If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 1 |
REPORTING ,OPENER CAT,REVISION OF END TERM AND OPENER EXAM |
|||||||
| 2 | 1 |
Refraction of Light
|
Introduction to Refraction and Basic Phenomena
|
By the end of the
lesson, the learner
should be able to:
Define refraction of light -Explain why light bends when passing from one medium to another -Identify examples of refraction in daily life -Distinguish between optically dense and optically rare media -Describe the behavior of light at interfaces |
Q/A on light behavior students observe daily
-Demonstration: stick in water appearing bent -Demonstration: coin in beaker appearing raised -Discussion on swimming pool appearing shallow -Observation of refraction using glass block and pins -Drawing ray diagrams showing refraction -Safety precautions when handling glass |
Glass blocks
-Beakers -Water -Coins -Sticks/pencils -Pins -White paper -Ray box (if available) -Charts showing refraction examples |
KLB Secondary Physics Form 3, Pages 33-35
|
|
| 2 | 2 |
Refraction of Light
|
Laws of Refraction and Snell's Law
|
By the end of the
lesson, the learner
should be able to:
State the two laws of refraction -Define refractive index and state its symbol -Apply Snell's law: sin i/sin r = constant -Understand that incident ray, refracted ray and normal lie in same plane -Calculate refractive index from experimental data |
Review refraction phenomena through Q/A
-Experiment: investigating refraction through glass block -Measuring angles of incidence and refraction -Plotting graph of sin i against sin r -Derivation and application of Snell's law -Worked examples calculating refractive index -Discussion on significance of constant ratio |
Glass blocks
-Pins -Protractor -Ruler -White paper -Graph paper -Calculator -Ray box -Soft board -Drawing pins |
KLB Secondary Physics Form 3, Pages 35-39
|
|
| 2 | 3-4 |
Refraction of Light
|
Absolute and Relative Refractive Index
Real and Apparent Depth |
By the end of the
lesson, the learner
should be able to:
Define absolute and relative refractive index -Relate refractive index to speed of light in different media -Apply the relationship n = c/v -Calculate relative refractive index between two media -Solve problems involving refractive indices Explain why objects under water appear nearer than actual position -Define real depth, apparent depth and vertical displacement -Derive the relationship n = real depth/apparent depth -Calculate apparent depth and vertical displacement -Apply concepts to practical situations |
Q/A review on Snell's law and calculations
-Discussion on light speed in different media -Derivation of n = c/v relationship -Explanation of absolute vs relative refractive index -Worked examples with multiple media -Problem-solving session with real materials -Group work on refractive index calculations Review refractive index through Q/A -Demonstration: coin at bottom of beaker appears raised -Experiment: measuring real and apparent depth -Derivation of n = real depth/apparent depth -Worked examples on swimming pools, tanks -Practical: determining apparent depth using travelling microscope method -Discussion on viewing angle effects |
Calculator
-Charts showing refractive indices -Worked examples -Reference tables -Graph paper -Different transparent materials -Speed of light reference chart Beakers -Water -Coins -Rulers -Pins -Travelling microscope (if available) -Glass blocks -Colored chalk dust -Calculator -Measuring cylinders |
KLB Secondary Physics Form 3, Pages 39-43
KLB Secondary Physics Form 3, Pages 44-48 |
|
| 2 | 5 |
Refraction of Light
|
Experimental Determination of Refractive Index
|
By the end of the
lesson, the learner
should be able to:
Describe methods to determine refractive index experimentally -Use real and apparent depth method -Apply pin method for refractive index determination -Use no-parallax method -Calculate refractive index from experimental data -Discuss sources of error and precautions |
Q/A on real and apparent depth concepts
-Experiment 1: Real and apparent depth using pins -Experiment 2: Glass block method using pins -Experiment 3: No-parallax method with water -Data collection and analysis -Plotting graphs where applicable -Discussion on experimental errors and improvements |
Glass blocks
-Pins -Cork holders -Beakers -Water -Rulers -White paper -Clamp and stand -Graph paper -Calculator -Measuring tape |
KLB Secondary Physics Form 3, Pages 48-51
|
|
| 3 | 1 |
Refraction of Light
|
Critical Angle and Total Internal Reflection
|
By the end of the
lesson, the learner
should be able to:
Define critical angle -State conditions for total internal reflection -Derive relationship between critical angle and refractive index -Calculate critical angle for different materials -Explain total internal reflection using ray diagrams |
Review experimental methods through Q/A
