If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 1 | 4 |
Differentiation
|
Introduction to Optimization
|
By the end of the
lesson, the learner
should be able to:
-Apply derivatives to find maximum and minimum values -Understand optimization in real-world contexts -Use calculus for practical optimization problems -Connect to business and engineering applications |
-Find maximum area of rectangle with fixed perimeter -Apply calculus to profit maximization -Use derivatives for cost minimization -Practice with geometric optimization |
Exercise books
-Manila paper -Optimization examples -Real applications |
KLB Secondary Mathematics Form 4, Pages 201-204
|
|
| 1 | 5 |
Differentiation
|
Geometric Optimization Problems
|
By the end of the
lesson, the learner
should be able to:
-Apply calculus to geometric optimization -Find maximum areas and minimum perimeters -Use derivatives for shape optimization -Apply to construction and design problems |
-Find dimensions for maximum area enclosure -Optimize container volumes and surface areas -Apply to architectural design problems -Practice with various geometric constraints |
Exercise books
-Manila paper -Geometric examples -Design applications |
KLB Secondary Mathematics Form 4, Pages 201-204
|
|
| 1 | 6 |
Differentiation
|
Geometric Optimization Problems
|
By the end of the
lesson, the learner
should be able to:
-Apply calculus to geometric optimization -Find maximum areas and minimum perimeters -Use derivatives for shape optimization -Apply to construction and design problems |
-Find dimensions for maximum area enclosure -Optimize container volumes and surface areas -Apply to architectural design problems -Practice with various geometric constraints |
Exercise books
-Manila paper -Geometric examples -Design applications |
KLB Secondary Mathematics Form 4, Pages 201-204
|
|
| 1 | 7 |
Differentiation
|
Business and Economic Applications
|
By the end of the
lesson, the learner
should be able to:
-Apply derivatives to profit and cost functions -Find marginal cost and marginal revenue -Use calculus for business optimization -Apply to Kenyan business scenarios |
-Find maximum profit using calculus -Calculate marginal cost and revenue -Apply to agricultural and manufacturing examples -Use derivatives for business decision-making |
Exercise books
-Manila paper -Business examples -Economic applications |
KLB Secondary Mathematics Form 4, Pages 201-204
|
|
| 2 | 1 |
Differentiation
|
Advanced Optimization Problems
|
By the end of the
lesson, the learner
should be able to:
-Solve complex optimization with multiple constraints -Apply systematic optimization methodology -Use calculus for engineering applications -Practice with advanced real-world problems |
-Solve complex geometric optimization problems -Apply to engineering design scenarios -Use systematic optimization approach -Practice with multi-variable situations |
Exercise books
-Manila paper -Complex examples -Engineering applications |
KLB Secondary Mathematics Form 4, Pages 201-204
|
|
| 2 | 2 |
Integration
|
Introduction to Reverse Differentiation
|
By the end of the
lesson, the learner
should be able to:
-Define integration as reverse of differentiation -Understand the concept of antiderivative -Recognize the relationship between gradient functions and original functions -Apply reverse thinking to simple differentiation examples |
-Q/A review on differentiation formulas and rules -Demonstration of reverse process using simple examples -Working backwards from derivatives to find original functions -Discussion on why multiple functions can have same derivative -Introduction to integration symbol ∫ |
Graph papers
-Differentiation charts -Exercise books -Function examples |
KLB Secondary Mathematics Form 4, Pages 221-223
|
|
| 2 | 3 |
Integration
|
Basic Integration Rules - Power Functions
Integration of Polynomial Functions |
By the end of the
lesson, the learner
should be able to:
-Apply power rule for integration: ∫xⁿ dx = xⁿ⁺¹/(n+1) + c -Understand the constant of integration and why it's necessary -Integrate simple power functions where n ≠ -1 -Practice with positive, negative, and fractional powers |
-Derivation of power rule through reverse differentiation -Multiple examples with different values of n -Explanation of arbitrary constant using family of curves -Practice exercises with various power functions -Common mistakes discussion and correction |
Calculators
-Graph papers -Power rule charts -Exercise books -Algebraic worksheets -Polynomial examples |
KLB Secondary Mathematics Form 4, Pages 223-225
