Home






SCHEME OF WORK
Physics
Form 4 2026
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1 1
Heating Effect of Electric Current
Introduction to heating effect
By the end of the lesson, the learner should be able to:
Define heating effect of electric current
- Explain mechanism of heat production in conductors
- Investigate effect of current on resistance wire
- Observe temperature changes in conductors
Q/A on electric current from previous units
- Experiment investigating effect of current on coil temperature
- Observation of heating in different parts of circuit
- Discussion on electron collision mechanism
Battery, Resistance wire coils, Ammeter, Variable resistor, Thermometer, Stopwatch, Connecting wires
KLB Secondary Physics Form 3, Pages 195-197
1 2-3
Heating Effect of Electric Current
Factors affecting heat produced - current and time
Factors affecting heat produced - resistance
Joule's law and electrical energy
Electrical power and energy calculations
Applications - electrical lighting and heating devices
Electrical safety - fuses and circuit protection
By the end of the lesson, the learner should be able to:
Investigate relationship between heat produced and current
- Investigate relationship between heat produced and time
- Plot graphs of temperature vs current² and time
- State H ∝ I²t relationship
Define electrical power P = VI = I²R = V²/R
- Calculate electrical energy W = Pt
- Convert between different units (J, kWh)
- Solve complex power problems
Experiment varying current and measuring temperature change
- Investigation of heating time relationship
- Data collection and graph plotting
- Mathematical analysis of relationships
Derivation of electrical power formulas
- Energy unit conversions
- Problem solving on household appliances
- Cost calculations for electrical consumption
Resistance coils, Variable resistor, Ammeter, Thermometer, Stopwatch, Graph paper, Different current values
Coils of different resistance, Ammeter, Thermometer, Measuring instruments, Stopwatch, Calculation worksheets
Formula charts, Calculators, Problem worksheets, Electrical devices for analysis
Calculators, Unit conversion charts, Household appliance ratings, Electricity bills, Problem sets
Filament lamps, Electric iron, Electric kettle, Heating elements, Energy saving bulbs, Appliance diagrams
Various fuses, Fuse holders, Circuit diagrams, Safety equipment demonstrations, Rating calculations
KLB Secondary Physics Form 3, Pages 197-199
KLB Secondary Physics Form 3, Pages 201-202
1 4
Heating Effect of Electric Current
Quantity of Heat
Efficiency calculations and motor problems
Series and parallel heating circuits
Heat capacity and specific heat capacity
By the end of the lesson, the learner should be able to:
Calculate efficiency of electrical devices
- Solve problems involving motors and mechanical work
- Analyze power input vs power output
- Calculate overall efficiency in systems
Problem solving on device efficiency
- Motor efficiency calculations
- Analysis of energy conversions
- Real-world efficiency problems
Motor specifications, Efficiency calculation worksheets, Power meters, Mechanical loading systems
Resistors in circuits, Ammeters, Voltmeters, Power calculation sheets, Circuit boards
Charts on heat definitions, Calculators, Simple problem worksheets, Various materials for comparison
KLB Secondary Physics Form 3, Pages 201-204
1 5
Quantity of Heat
Determination of specific heat capacity - method of mixtures for solids
Determination of specific heat capacity - electrical method
Specific heat capacity of liquids and continuous flow method
By the end of the lesson, the learner should be able to:
Describe method of mixtures for solids
- Perform experiment to determine specific heat capacity of metal
- Apply heat balance principle
- Calculate specific heat capacity from experimental data
Experiment using hot metal block in cold water
- Measurement of temperatures and masses
- Application of heat balance equation
- Calculation of specific heat capacity from results
Metal blocks, Beakers, Water, Thermometers, Weighing balance, Heat source, Well-lagged calorimeter, Stirrer
Metal cylinder with heater, Voltmeter, Ammeter, Thermometer, Stopwatch, Insulating materials, Power supply