-Demonstration: increasing angle of incidence in glass-air interface -Observation of critical angle and total internal reflection -Derivation of sin c = 1/n relationship -Worked examples calculating critical angles -Investigation using semi-circular glass block -Discussion on applications of total internal reflection |
Semi-circular glass block
-Ray box -White paper -Protractor -Pins -Calculator -Charts showing TIR -Water -Different transparent blocks |
KLB Secondary Physics Form 3, Pages 51-55
|
|
| 3 | 2 |
Refraction of Light
|
Applications of Total Internal Reflection - Optical Devices
|
By the end of the
lesson, the learner
should be able to:
Explain working of periscope using total internal reflection -Describe use of prisms in optical instruments -Understand principle of optical fibers -Explain advantages of prisms over mirrors -Analyze light paths in prism binoculars and pentaprism |
Q/A review on critical angle and TIR
-Demonstration: 45° prisms turning light through 90° and 180° -Construction of simple periscope model -Explanation of optical fiber principle -Discussion on prism binoculars and pentaprism -Comparison of prisms vs mirrors advantages -Practical: observing TIR in water-filled apparatus |
45° prisms
-Periscope model -Optical fiber samples -Mirrors for comparison -Ray box -Water -Transparent containers -Charts showing optical instruments -Binoculars (if available) |
KLB Secondary Physics Form 3, Pages 55-58
|
|
| 3 | 3-4 |
Refraction of Light
|
Mirage and Atmospheric Refraction
Dispersion of White Light |
By the end of the
lesson, the learner
should be able to:
Explain formation of mirage using refraction principles -Describe atmospheric refraction effects -Understand continuous refraction in varying density media -Explain why sun appears above horizon after sunset -Discuss polar mirages and their formation Define dispersion of white light -Explain why white light splits into colors -Identify colors of visible spectrum in order -Understand that different colors have different refractive indices -Describe formation of rainbow |
Review TIR applications through Q/A
-Demonstration of refraction in liquids of different densities -Explanation of hot air effects on light path -Discussion on desert mirages and road mirages -Atmospheric refraction effects on sun position -Analysis of continuous refraction in varying media -Drawing ray diagrams for mirage formation Q/A on atmospheric effects and TIR -Experiment: dispersion using triangular prism -Observation of spectrum formation -Discussion on why different colors bend differently -Explanation of rainbow formation -Identification of ROYGBIV sequence -Investigation of spectrum using CD/DVD |
Liquids of different densities
-Transparent containers -Heat source (safe) -Charts showing mirage formation -Diagrams of atmospheric refraction -Pictures of mirages -Ray diagrams Triangular glass prism -White light source -Screen -Ray box -CD/DVD -White paper -Ruler -Charts showing spectrum -Pictures of rainbows |
KLB Secondary Physics Form 3, Pages 55-56
KLB Secondary Physics Form 3, Pages 58-60 |
|
| 3 | 5 |
Refraction of Light
|
Recombination of Spectrum and Problem Solving
|
By the end of the
lesson, the learner
should be able to:
Demonstrate recombination of dispersed light -Explain Newton's disc experiment -Use concave mirror to recombine spectrum -Solve complex problems involving refraction -Apply all refraction concepts to examination-type questions |
Review dispersion concepts through Q/A
-Experiment: recombining spectrum using second prism -Demonstration of Newton's disc -Using concave mirror to focus spectrum -Comprehensive problem-solving session covering all topics -Practice with past examination questions -Review and consolidation of entire unit |
Second triangular prism
-Concave mirror -Newton's disc -Motor (for spinning disc) -Calculator -Past exam papers -Comprehensive problem sets -Review charts -All previous apparatus for revision |
KLB Secondary Physics Form 3, Pages 58-60
|
|
| 4 | 1 |
Work, Energy, Power and Machines
|
Sources of Energy
|
By the end of the
lesson, the learner
should be able to:
Identify different sources of energy -Distinguish between renewable and non-renewable energy sources -Classify energy sources into appropriate categories -Discuss advantages and disadvantages of different energy sources -Understand energy crisis and conservation needs |
Q/A on energy experiences in daily life
-Discussion on various energy sources students know -Classification activity: renewable vs non-renewable -Group work on energy source advantages/disadvantages -Presentation on local energy sources in Kenya -Discussion on energy conservation importance |
Charts showing energy sources
-Pictures of solar panels, wind mills -Samples: coal, wood, batteries -Energy source classification cards -Local energy examples -Conservation posters |
KLB Secondary Physics Form 3, Pages 93-95
|
|
| 4 | 2 |
Work, Energy, Power and Machines
|
Forms of Energy
|
By the end of the
lesson, the learner
should be able to:
Define different forms of energy -Identify chemical, mechanical, heat, electrical, and wave energy -Give examples of each form of energy -Understand energy exists in various forms -Relate forms of energy to daily experiences |