|
|
| 2 | 4 |
Integration
|
Finding Particular Solutions
|
By the end of the
lesson, the learner
should be able to:
-Use initial conditions to find specific values of constant c -Solve problems involving boundary conditions -Apply integration to find equations of curves -Distinguish between general and particular solutions |
-Working examples with given initial conditions -Finding curve equations when gradient function and point are known -Practice problems from various contexts -Discussion on why particular solutions are important -Problem-solving session with curve-finding exercises |
Graph papers
-Calculators -Curve examples -Exercise books |
KLB Secondary Mathematics Form 4, Pages 223-225
|
|
| 2 | 5 |
Integration
|
Introduction to Definite Integrals
Evaluating Definite Integrals |
By the end of the
lesson, the learner
should be able to:
-Define definite integrals using limit notation -Understand the difference between definite and indefinite integrals -Learn proper notation: ∫ₐᵇ f(x)dx -Understand geometric meaning as area under curve |
-Introduction to definite integral concept and notation -Geometric interpretation using simple curves -Comparison between ∫f(x)dx and ∫ₐᵇf(x)dx -Discussion on limits of integration -Basic examples with simple functions |
Graph papers
-Geometric models -Integration notation charts -Calculators Calculators -Step-by-step worksheets -Exercise books -Evaluation charts |
KLB Secondary Mathematics Form 4, Pages 226-228
|
|
| 2 | 6 |
Integration
|
Area Under Curves - Single Functions
Areas Below X-axis and Mixed Regions |
By the end of the
lesson, the learner
should be able to:
-Understand integration as area calculation tool -Calculate area between curve and x-axis -Handle regions bounded by curves and vertical lines -Apply definite integrals to find exact areas |
-Geometric demonstration of area under curves -Drawing and shading regions on graph paper -Working examples: area under y = x², y = 2x + 3, etc. -Comparison with approximation methods from Chapter 9 -Practice finding areas of various regions |
Graph papers
-Curve sketching tools -Colored pencils -Calculators -Area grids -Curve examples -Colored materials -Exercise books |
KLB Secondary Mathematics Form 4, Pages 230-233
|
|
| 2 | 7 |
Integration
|
Area Between Two Curves
|
By the end of the
lesson, the learner
should be able to:
-Calculate area between two intersecting curves -Find intersection points as integration limits -Apply method: Area = ∫ₐᵇ [f(x) - g(x)]dx -Handle multiple intersection scenarios |
-Method for finding curve intersection points -Working examples: area between y = x² and y = x -Step-by-step process for area between curves -Practice with linear and quadratic function pairs -Advanced examples with multiple intersections |
Graph papers
-Equation solving aids -Calculators -Colored pencils -Exercise books |
KLB Secondary Mathematics Form 4, Pages 233-235
|
|
| 3 | 1 |
Sequences and Series
|
Introduction to sequences and finding terms
|
By the end of the
lesson, the learner
should be able to:
Define sequences and identify sequence patterns Find next terms using established patterns Recognize different types of sequence patterns Apply pattern recognition systematically |
Q/A on number patterns from daily life
Discussions on counting patterns using classroom arrangements Solving pattern completion problems step-by-step Demonstrations using bead or stone arrangements Explaining sequence terminology and pattern continuation |
Chalk and blackboard, stones or beans for patterns, exercise books
|
KLB Mathematics Book Three Pg 207-208
|
|
| 3 | 2 |
Sequences and Series
|
General term of sequences and applications
|
By the end of the
lesson, the learner
should be able to:
Develop general rules for sequences Express the nth term using algebraic notation Find specific terms using general formulas Apply sequence concepts to practical problems |
Q/A on rule formulation using systematic approach
Discussions on algebraic expression development Solving general term and application problems Demonstrations using position-value relationships Explaining practical relevance using community examples |
Chalk and blackboard, numbered cards made from paper, exercise books
|
KLB Mathematics Book Three Pg 207-208
|
|
| 3 | 3 |
Sequences and Series
|
General term of sequences and applications
|
By the end of the
lesson, the learner
should be able to:
Develop general rules for sequences Express the nth term using algebraic notation Find specific terms using general formulas Apply sequence concepts to practical problems |