Calorimeter, Electrical heater, Water, Measuring instruments, Continuous flow apparatus diagram, Problem sets
KLB Secondary Physics Form 3, Pages 209-212
2 1
Quantity of Heat
Change of state and latent heat concepts
Specific latent heat of fusion
Specific latent heat of vaporization
By the end of the lesson, the learner should be able to:
Define latent heat of fusion and vaporization
- Explain change of state process
- Plot cooling curve for naphthalene
- Identify melting and boiling points from graphs
Experiment plotting cooling curve for naphthalene
- Observation of temperature plateaus during phase changes
- Discussion on latent heat concept
- Graph analysis and interpretation
Naphthalene, Test tubes, Thermometer, Stopwatch, Graph paper, Heat source, Cooling apparatus
Ice, Calorimeter, Thermometer, Electrical heater, Filter funnels, Beakers, Measuring cylinders
Steam generator, Condenser, Calorimeter, Electrical heater, Measuring instruments, Safety equipment
KLB Secondary Physics Form 3, Pages 218-220
2 2-3
Quantity of Heat
Gas Laws
Effects of pressure and impurities on melting and boiling points
Evaporation and cooling effects
Introduction to gas behavior and Boyle's Law
Boyle's Law experiments and calculations
Boyle's Law applications and kinetic theory explanation
Charles's Law
By the end of the lesson, the learner should be able to:
Investigate effect of pressure on melting point of ice
- Demonstrate regelation phenomenon
- Investigate effect of pressure on boiling point
- Explain effect of impurities on phase transition temperatures
Perform experiment to verify Boyle's Law
- Record pressure and volume data
- Plot graphs of P vs V, P vs 1/V, and PV vs P
- Calculate pressure-volume products and verify constant relationship
Regelation experiment with ice and wire
- Pressure effect on boiling point using flask
- Salt solution boiling point investigation
- Discussion on pressure cooker working
Experiment using J-shaped tube with oil and pressure measurement
- Data collection and tabulation
- Graph plotting and analysis
- Verification of PV = constant relationship
Ice blocks, Weighted wire, Round-bottomed flask, Thermometer, Salt solutions, Pressure cooker model
Various liquids, Beakers, Fans, Thermometers, Ether, Test tubes, Humidity measuring devices
Syringes, J-shaped tubes, Oil, Bourdon gauge, Foot pump, Metre rule, Graph paper
Thick-walled J-shaped tube, Oil, Pressure gauge, Measuring instruments, Data tables, Graph paper, Calculators
Problem worksheets, Kinetic theory diagrams, Calculator, Gas bubble scenarios, Atmospheric pressure data
Gas tubes, Water baths, Thermometers, Measuring cylinders, Heating apparatus, Graph paper, Temperature control equipment
KLB Secondary Physics Form 3, Pages 227-230
KLB Secondary Physics Form 3, Pages 235-238
2 4
Gas Laws
Charles's Law applications and absolute temperature scale
Pressure Law (Gay-Lussac's Law)
Combined gas laws and ideal gas behavior
By the end of the lesson, the learner should be able to:
Apply Charles's Law in numerical problems
- Convert between Celsius and Kelvin scales
- Explain concept of absolute zero
- Solve problems using V₁/T₁ = V₂/T₂
Problem solving with Charles's Law formula
- Temperature scale conversions
- Mathematical analysis of absolute zero
- Real-world applications in hot air balloons and gas heating
Temperature conversion charts, Problem sets, Calculators, Hot air balloon examples, Gas heating scenarios
Constant volume gas apparatus, Pressure gauges, Temperature control, Water baths, Thermometers, Graph materials
Combined law worksheets, Complex problem sets, Calculators, Ideal gas assumption charts
KLB Secondary Physics Form 3, Pages 241-243
2 5
Gas Laws
Kinetic theory of gases
Absolute zero and temperature scales
By the end of the lesson, the learner should be able to:
State basic assumptions of kinetic theory
- Explain gas laws using molecular motion
- Relate temperature to average kinetic energy
- Analyze molecular behavior in different conditions
Discussion of kinetic theory postulates
- Molecular explanation of gas laws
- Mathematical relationship between temperature and kinetic energy
