-type Semiconductors
p-type Semiconductors |
By the end of the
lesson, the learner
should be able to:
Describe formation of n-type semiconductors Identify pentavalent donor atoms Explain majority and minority charge carriers Analyze charge neutrality in n-type materials |
Q&A on doping processes
Detailed explanation of pentavalent atom doping Drawing n-type semiconductor structure Analysis of electron as majority carrier Discussion on electrical neutrality maintenance |
n-type semiconductor models
Pentavalent atom diagrams Charge carrier illustrations Donor atom examples (phosphorus, arsenic) Majority/minority carrier charts Crystal structure with impurities p-type semiconductor models Trivalent atom diagrams Hole formation illustrations Acceptor atom examples (boron, gallium) Comparison charts Crystal structure with acceptor atoms |
KLB Secondary Physics Form 4, Pages 190-191
|
|
| 11 | 1 |
Electronics
|
Fixed Ions and Charge Carrier Movement
The p-n Junction Formation Biasing the p-n Junction |
By the end of the
lesson, the learner
should be able to:
Explain formation of fixed ions in doped semiconductors Distinguish between mobile and fixed charges Analyze charge carrier movement in electric fields Describe thermal generation of minority carriers |
Q&A on p-type semiconductor formation
Explanation of fixed ion creation Analysis of charge mobility differences Description of thermal excitation effects Discussion on minority carrier generation |
Fixed ion diagrams
Charge mobility illustrations Thermal excitation models Electric field effect demonstrations Carrier movement animations Temperature effect charts p-n junction models Diffusion process diagrams Depletion layer illustrations Potential barrier graphs Junction formation animations Electric field diagrams Biasing circuit diagrams Forward bias demonstration setup Reverse bias configuration Current flow illustrations Barrier potential graphs Bias voltage sources |
KLB Secondary Physics Form 4, Pages 191-192
|
|
| 11 | 2 |
Electronics
|
Semiconductor Diode Characteristics
|
By the end of the
lesson, the learner
should be able to:
Describe diode structure and symbol Plot I-V characteristics of a diode Explain cut-in voltage and breakdown voltage Analyze non-ohmic behavior of diodes |
Review of p-n junction biasing
Introduction to diode as electronic component Experimental plotting of diode characteristics Analysis of forward and reverse characteristics Discussion on breakdown phenomena |
Actual diodes (various types)
Diode characteristic curve graphs Voltmeter and ammeter Variable voltage source Circuit breadboard Graph plotting materials |
KLB Secondary Physics Form 4, Pages 194-197
|
|
| 11 | 3 |
Electronics
|
Diode Circuit Analysis and Problem Solving
|
By the end of the
lesson, the learner
should be able to:
Solve circuits containing ideal diodes Analyze diode states (conducting/non-conducting) Calculate current and voltage in diode circuits Apply diode characteristics to practical problems |
Q&A on diode characteristics
Analysis of simple diode circuits Problem-solving with ideal diode assumption Determination of diode states in circuits Practice with circuit calculations |
Circuit analysis worksheets
Diode circuit examples Calculators Circuit simulation software Problem-solving guides Worked example sheets |
KLB Secondary Physics Form 4, Pages 196-197
|
|
| 11 | 4 |
Electronics
|
Rectification - Half-wave and Full-wave
|
By the end of the
lesson, the learner
should be able to:
Define rectification and its purpose Explain half-wave rectification process Describe full-wave rectification methods Compare different rectifier circuits |
Review of diode circuit analysis
Introduction to AC to DC conversion need Demonstration of half-wave rectifier operation Explanation of full-wave rectifier circuits Analysis of bridge rectifier advantages |
Rectifier circuit diagrams
AC signal generator Oscilloscope for waveform display Transformer (center-tapped) Bridge rectifier circuit Load resistors |
KLB Secondary Physics Form 4, Pages 198-200
|
|
| 11 | 5 |
Electronics
|
Smoothing Circuits and Applications Review
|
By the end of the
lesson, the learner
should be able to:
Explain capacitor smoothing in rectifiers Analyze ripple reduction techniques Evaluate rectifier efficiency and applications Apply electronics principles to solve complex problems |
Q&A on rectification processes
Demonstration of capacitor smoothing effect Analysis of ripple factor and efficiency Discussion on practical rectifier applications Comprehensive problem-solving session |
Smoothing capacitors
Ripple waveform displays Efficiency calculation sheets Power supply applications Comprehensive problem sets Assessment materials |
KLB Secondary Physics Form 4, Pages 200-201
|
|
| 12 |
Revision and Trial 2 Exams |
|||||||
| 13 |
Revision and Trial 2 Exams |
|||||||
Your Name Comes Here