Q/A on rule formulation using systematic approach
Discussions on algebraic expression development Solving general term and application problems Demonstrations using position-value relationships Explaining practical relevance using community examples |
Chalk and blackboard, numbered cards made from paper, exercise books
|
KLB Mathematics Book Three Pg 207-208
|
|
| 3 | 4 |
Sequences and Series
|
Arithmetic sequences and nth term
|
By the end of the
lesson, the learner
should be able to:
Define arithmetic sequences and common differences Calculate common differences correctly Derive and apply the nth term formula Solve problems using arithmetic sequence concepts |
Q/A on arithmetic patterns using step-by-step examples
Discussions on constant difference patterns and formula derivation Solving arithmetic sequence problems systematically Demonstrations using equal-step progressions Explaining formula structure using algebraic reasoning |
Chalk and blackboard, measuring tape or string, exercise books
|
KLB Mathematics Book Three Pg 209-210
|
|
| 3 | 5 |
Sequences and Series
|
Arithmetic sequence applications
|
By the end of the
lesson, the learner
should be able to:
Solve complex arithmetic sequence problems Apply arithmetic sequences to real-world problems Handle word problems involving arithmetic sequences Model practical situations using arithmetic progressions |
Q/A on practical applications using local business examples
Discussions on salary progression and savings plans Solving real-world problems using sequence methods Demonstrations using employment and finance scenarios Explaining practical interpretation using meaningful contexts |
Chalk and blackboard, local employment/savings examples, exercise books
|
KLB Mathematics Book Three Pg 209-210
|
|
| 3 | 6 |
Sequences and Series
|
Geometric sequences and nth term
|
By the end of the
lesson, the learner
should be able to:
Define geometric sequences and common ratios Calculate common ratios correctly Derive and apply the geometric nth term formula Understand exponential growth patterns |
Q/A on geometric patterns using multiplication examples
Discussions on ratio-based progressions and formula derivation Solving geometric sequence problems systematically Demonstrations using doubling and scaling examples Explaining exponential structure using practical examples |
Chalk and blackboard, objects for doubling demonstrations, exercise books
|
KLB Mathematics Book Three Pg 211-213
|
|
| 3 | 7 |
Sequences and Series
|
Geometric sequences and nth term
|
By the end of the
lesson, the learner
should be able to:
Define geometric sequences and common ratios Calculate common ratios correctly Derive and apply the geometric nth term formula Understand exponential growth patterns |
Q/A on geometric patterns using multiplication examples
Discussions on ratio-based progressions and formula derivation Solving geometric sequence problems systematically Demonstrations using doubling and scaling examples Explaining exponential structure using practical examples |
Chalk and blackboard, objects for doubling demonstrations, exercise books
|
KLB Mathematics Book Three Pg 211-213
|
|
| 4 | 1 |
Sequences and Series
|
Geometric sequence applications
|
By the end of the
lesson, the learner
should be able to:
Solve complex geometric sequence problems Apply geometric sequences to real-world problems Handle population growth and depreciation problems Model exponential patterns using sequences |
Q/A on practical applications using population/growth examples
Discussions on exponential growth in nature and economics Solving real-world problems using geometric methods Demonstrations using population and business scenarios Explaining practical interpretation using meaningful contexts |
Chalk and blackboard, population/growth data examples, exercise books
|
KLB Mathematics Book Three Pg 211-213
|
|
| 4 | 2 |
Sequences and Series
|
Arithmetic series and sum formula
|
By the end of the
lesson, the learner
should be able to:
Define arithmetic series as sums of sequences Derive the sum formula for arithmetic series Apply the arithmetic series formula systematically Calculate sums efficiently using the formula |
Q/A on series concepts using summation examples
Discussions on sequence-to-series relationships and formula derivation Solving arithmetic series problems using step-by-step approach Demonstrations using cumulative sum examples Explaining derivation logic using algebraic reasoning |
Chalk and blackboard, counting materials for summation, exercise books