- Analysis of molecular motion at different temperatures
Kinetic theory diagrams, Molecular motion animations, Temperature-energy relationship charts, Theoretical discussion materials
Graph paper, Extrapolation exercises, Temperature scale diagrams, Conversion worksheets, Scientific calculators
KLB Secondary Physics Form 3, Pages 244-245
3 1
Gas Laws
Thin Lenses
Thin Lenses
Comprehensive applications and problem solving
Types of Lenses and Effects on Light
Definition of Terms and Ray Diagrams
By the end of the lesson, the learner should be able to:
Solve complex multi-step gas law problems
- Apply gas laws to real-world situations
- Analyze atmospheric and weather-related phenomena
- Review all gas law concepts and applications
Comprehensive problem solving session
- Analysis of weather balloons, scuba diving, and atmospheric pressure effects
- Review of all gas laws
- Preparation for examinations with complex scenarios
Past examination papers, Multi-step problem sets, Real-world scenario worksheets, Summary charts, Calculators
Ray box; Various convex and concave lenses; White screen; Plane mirror; Card with parallel slits; Sunlight or strong lamp
Various lenses; Rulers; Graph paper; Ray boxes; Charts showing lens terminology; Drawing materials; Laser pointers (if available)
KLB Secondary Physics Form 3, Pages 235-245
3 2-3
Thin Lenses
Image Formation by Converging Lenses
Image Formation by Diverging Lenses and Linear Magnification
The Lens Formula
Determination of Focal Length I
Determination of Focal Length II
Power of Lens and Simple Microscope
By the end of the lesson, the learner should be able to:
Locate images for different object positions using ray diagrams; Describe image characteristics (real/virtual, erect/inverted, magnified/diminished); Explain applications in telescope, camera, projector and magnifying glass; Understand relationship between object position and image properties
Estimate focal length using distant objects (Experiment 1.2); Determine focal length using plane mirror method (Experiment 1.3); Explain the principle behind each method; Measure focal length accurately and identify sources of error
Review of ray construction rules; Systematic ray diagram construction for objects at infinity, beyond 2F, at 2F, between F and 2F, at F, and between F and lens; Analysis of image characteristics for each position; Discussion of practical applications; Demonstration using lens, object and screen
Q/A on focal length concept; Practical performance of Experiment 1.2 - distant object method; Demonstration and practice of Experiment 1.3 - plane mirror method (both no-parallax and illuminated object methods); Recording and analysis of results; Discussion of accuracy and error sources
Converging lenses; Objects; White screen; Metre rule; Candle; Graph paper; Charts showing applications; Camera (if available)
Diverging lenses; Graph paper; Rulers; Calculators; Examples from textbook; Objects of known heights; Measuring equipment
Mathematical instruments; Charts showing derivation; Calculators; Worked examples; Sign convention chart; Practice worksheets
Converging lenses; Lens holders; Metre rule; White screen; Distant objects; Plane mirror; Pins; Cork; Glass rod; Light source; Cardboard with cross-wires
Experimental setup materials; Graph paper; Calculators; Data tables; Examples 8-10 from textbook; Materials for displacement method
Various lenses of different focal lengths; Magnifying glasses; Small objects; Calculators; Power calculation charts; Small print materials; Biological specimens
KLB Secondary Physics Form 4, Pages 8-12
KLB Secondary Physics Form 4, Pages 16-19
3 4
Thin Lenses
Compound Microscope
The Human Eye
By the end of the lesson, the learner should be able to:
Describe structure and working of compound microscope; Explain functions of objective lens and eyepiece; Calculate total magnification; Solve Example 11 involving lens separation; Understand normal adjustment of compound microscope
Review of simple microscope; Introduction to compound microscope structure; Ray tracing through objective and eyepiece; Mathematical analysis of total magnification; Step-by-step solution of Example 11; Practical demonstration with microscope parts