Review energy sources through Q/A
-Introduction to different forms of energy -Demonstration: chemical energy in battery, mechanical energy in moving objects -Discussion on heat energy from friction -Examples of electrical energy in appliances -Identification of wave energy: light, sound |
Battery and bulb
-Moving trolley -Rubbing blocks for friction -Electrical appliances -Tuning fork -Torch -Energy forms charts -Real objects showing energy forms |
KLB Secondary Physics Form 3, Pages 95-96
|
|
| 4 | 3-4 |
Work, Energy, Power and Machines
|
Energy Transformation and Conservation
Work and its Calculation |
By the end of the
lesson, the learner
should be able to:
Understand energy transformations between different forms -State the law of conservation of energy -Identify transducers and their functions -Apply conservation of energy to various situations -Draw energy transformation diagrams Define work in scientific terms -State the condition for work to be done -Calculate work using W = F × d -Understand work as a scalar quantity -Solve problems involving work calculations |
Q/A on forms of energy
-Demonstration: energy transformations in hydroelectric power -Examples of transducers: battery, dynamo, solar cell -Statement and explanation of energy conservation law -Drawing energy flow diagrams -Discussion on energy losses and efficiency Review energy transformations through Q/A -Definition of work with emphasis on force and displacement -Demonstration: lifting objects, pushing trolleys -Worked examples on work calculations -Discussion on when no work is done -Problem-solving session on work calculations |
Dynamo
-Battery -Solar cell (if available) -Charts showing energy transformations -Transducer examples -Energy flow diagrams -Hydroelectric model setup Spring balance -Masses -Trolley -Measuring tape -Calculator -Force and displacement demonstrations -Worked examples charts -Problem worksheets |
KLB Secondary Physics Form 3, Pages 96-97
KLB Secondary Physics Form 3, Pages 96-99 |
|
| 4 | 5 |
Work, Energy, Power and Machines
|
Work with Variable Forces
|
By the end of the
lesson, the learner
should be able to:
Calculate work done by variable forces -Interpret force-distance graphs -Find work done using area under graphs -Understand positive and negative work -Apply graphical methods to work calculations |
Q/A review on work calculations
-Introduction to variable forces -Plotting force-distance graphs -Demonstration: stretching spring with varying force -Calculation of areas under graphs -Worked examples with triangular and trapezoidal areas |
Graph paper
-Springs -Force meter -Ruler -Calculator -Force-distance graph examples -Different shaped area examples -Demonstration springs |
KLB Secondary Physics Form 3, Pages 99-100
|
|
| 5 | 1 |
Work, Energy, Power and Machines
|
Gravitational Potential Energy
|
By the end of the
lesson, the learner
should be able to:
Define gravitational potential energy -Derive P.E. = mgh -Calculate potential energy at different heights -Understand reference levels for potential energy -Solve problems involving potential energy |
Review variable force work through Q/A
-Demonstration: lifting objects to different heights -Derivation of P.E. = mgh -Discussion on choice of reference level -Worked examples on potential energy calculations -Problem-solving session with gravitational P.E. |
Masses of different sizes
-Measuring tape -Spring balance -Calculator -Height measurement setup -Worked examples -Gravitational P.E. charts |
KLB Secondary Physics Form 3, Pages 100-102
|
|
| 5 | 2 |
Work, Energy, Power and Machines
|
Kinetic Energy
|
By the end of the
lesson, the learner
should be able to:
Define kinetic energy -Derive K.E. = ½mv² -Calculate kinetic energy of moving objects -Understand relationship between work and kinetic energy -Apply work-energy theorem |
Q/A on potential energy concepts
-Demonstration: moving trolleys at different speeds -Derivation of K.E. = ½mv² using work-energy theorem -Worked examples on kinetic energy calculations -Discussion on work-energy theorem -Problem-solving session on kinetic energy |
Trolleys
-Stopwatch -Measuring tape -Spring balance -Calculator -Kinetic energy demonstration setup -Speed measurement apparatus |
KLB Secondary Physics Form 3, Pages 102-105
|
|
| 5 | 3-4 |
Work, Energy, Power and Machines
|
Conservation of Mechanical Energy
Power and its Applications |
By the end of the
lesson, the learner
should be able to:
Apply conservation of energy to mechanical systems -Analyze energy changes in pendulums and projectiles -Solve problems using conservation of energy -Understand energy transformations in oscillating systems -Calculate energy at different positions Define power as rate of doing work -Calculate power using P = W/t and P = Fv -State SI unit of power (Watt) -Understand power ratings of appliances -Solve problems involving power calculations |
Review kinetic energy through Q/A