|
KLB Mathematics Book Three Pg 214-215
|
|
| 4 | 3 |
Sequences and Series
|
Geometric series and applications
|
By the end of the
lesson, the learner
should be able to:
Define geometric series and understand convergence Derive and apply geometric series formulas Handle finite and infinite geometric series Apply geometric series to practical situations |
Q/A on geometric series concepts using multiplication examples
Discussions on convergence and formula applications Solving geometric series problems including infinite cases Demonstrations using geometric sum patterns Explaining convergence using practical examples |
Chalk and blackboard, convergence demonstration materials, exercise books
|
KLB Mathematics Book Three Pg 216-219
|
|
| 4 | 4 |
Sequences and Series
|
Geometric series and applications
|
By the end of the
lesson, the learner
should be able to:
Define geometric series and understand convergence Derive and apply geometric series formulas Handle finite and infinite geometric series Apply geometric series to practical situations |
Q/A on geometric series concepts using multiplication examples
Discussions on convergence and formula applications Solving geometric series problems including infinite cases Demonstrations using geometric sum patterns Explaining convergence using practical examples |
Chalk and blackboard, convergence demonstration materials, exercise books
|
KLB Mathematics Book Three Pg 216-219
|
|
| 4 | 5 |
Sequences and Series
|
Mixed problems and advanced applications
|
By the end of the
lesson, the learner
should be able to:
Combine arithmetic and geometric concepts Solve complex mixed sequence and series problems Apply appropriate methods for different types Model real-world situations using mathematical sequences |
Q/A on problem type identification using systematic analysis
Discussions on method selection and comprehensive applications Solving mixed problems using appropriate techniques Demonstrations using interdisciplinary scenarios Explaining method choice using logical reasoning |
Chalk and blackboard, mixed problem collections, exercise books
|
KLB Mathematics Book Three Pg 207-219
|
|
| 4 | 6 |
Sequences and Series
|
Sequences in nature and technology
|
By the end of the
lesson, the learner
should be able to:
Identify mathematical patterns in natural phenomena Analyze sequences in biological and technological contexts Apply sequence concepts to environmental problems Appreciate mathematics in the natural and modern world |
Q/A on natural and technological patterns using examples
Discussions on biological sequences and digital applications Solving nature and technology-based problems Demonstrations using natural pattern examples Explaining mathematical beauty using real phenomena |
Chalk and blackboard, natural and technology examples, exercise books
|
KLB Mathematics Book Three Pg 207-219
|
|
| 4 | 7 |
Vectors (II)
|
Coordinates in two dimensions
|
By the end of the
lesson, the learner
should be able to:
Identify the coordinates of a point in two dimensions Plot points on coordinate planes accurately Understand position representation using coordinates Apply coordinate concepts to practical situations |
Q/A on coordinate identification using grid references
Discussions on map reading and location finding Solving coordinate plotting problems using systematic methods Demonstrations using classroom grid systems and floor patterns Explaining coordinate applications using local maps and directions |
Chalk and blackboard, squared paper or grid drawn on ground, exercise books
|
KLB Mathematics Book Three Pg 221-222
|
|
| 5 | 1 |
Vectors (II)
|
Coordinates in three dimensions
|
By the end of the
lesson, the learner
should be able to:
Identify the coordinates of a point in three dimensions Understand the three-dimensional coordinate system Plot points in 3D space systematically Apply 3D coordinates to spatial problems |
Q/A on 3D coordinate understanding using room corner references
Discussions on height, length, and width measurements Solving 3D coordinate problems using systematic approaches Demonstrations using classroom corners and building structures Explaining 3D visualization using physical room examples |
Chalk and blackboard, 3D models made from sticks and clay, exercise books
|
KLB Mathematics Book Three Pg 222
|
|
| 5 | 2 |
Vectors (II)
|
Coordinates in three dimensions
|
By the end of the
lesson, the learner
should be able to:
Identify the coordinates of a point in three dimensions Understand the three-dimensional coordinate system Plot points in 3D space systematically Apply 3D coordinates to spatial problems |
Q/A on 3D coordinate understanding using room corner references
Discussions on height, length, and width measurements Solving 3D coordinate problems using systematic approaches Demonstrations using classroom corners and building structures Explaining 3D visualization using physical room examples |
Chalk and blackboard, 3D models made from sticks and clay, exercise books
|
KLB Mathematics Book Three Pg 222
|
|
| 5 | 3 |
Vectors (II)
|
Column and position vectors in three dimensions
|
By the end of the
lesson, the learner
should be able to:
Find a displacement and represent it in column vector Calculate the position vector Express vectors in column form Apply column vector notation systematically |
Q/A on displacement representation using movement examples
Discussions on vector notation using organized column format Solving column vector problems using systematic methods Demonstrations using physical movement and direction examples Explaining vector components using practical displacement |
Chalk and blackboard, movement demonstration space, exercise books
|
KLB Mathematics Book Three Pg 223-224
|
|
| 5 | 4 |
Vectors (II)
|
Position vectors and applications
|
By the end of the
lesson, the learner
should be able to:
Calculate the position vector Apply position vectors to geometric problems Find distances using position vector methods Solve positioning problems systematically |
Q/A on position vector calculation using origin references
Discussions on position determination using coordinate methods Solving position vector problems using systematic calculation Demonstrations using fixed origin and variable endpoints Explaining position concepts using practical location examples |
Chalk and blackboard, origin marking systems, exercise books
|
KLB Mathematics Book Three Pg 224
|
|
| 5 | 5 |
Vectors (II)
|
Column vectors in terms of unit vectors i, j, k
|
By the end of the
lesson, the learner
should be able to:
Express vectors in terms of unit vectors Convert between column and unit vector notation Understand the standard basis vector system Apply unit vector representation systematically |
Q/A on unit vector concepts using direction examples
Discussions on component representation using organized methods Solving unit vector problems using systematic conversion Demonstrations using perpendicular direction examples Explaining basis vector concepts using coordinate axes |
Chalk and blackboard, direction indicators, unit vector reference charts, exercise books
|
KLB Mathematics Book Three Pg 226-228
|
|
| 5 | 6 |
Vectors (II)
|
Column vectors in terms of unit vectors i, j, k
|
By the end of the
lesson, the learner
should be able to:
Express vectors in terms of unit vectors Convert between column and unit vector notation Understand the standard basis vector system Apply unit vector representation systematically |
Q/A on unit vector concepts using direction examples
Discussions on component representation using organized methods Solving unit vector problems using systematic conversion Demonstrations using perpendicular direction examples Explaining basis vector concepts using coordinate axes |
Chalk and blackboard, direction indicators, unit vector reference charts, exercise books
|
KLB Mathematics Book Three Pg 226-228
|
|
| 5 | 7 |
Vectors (II)
|
Vector operations using unit vectors
|
By the end of the
lesson, the learner
should be able to:
Express vectors in terms of unit vectors Perform vector addition using unit vector notation Calculate vector subtraction with i, j, k components Apply scalar multiplication to unit vectors |
Q/A on vector operations using component-wise calculation
Discussions on systematic operation methods Solving vector operation problems using organized approaches Demonstrations using component separation and combination Explaining operation logic using algebraic reasoning |
Chalk and blackboard, component calculation aids, exercise books
|
KLB Mathematics Book Three Pg 226-228
|
|
| 6 |
REVISION EXAMINATIONS |
|||||||
| 7 | 1 |
Vectors (II)
|
Magnitude of a vector in three dimensions
|
By the end of the
lesson, the learner
should be able to:
Calculate the magnitude of a vector in three dimensions Apply the 3D magnitude formula systematically Find vector lengths in spatial contexts Solve magnitude problems accurately |
Q/A on 3D magnitude using extended Pythagorean methods
Discussions on spatial distance calculation using 3D techniques Solving 3D magnitude problems using systematic calculation Demonstrations using 3D distance examples Explaining 3D magnitude using practical spatial examples |