-Demonstration: simple pendulum energy changes -Analysis of energy at different positions in pendulum swing -Discussion on energy conservation in projectile motion -Worked examples using conservation of energy -Problem-solving on energy conservation Q/A on energy conservation -Definition of power with examples -Derivation of P = W/t and P = Fv -Discussion on power ratings of electrical appliances -Worked examples on power calculations -Investigation: measuring power of students climbing stairs |
Simple pendulum setup
-Measuring tape -Stopwatch -Masses -Calculator -Pendulum energy charts -Conservation examples -String and bob Stopwatch -Measuring tape -Spring balance -Calculator -Electrical appliances for power ratings -Stairs for practical work -Power calculation charts |
KLB Secondary Physics Form 3, Pages 104-106
KLB Secondary Physics Form 3, Pages 106-108 |
|
| 5 | 5 |
Work, Energy, Power and Machines
|
Simple Machines - Introduction and Terminology
|
By the end of the
lesson, the learner
should be able to:
Define machines and their purposes -Understand load, effort, and fulcrum -Define mechanical advantage, velocity ratio, and efficiency -Calculate M.A., V.R., and efficiency -Understand relationship between these quantities |
Review power concepts through Q/A
-Introduction to machines and their uses -Demonstration: simple lever showing load, effort, fulcrum -Definition and calculation of M.A., V.R., and efficiency -Worked examples on machine calculations -Discussion on why efficiency is always less than 100% |
Simple lever setup
-Masses for loads -Spring balance -Ruler -Calculator -Machine terminology charts -Efficiency calculation examples |
KLB Secondary Physics Form 3, Pages 108-112
|
|
| 6 | 1 |
Work, Energy, Power and Machines
|
Levers - Types and Applications
|
By the end of the
lesson, the learner
should be able to:
Classify levers into three types -Identify examples of each type of lever -Apply principle of moments to levers -Calculate forces in lever systems -Understand applications of different lever types |
Q/A on machine terminology
-Classification of levers: Class I, II, and III -Demonstration: examples of each lever type -Application of principle of moments -Worked examples on lever calculations -Identification of levers in daily life tools |
Various lever examples
-Rulers -Masses -Spring balance -Fulcrum supports -Lever classification charts -Daily life lever examples -Calculator |
KLB Secondary Physics Form 3, Pages 112-114
|
|
| 6 | 2 |
Work, Energy, Power and Machines
|
Pulleys - Fixed and Movable
|
By the end of the
lesson, the learner
should be able to:
Understand operation of fixed and movable pulleys -Calculate M.A. and V.R. for different pulley systems -Analyze block and tackle arrangements -Solve problems involving pulley systems -Understand advantages of pulley systems |
Review lever types through Q/A
-Demonstration: fixed pulley operation -Demonstration: single movable pulley -Analysis of block and tackle systems -Calculation of M.A. and V.R. for different arrangements -Problem-solving on pulley systems |
Pulley blocks
-String -Masses -Spring balance -Pulley arrangements -Block and tackle setup -Calculator -Pulley system diagrams |
KLB Secondary Physics Form 3, Pages 115-120
|
|
| 6 | 3-4 |
Work, Energy, Power and Machines
Current Electricity (II) |
Inclined Planes and Screws
Electric Current and Measurement |
By the end of the
lesson, the learner
should be able to:
Understand inclined plane as a machine -Calculate M.A. and V.R. for inclined planes -Analyze screw as an inclined plane -Understand applications of inclined planes -Solve problems involving inclined planes Define electric current and state its SI unit -Understand conventional current flow -Use ammeters correctly to measure current -Read ammeter scales accurately -Understand current as rate of flow of charge |
Q/A on pulley systems
-Demonstration: moving load up inclined plane -Measurement of effort and load for inclined plane -Calculation of M.A. and V.R. for inclined plane -Discussion on screw as modified inclined plane -Examples of inclined planes in daily life Q/A review on basic electricity from Form 2 -Definition of electric current and conventional flow -Demonstration: proper ammeter connection in series -Practice reading different ammeter scales -Discussion on digital vs analogue meters -Safety precautions when using electrical equipment |
Inclined plane setup
-Trolley or wooden block -Spring balance -Measuring tape -Protractor -Calculator -Screw examples -Various inclined plane models Ammeters (analogue and digital) -Dry cells -Connecting wires -Bulbs -Switches -Ammeter scale charts -Safety equipment |
KLB Secondary Physics Form 3, Pages 114-115
KLB Secondary Physics Form 3, Pages 126-130 |
|
| 6 | 5 |
Current Electricity (II)
|
Series and Parallel Circuits - Current Distribution
|
By the end of the
lesson, the learner
should be able to:
Investigate current in series circuits -Investigate current in parallel circuits -Apply Kirchhoff's current law -Understand current division in parallel circuits -Solve problems involving current distribution |