Chalk and blackboard, 3D measurement aids, exercise books
|
KLB Mathematics Book Three Pg 229-230
|
|
| 7 | 2 |
Vectors (II)
|
Magnitude applications and unit vectors
|
By the end of the
lesson, the learner
should be able to:
Calculate the magnitude of a vector in three dimensions Find unit vectors from given vectors Apply magnitude concepts to practical problems Use magnitude in vector normalization |
Q/A on magnitude and unit vector relationships
Discussions on normalization and direction finding Solving magnitude and unit vector problems Demonstrations using direction and length separation Explaining practical applications using navigation examples |
Chalk and blackboard, direction finding aids, exercise books
|
KLB Mathematics Book Three Pg 229-230
|
|
| 7 | 3 |
Vectors (II)
|
Magnitude applications and unit vectors
|
By the end of the
lesson, the learner
should be able to:
Calculate the magnitude of a vector in three dimensions Find unit vectors from given vectors Apply magnitude concepts to practical problems Use magnitude in vector normalization |
Q/A on magnitude and unit vector relationships
Discussions on normalization and direction finding Solving magnitude and unit vector problems Demonstrations using direction and length separation Explaining practical applications using navigation examples |
Chalk and blackboard, direction finding aids, exercise books
|
KLB Mathematics Book Three Pg 229-230
|
|
| 7 | 4 |
Vectors (II)
|
Parallel vectors
|
By the end of the
lesson, the learner
should be able to:
Identify parallel vectors Determine when vectors are parallel Apply parallel vector properties Use scalar multiples in parallel relationships |
Q/A on parallel identification using scalar multiple methods
Discussions on parallel relationships using geometric examples Solving parallel vector problems using systematic testing Demonstrations using parallel line and direction examples Explaining parallel concepts using geometric reasoning |
Chalk and blackboard, parallel line demonstrations, exercise books
|
KLB Mathematics Book Three Pg 231-232
|
|
| 7 | 5 |
Vectors (II)
|
Collinearity
|
By the end of the
lesson, the learner
should be able to:
Show that points are collinear Apply vector methods to prove collinearity Test for collinear points using vector techniques Solve collinearity problems systematically |
Q/A on collinearity testing using vector proportion methods
Discussions on point alignment using vector analysis Solving collinearity problems using systematic verification Demonstrations using straight-line point examples Explaining collinearity using geometric alignment concepts |
Chalk and blackboard, straight-line demonstrations, exercise books
|
KLB Mathematics Book Three Pg 232-234
|
|
| 7 | 6 |
Vectors (II)
|
Advanced collinearity applications
|
By the end of the
lesson, the learner
should be able to:
Show that points are collinear Apply collinearity to complex geometric problems Integrate parallel and collinearity concepts Solve advanced alignment problems |
Q/A on advanced collinearity using complex scenarios
Discussions on geometric proof using vector methods Solving challenging collinearity problems Demonstrations using complex geometric constructions Explaining advanced applications using comprehensive examples |
Chalk and blackboard, complex geometric aids, exercise books
|
KLB Mathematics Book Three Pg 232-234
|
|
| 7 | 7 |
Vectors (II)
|
Advanced collinearity applications
|
By the end of the
lesson, the learner
should be able to:
Show that points are collinear Apply collinearity to complex geometric problems Integrate parallel and collinearity concepts Solve advanced alignment problems |
Q/A on advanced collinearity using complex scenarios
Discussions on geometric proof using vector methods Solving challenging collinearity problems Demonstrations using complex geometric constructions Explaining advanced applications using comprehensive examples |
Chalk and blackboard, complex geometric aids, exercise books
|
KLB Mathematics Book Three Pg 232-234
|
|
| 8 | 1 |
Vectors (II)
|
Proportional division of a line
|
By the end of the
lesson, the learner
should be able to:
Divide a line internally in the given ratio Apply the internal division formula Calculate division points using vector methods Understand proportional division concepts |
Q/A on internal division using systematic formula application
Discussions on ratio division using proportional methods Solving internal division problems using organized approaches Demonstrations using internal point construction examples Explaining internal division using geometric visualization |
Chalk and blackboard, internal division models, exercise books
|
KLB Mathematics Book Three Pg 237-238
|
|
| 8 | 2 |
Vectors (II)
|
External division of a line
|
By the end of the
lesson, the learner
should be able to:
Divide a line externally in the given ratio Apply the external division formula Distinguish between internal and external division Solve external division problems accurately |
Q/A on external division using systematic formula application
Discussions on external point calculation using vector methods Solving external division problems using careful approaches Demonstrations using external point construction examples Explaining external division using extended line concepts |
Chalk and blackboard, external division models, exercise books
|
KLB Mathematics Book Three Pg 238-239
|
|
| 8 | 3 |
Vectors (II)
|
Combined internal and external division
|
By the end of the
lesson, the learner
should be able to:
Divide a line internally and externally in the given ratio Apply both division formulas systematically Compare internal and external division results Handle mixed division problems |
Q/A on combined division using comparative methods
Discussions on division type selection using problem analysis Solving combined division problems using systematic approaches Demonstrations using both division types Explaining division relationships using geometric reasoning |
Chalk and blackboard, combined division models, exercise books
|
KLB Mathematics Book Three Pg 239
|
|
| 8 | 4 |
Vectors (II)
|
Combined internal and external division
|
By the end of the
lesson, the learner
should be able to:
Divide a line internally and externally in the given ratio Apply both division formulas systematically Compare internal and external division results Handle mixed division problems |
Q/A on combined division using comparative methods
Discussions on division type selection using problem analysis Solving combined division problems using systematic approaches Demonstrations using both division types Explaining division relationships using geometric reasoning |
Chalk and blackboard, combined division models, exercise books
|
KLB Mathematics Book Three Pg 239
|
|
| 8 | 5 |
Vectors (II)
|
Ratio theorem
|
By the end of the
lesson, the learner
should be able to:
Express position vectors Apply the ratio theorem to geometric problems Use ratio theorem in complex calculations Find position vectors using ratio relationships |
Q/A on ratio theorem application using systematic methods
Discussions on position vector calculation using ratio methods Solving ratio theorem problems using organized approaches Demonstrations using ratio-based position finding Explaining theorem applications using logical reasoning |
Chalk and blackboard, ratio theorem aids, exercise books
|
KLB Mathematics Book Three Pg 240-242
|
|
| 8 | 6 |
Vectors (II)
|
Advanced ratio theorem applications
|
By the end of the
lesson, the learner
should be able to:
Find the position vector Apply ratio theorem to complex scenarios Solve multi-step ratio problems Use ratio theorem in geometric proofs |
Q/A on advanced ratio applications using complex problems
Discussions on multi-step ratio calculation Solving challenging ratio problems using systematic methods Demonstrations using comprehensive ratio examples Explaining advanced applications using detailed reasoning |
Chalk and blackboard, advanced ratio models, exercise books
|
KLB Mathematics Book Three Pg 242
|
|
| 8 | 7 |
Vectors (II)
|
Mid-point
|
By the end of the
lesson, the learner
should be able to:
Find the mid-points of the given vectors Apply midpoint formulas in vector contexts Use midpoint concepts in geometric problems Calculate midpoints systematically |
Q/A on midpoint calculation using vector averaging methods
Discussions on midpoint applications using geometric examples Solving midpoint problems using systematic approaches Demonstrations using midpoint construction and calculation Explaining midpoint concepts using practical examples |
Chalk and blackboard, midpoint demonstration aids, exercise books
|
KLB Mathematics Book Three Pg 243
|
|
| 9 | 1 |
Vectors (II)
|
Ratio theorem and midpoint integration
|
By the end of the
lesson, the learner
should be able to:
Use ratio theorem to find the given vectors Apply midpoint and ratio concepts together Solve complex ratio and midpoint problems Integrate division and midpoint methods |