Review ammeter usage through Q/A
-Experiment: measuring current in series circuit -Experiment: measuring current in parallel circuit -Analysis of current readings and patterns -Statement of Kirchhoff's current law -Problem-solving on current distribution |
Multiple ammeters
-Bulbs -Connecting wires -Dry cells -Switches -Circuit boards -Calculator -Current distribution worksheets |
KLB Secondary Physics Form 3, Pages 130-133
|
|
| 7 |
MIDTERM BREAK AND MIDTERM EXAM |
|||||||
| 8 | 1 |
Current Electricity (II)
|
Potential Difference and Voltage Measurement
|
By the end of the
lesson, the learner
should be able to:
Define potential difference in terms of work done -State the SI unit of potential difference -Use voltmeters correctly to measure voltage -Understand voltage measurement across components -Read voltmeter scales accurately |
Q/A on current distribution
-Definition of potential difference and work done per unit charge -Demonstration: proper voltmeter connection in parallel -Practice measuring voltage across different components -Comparison of voltmeter and ammeter connections -Safety considerations in voltage measurement |
Voltmeters (analogue and digital)
-Dry cells -Resistors -Bulbs -Connecting wires -Switches -Voltmeter scale charts -Work and charge demonstration materials |
KLB Secondary Physics Form 3, Pages 126-129
|
|
| 8 | 2 |
Current Electricity (II)
|
Series and Parallel Circuits - Voltage Distribution
|
By the end of the
lesson, the learner
should be able to:
Investigate voltage in series circuits -Investigate voltage in parallel circuits -Apply Kirchhoff's voltage law -Understand voltage division in series circuits -Solve problems involving voltage distribution |
Review voltage measurement through Q/A
-Experiment: measuring voltage across series components -Experiment: measuring voltage across parallel components -Analysis of voltage readings and patterns -Statement of Kirchhoff's voltage law -Problem-solving on voltage distribution |
Multiple voltmeters
-Various resistors -Connecting wires -Dry cells -Switches -Circuit boards -Calculator -Voltage distribution worksheets |
KLB Secondary Physics Form 3, Pages 130-133
|
|
| 8 | 3-4 |
Current Electricity (II)
|
Ohm's Law - Investigation and Verification
Electrical Resistance and Ohm's Law Applications |
By the end of the
lesson, the learner
should be able to:
State Ohm's law -Investigate relationship between voltage and current -Plot V-I graphs for ohmic conductors -Verify Ohm's law experimentally -Understand conditions for Ohm's law validity Define electrical resistance and its SI unit -Apply Ohm's law to calculate V, I, and R -Understand the relationship R = V/I -Solve problems using Ohm's law -Convert between different units of resistance |
Q/A on voltage distribution
-Experiment: varying voltage and measuring current through resistor -Data collection and table completion -Plotting V-I graph and analyzing slope -Statement and verification of Ohm's law -Discussion on temperature and other conditions Review Ohm's law investigation through Q/A -Definition of electrical resistance as V/I ratio -Worked examples applying Ohm's law triangle -Unit conversions: Ω, kΩ, MΩ -Problem-solving session on Ohm's law calculations -Discussion on factors affecting resistance |
Rheostat
-Ammeter -Voltmeter -Resistor coils -Connecting wires -Dry cells -Graph paper -Calculator -Ruler Calculator -Ohm's law triangle charts -Resistor color code charts -Various resistors -Multimeter -Problem worksheets -Unit conversion charts |
KLB Secondary Physics Form 3, Pages 131-135
|
|
| 8 | 5 |
Current Electricity (II)
|
Ohmic and Non-Ohmic Conductors
|
By the end of the
lesson, the learner
should be able to:
Distinguish between ohmic and non-ohmic conductors -Investigate V-I characteristics of different materials -Understand why some materials don't obey Ohm's law -Analyze V-I graphs for various conductors -Identify practical applications of non-ohmic conductors |
Q/A on Ohm's law applications
-Experiment: V-I characteristics of filament bulb -Experiment: V-I characteristics of diode -Comparison of different V-I graph shapes -Discussion on temperature effects on resistance -Applications of non-ohmic conductors |
Filament bulbs
-Diodes -Thermistors -LDR -Ammeter -Voltmeter -Rheostat -Graph paper -Various conductors for testing |
KLB Secondary Physics Form 3, Pages 134-135
|
|
| 9 | 1 |
Current Electricity (II)
|
Types of Resistors and Their Applications
|
By the end of the
lesson, the learner
should be able to:
Identify different types of resistors -Understand fixed and variable resistors -Read resistor color codes -Understand applications of special resistors -Use rheostats and potentiometers |
Review ohmic vs non-ohmic conductors through Q/A
-Identification of resistor types: carbon, wire-wound, variable -Practice reading resistor color codes -Demonstration: rheostat and potentiometer operation -Discussion on thermistors and LDR applications -Practical applications in circuits |