Q/A on integrated problem-solving using combined methods
Discussions on complex scenario analysis using systematic approaches Solving challenging problems using integrated techniques Demonstrations using comprehensive geometric examples Explaining integration using logical problem-solving |
Chalk and blackboard, complex problem materials, exercise books
|
KLB Mathematics Book Three Pg 244-245
|
|
| 9 | 2 |
Vectors (II)
|
Ratio theorem and midpoint integration
|
By the end of the
lesson, the learner
should be able to:
Use ratio theorem to find the given vectors Apply midpoint and ratio concepts together Solve complex ratio and midpoint problems Integrate division and midpoint methods |
Q/A on integrated problem-solving using combined methods
Discussions on complex scenario analysis using systematic approaches Solving challenging problems using integrated techniques Demonstrations using comprehensive geometric examples Explaining integration using logical problem-solving |
Chalk and blackboard, complex problem materials, exercise books
|
KLB Mathematics Book Three Pg 244-245
|
|
| 9 | 3 |
Vectors (II)
|
Advanced ratio theorem applications
|
By the end of the
lesson, the learner
should be able to:
Use ratio theorem to find the given vectors Apply ratio theorem to challenging problems Handle complex geometric applications Demonstrate comprehensive ratio mastery |
Q/A on comprehensive ratio understanding using advanced problems
Discussions on complex ratio relationships Solving advanced ratio problems using systematic methods Demonstrations using sophisticated geometric constructions Explaining mastery using challenging applications |
Chalk and blackboard, advanced geometric aids, exercise books
|
KLB Mathematics Book Three Pg 246-248
|
|
| 9 | 4 |
Vectors (II)
|
Applications of vectors in geometry
|
By the end of the
lesson, the learner
should be able to:
Use vectors to show the diagonals of a parallelogram Apply vector methods to geometric proofs Demonstrate parallelogram properties using vectors Solve geometric problems using vector techniques |
Q/A on geometric proof using vector methods
Discussions on parallelogram properties using vector analysis Solving geometric problems using systematic vector techniques Demonstrations using vector-based geometric constructions Explaining geometric relationships using vector reasoning |
Chalk and blackboard, parallelogram models, exercise books
|
KLB Mathematics Book Three Pg 248-249
|
|
| 9 | 5 |
Vectors (II)
|
Rectangle diagonal applications
|
By the end of the
lesson, the learner
should be able to:
Use vectors to show the diagonals of a rectangle Apply vector methods to rectangle properties Prove rectangle theorems using vectors Compare parallelogram and rectangle diagonal properties |
Q/A on rectangle properties using vector analysis
Discussions on diagonal relationships using vector methods Solving rectangle problems using systematic approaches Demonstrations using rectangle constructions and vector proofs Explaining rectangle properties using vector reasoning |
Chalk and blackboard, rectangle models, exercise books
|
KLB Mathematics Book Three Pg 248-250
|
|
| 9 | 6 |
Vectors (II)
|
Rectangle diagonal applications
|
By the end of the
lesson, the learner
should be able to:
Use vectors to show the diagonals of a rectangle Apply vector methods to rectangle properties Prove rectangle theorems using vectors Compare parallelogram and rectangle diagonal properties |
Q/A on rectangle properties using vector analysis
Discussions on diagonal relationships using vector methods Solving rectangle problems using systematic approaches Demonstrations using rectangle constructions and vector proofs Explaining rectangle properties using vector reasoning |
Chalk and blackboard, rectangle models, exercise books
|
KLB Mathematics Book Three Pg 248-250
|
|
| 9 | 7 |
Vectors (II)
|
Advanced geometric applications
|
By the end of the
lesson, the learner
should be able to:
Use vectors to show geometric properties Apply vectors to complex geometric proofs Solve challenging geometric problems using vectors Integrate all vector concepts in geometric contexts |
Q/A on comprehensive geometric applications using vector methods
Discussions on advanced proof techniques using vectors Solving complex geometric problems using integrated approaches Demonstrations using sophisticated geometric constructions Explaining advanced applications using comprehensive reasoning |
Chalk and blackboard, advanced geometric models, exercise books
|
KLB Mathematics Book Three Pg 248-250
|
|
Your Name Comes Here