Various resistor types
-Color code charts -Rheostat -Potentiometer -Thermistor -LDR -Multimeter -Circuit boards -Application examples |
KLB Secondary Physics Form 3, Pages 135-140
|
|
| 9 | 2 |
Current Electricity (II)
|
Measurement of Resistance - Voltmeter-Ammeter Method
|
By the end of the
lesson, the learner
should be able to:
Describe voltmeter-ammeter method -Set up circuits for resistance measurement -Calculate resistance from V and I readings -Understand limitations of the method -Analyze experimental errors |
Q/A on resistor types
-Setup of voltmeter-ammeter circuit -Measurement of voltage and current for unknown resistor -Calculation of resistance using R = V/I -Discussion on measurement errors and accuracy -Comparison with multimeter readings |
Unknown resistors
-Voltmeter -Ammeter -Rheostat -Connecting wires -Dry cells -Switches -Calculator -Multimeter for comparison |
KLB Secondary Physics Form 3, Pages 140-142
|
|
| 9 | 3-4 |
Current Electricity (II)
|
Wheatstone Bridge Method
Resistors in Series - Theory and Calculations |
By the end of the
lesson, the learner
should be able to:
Understand the principle of Wheatstone bridge -Set up Wheatstone bridge circuit -Balance the bridge for resistance measurement -Calculate unknown resistance using bridge equation -Appreciate accuracy of Wheatstone bridge method Derive formula for resistors in series -Calculate total resistance for series combination -Understand current and voltage in series circuits -Solve problems involving series resistors -Apply series resistance in circuit analysis |
Review voltmeter-ammeter method through Q/A
-Introduction to Wheatstone bridge principle -Demonstration of bridge balance condition -Setup and operation of Wheatstone bridge -Calculation using R₁/R₂ = R₃/R₄ -Comparison of accuracy with other methods Q/A on resistance measurement methods -Derivation of Rs = R₁ + R₂ + R₃... -Demonstration: measuring total resistance of series combination -Analysis of current (same) and voltage (divided) in series -Worked examples on series resistance calculations -Problem-solving session |
Wheatstone bridge apparatus
-Galvanometer -Known resistors -Unknown resistors -Connecting wires -Battery -Calculator -Bridge equation charts Resistors of known values -Multimeter -Connecting wires -Circuit boards -Calculator -Series circuit diagrams -Problem worksheets |
KLB Secondary Physics Form 3, Pages 142-144
KLB Secondary Physics Form 3, Pages 144-147 |
|
| 9 | 5 |
Current Electricity (II)
|
Resistors in Parallel - Theory and Calculations
|
By the end of the
lesson, the learner
should be able to:
Derive formula for resistors in parallel -Calculate total resistance for parallel combination -Understand current and voltage in parallel circuits -Solve problems involving parallel resistors -Apply parallel resistance in circuit analysis |
Review series resistance through Q/A
-Derivation of 1/Rp = 1/R₁ + 1/R₂ + 1/R₃... -Demonstration: measuring total resistance of parallel combination -Analysis of voltage (same) and current (divided) in parallel -Worked examples on parallel resistance calculations -Problem-solving session |
Resistors of known values
-Multimeter -Connecting wires -Circuit boards -Calculator -Parallel circuit diagrams -Problem worksheets |
KLB Secondary Physics Form 3, Pages 147-150
|
|
| 10 | 1 |
Current Electricity (II)
|
Mixed Circuits - Series-Parallel Combinations
|
By the end of the
lesson, the learner
should be able to:
Analyze circuits with series-parallel combinations -Apply reduction techniques to complex circuits -Calculate total resistance of mixed circuits -Determine current and voltage in different branches -Solve complex circuit problems |
Q/A on parallel resistance
-Introduction to mixed circuit analysis techniques -Step-by-step reduction of complex circuits -Worked examples on series-parallel combinations -Problem-solving on mixed circuits -Discussion on circuit analysis strategies |
Various resistors
-Circuit boards -Connecting wires -Multimeter -Calculator -Complex circuit diagrams -Step-by-step analysis charts |
KLB Secondary Physics Form 3, Pages 150-153
|
|
| 10 | 2 |
Current Electricity (II)
|
Electromotive Force (EMF) and Terminal Voltage
|
By the end of the
lesson, the learner
should be able to:
Define electromotive force (EMF) -Distinguish between EMF and terminal voltage -Understand the concept of lost voltage -Relate EMF to work done by the cell -Measure EMF using high resistance voltmeter |
Review mixed circuits through Q/A
-Definition of EMF as work done per unit charge -Demonstration: measuring EMF with open circuit -Comparison of EMF and terminal voltage under load -Discussion on energy conversion in cells -Measurement techniques for EMF |
High resistance voltmeter
-Various cells -Switches -Resistors -Connecting wires -EMF measurement setup -Energy conversion charts |
KLB Secondary Physics Form 3, Pages 150-152
|
|
| 10 | 3-4 |
Current Electricity (II)
|
Internal Resistance of Cells
Cells in Series and Parallel |
By the end of the
lesson, the learner
should be able to:
Define internal resistance -Understand the relationship E = V + Ir -Calculate internal resistance experimentally -Understand factors affecting internal resistance -Apply internal resistance in circuit calculations Analyze cells connected in series -Analyze cells connected in parallel -Calculate total EMF and internal resistance -Understand advantages of different connections -Solve problems involving cell combinations |
Q/A on EMF concepts
-Introduction to internal resistance concept -Derivation of E = V + Ir relationship -Experiment: measuring internal resistance using different loads -Plotting E vs R graph to find internal resistance -Discussion on factors affecting internal resistance Review internal resistance through Q/A -Analysis of identical cells in series connection -Analysis of identical cells in parallel connection -Calculation of equivalent EMF and internal resistance -Discussion on practical applications and advantages -Problem-solving on cell combinations |
Various cells
-Resistors of different values -Voltmeter -Ammeter -Connecting wires -Graph paper -Calculator -Internal resistance apparatus Multiple identical cells -Connecting wires -Voltmeter -Ammeter -Resistors -Calculator -Cell combination diagrams -Problem worksheets |
KLB Secondary Physics Form 3, Pages 150-153
KLB Secondary Physics Form 3, Pages 152-153 |
|
| 10 | 5 |
Current Electricity (II)
Quantity of Heat |
Advanced Circuit Analysis and Problem Solving
Heat capacity and specific heat capacity |
By the end of the
lesson, the learner
should be able to:
Apply Kirchhoff's laws to complex circuits -Solve circuits with multiple sources -Analyze circuits with internal resistance -Use systematic approaches to circuit problems -Integrate all electricity concepts |
Q/A on cell combinations
-Application of Kirchhoff's current and voltage laws -Systematic approach to complex circuit analysis -Worked examples with multiple EMF sources -Problem-solving session covering all electricity topics -Discussion on practical circuit applications |
Complex circuit examples
-Calculator -Circuit analysis worksheets -Multiple EMF sources -Various resistors -Comprehensive problem sets -Kirchhoff's law charts Charts on heat definitions, Calculators, Simple problem worksheets, Various materials for comparison |
KLB Secondary Physics Form 3, Pages 126-153
|
|
| 11 | 1 |
Quantity of Heat
|
Determination of specific heat capacity - method of mixtures for solids
Determination of specific heat capacity - electrical method |
By the end of the
lesson, the learner
should be able to:
Describe method of mixtures for solids - Perform experiment to determine specific heat capacity of metal - Apply heat balance principle - Calculate specific heat capacity from experimental data |
Experiment using hot metal block in cold water
- Measurement of temperatures and masses - Application of heat balance equation - Calculation of specific heat capacity from results |
Metal blocks, Beakers, Water, Thermometers, Weighing balance, Heat source, Well-lagged calorimeter, Stirrer
Metal cylinder with heater, Voltmeter, Ammeter, Thermometer, Stopwatch, Insulating materials, Power supply |
KLB Secondary Physics Form 3, Pages 209-212
|
|
| 11 | 2 |
Quantity of Heat
|
Specific heat capacity of liquids and continuous flow method
Change of state and latent heat concepts |
By the end of the
lesson, the learner
should be able to:
Determine specific heat capacity of water by electrical method - Describe continuous flow method - Explain advantages of continuous flow method - Solve problems on specific heat capacity |
Electrical method experiment for water
- Discussion on continuous flow apparatus - Analysis of method advantages - Problem solving on specific heat calculations |
Calorimeter, Electrical heater, Water, Measuring instruments, Continuous flow apparatus diagram, Problem sets
Naphthalene, Test tubes, Thermometer, Stopwatch, Graph paper, Heat source, Cooling apparatus |
KLB Secondary Physics Form 3, Pages 214-217
|
|
| 11 | 3-4 |
Quantity of Heat
|
Specific latent heat of fusion
Specific latent heat of vaporization Effects of pressure and impurities on melting and boiling points Evaporation and cooling effects |
By the end of the
lesson, the learner
should be able to:
Define specific latent heat of fusion - Determine latent heat of ice by method of mixtures - Perform electrical method for latent heat - Calculate latent heat from experimental data Investigate effect of pressure on melting point of ice - Demonstrate regelation phenomenon - Investigate effect of pressure on boiling point - Explain effect of impurities on phase transition temperatures |
Method of mixtures experiment using ice and warm water
- Electrical method using ice and immersion heater - Heat balance calculations - Determination of specific latent heat values Regelation experiment with ice and wire - Pressure effect on boiling point using flask - Salt solution boiling point investigation - Discussion on pressure cooker working |
Ice, Calorimeter, Thermometer, Electrical heater, Filter funnels, Beakers, Measuring cylinders
Steam generator, Condenser, Calorimeter, Electrical heater, Measuring instruments, Safety equipment Ice blocks, Weighted wire, Round-bottomed flask, Thermometer, Salt solutions, Pressure cooker model Various liquids, Beakers, Fans, Thermometers, Ether, Test tubes, Humidity measuring devices |
KLB Secondary Physics Form 3, Pages 220-223
KLB Secondary Physics Form 3, Pages 227-230 |
|
| 11 | 5 |
Gas Laws
|
Introduction to gas behavior and Boyle's Law
Boyle's Law experiments and calculations |
By the end of the
lesson, the learner
should be able to:
Describe relationship between pressure and volume of gases - State Boyle's Law - Demonstrate pressure-volume relationship using syringe - Plot P vs V and P vs 1/V graphs |
Q/A on gas properties from previous studies
- Demonstration using syringe to show pressure-volume relationship - Discussion on molecular explanation - Introduction to gas law investigations |
Syringes, J-shaped tubes, Oil, Bourdon gauge, Foot pump, Metre rule, Graph paper
Thick-walled J-shaped tube, Oil, Pressure gauge, Measuring instruments, Data tables, Graph paper, Calculators |
KLB Secondary Physics Form 3, Pages 235-237
|
|
| 12 | 1 |
Gas Laws
|
Boyle's Law applications and kinetic theory explanation
Charles's Law |
By the end of the
lesson, the learner
should be able to:
Apply Boyle's Law to solve numerical problems - Explain Boyle's Law using kinetic theory - Analyze isothermal processes - Solve problems involving gas bubbles and atmospheric pressure |
Problem solving using P₁V₁ = P₂V₂
- Kinetic theory explanation of pressure-volume relationship - Analysis of molecular collision frequency - Real-world applications like diving and altitude effects |
Problem worksheets, Kinetic theory diagrams, Calculator, Gas bubble scenarios, Atmospheric pressure data
Gas tubes, Water baths, Thermometers, Measuring cylinders, Heating apparatus, Graph paper, Temperature control equipment |
KLB Secondary Physics Form 3, Pages 238-240
|
|
| 12 | 2 |
Gas Laws
|
Charles's Law applications and absolute temperature scale
Pressure Law (Gay-Lussac's Law) |
By the end of the
lesson, the learner
should be able to:
Apply Charles's Law in numerical problems - Convert between Celsius and Kelvin scales - Explain concept of absolute zero - Solve problems using V₁/T₁ = V₂/T₂ |
Problem solving with Charles's Law formula
- Temperature scale conversions - Mathematical analysis of absolute zero - Real-world applications in hot air balloons and gas heating |
Temperature conversion charts, Problem sets, Calculators, Hot air balloon examples, Gas heating scenarios
Constant volume gas apparatus, Pressure gauges, Temperature control, Water baths, Thermometers, Graph materials |
KLB Secondary Physics Form 3, Pages 241-243
|
|
| 12 | 3-4 |
Gas Laws
|
Combined gas laws and ideal gas behavior
Kinetic theory of gases Absolute zero and temperature scales |
By the end of the
lesson, the learner
should be able to:
Combine all three gas laws into general gas equation - Apply PV/T = constant for fixed mass of gas - Solve complex problems involving multiple variables - Explain ideal gas assumptions Explain concept of absolute zero temperature - Extrapolate gas law graphs to find absolute zero - Convert between temperature scales - Analyze relationship between Celsius and Kelvin scales |
Mathematical combination of gas laws
- Problem solving with changing P, V, and T - Discussion on ideal gas concept - Analysis of real gas deviations from ideal behavior Graph extrapolation to determine absolute zero - Mathematical analysis of temperature scale relationships - Problem solving with temperature conversions - Discussion on theoretical and practical aspects of absolute zero |
Combined law worksheets, Complex problem sets, Calculators, Ideal gas assumption charts
Kinetic theory diagrams, Molecular motion animations, Temperature-energy relationship charts, Theoretical discussion materials Graph paper, Extrapolation exercises, Temperature scale diagrams, Conversion worksheets, Scientific calculators |
KLB Secondary Physics Form 3, Pages 243-245
KLB Secondary Physics Form 3, Pages 241-245 |
|
| 12 | 5 |
Gas Laws
|
Comprehensive applications and problem solving
|
By the end of the
lesson, the learner
should be able to:
Solve complex multi-step gas law problems - Apply gas laws to real-world situations - Analyze atmospheric and weather-related phenomena - Review all gas law concepts and applications |
Comprehensive problem solving session
- Analysis of weather balloons, scuba diving, and atmospheric pressure effects - Review of all gas laws - Preparation for examinations with complex scenarios |
Past examination papers, Multi-step problem sets, Real-world scenario worksheets, Summary charts, Calculators
|
KLB Secondary Physics Form 3, Pages 235-245
|
|
| 13 |
CLOSING AND ENDTERM EXAM |
|||||||
Your Name Comes Here