Compound microscope; Charts showing microscope structure; Lenses representing objective and eyepiece; Calculators; Example 11 from textbook; Ray tracing materials
Charts/models of human eye; Torch for demonstrations; Eye model with flexible lens; Objects at various distances; Measuring equipment; Camera comparison charts
KLB Secondary Physics Form 4, Pages 28-30
3 5
Thin Lenses
Defects of Vision
By the end of the lesson, the learner should be able to:
Describe short sight (myopia) and its causes; Explain correction of myopia using diverging lenses; Describe long sight (hypermetropia) and its causes; Explain correction of hypermetropia using converging lenses; Draw ray diagrams showing defects and their corrections
Q/A on normal vision and accommodation; Analysis of myopia - causes, effects, and correction; Ray diagrams for uncorrected and corrected myopia; Study of hypermetropia - causes, effects, and correction; Ray diagrams for uncorrected and corrected hypermetropia; Demonstration using appropriate lenses
Charts showing vision defects; Converging and diverging lenses; Eye models; Spectacles with different lenses; Vision test materials; Ray diagram materials
KLB Secondary Physics Form 4, Pages 32-33
4 1
Thin Lenses
Uniform Circular Motion
The Camera and Applications Review
Introduction and Angular Displacement
By the end of the lesson, the learner should be able to:
Describe camera structure and working principles; Explain functions of camera lens, shutter, aperture, and film; Compare camera with human eye highlighting similarities and differences; Review all applications of lenses in optical instruments
Review of optical instruments studied; Analysis of camera components and their functions; Detailed comparison of camera and eye; Discussion of focusing mechanisms; Comprehensive review of lens applications in telescope, microscope, camera, spectacles, and magnifying glass
Camera (if available); Charts showing camera structure; Comparison tables; Review charts of all applications; Summary materials; Demonstration equipment
Merry-go-round model or pictures; String and objects for circular motion; Protractors; Calculators; Charts showing degree-radian conversion; Measuring wheels
KLB Secondary Physics Form 4, Pages 33-35
4 2-3
Uniform Circular Motion
Angular Velocity and Linear Velocity
Centripetal Acceleration
Centripetal Force and Factors Affecting It
By the end of the lesson, the learner should be able to:
Define angular velocity (ω) and its units; Derive the relationship v = rω; Calculate period (T) and frequency (f) of circular motion; Solve Examples 2(a) and 2(b) from textbook; Relate linear and angular quantities
Explain why circular motion involves acceleration despite constant speed; Derive centripetal acceleration formula a = v²/r = rω²; Understand direction of centripetal acceleration; Solve Example 3 from textbook; Apply acceleration concepts to circular motion problems
Review of angular displacement through Q/A; Introduction to angular velocity concept; Mathematical derivation of v = rω relationship; Exploration of period and frequency relationships; Step-by-step solution of Examples 2(a) and 2(b); Practical demonstration using rotating objects; Group calculations involving different circular motions
Q/A review of velocity and acceleration concepts; Explanation of acceleration in circular motion using vector analysis; Mathematical derivation of centripetal acceleration; Discussion of acceleration direction (toward center); Step-by-step solution of Example 3; Practical demonstration of centripetal acceleration effects
Stopwatch; Rotating objects (turntables, wheels); String and masses; Calculators; Formula charts; Examples from textbook; Measuring equipment
Vector diagrams; Rotating objects; Calculators; Charts showing acceleration derivation; Example 3 materials; Demonstration of circular motion with varying speeds
Metal pegs; Turntable and motor; Variable resistor; Dry cell; Metal ball and string; Spring balance; Clock; Graph paper; Calculators
KLB Secondary Physics Form 4, Pages 38-40
KLB Secondary Physics Form 4, Pages 40-42
4 4
Uniform Circular Motion
Experimental Investigation of Centripetal Force
By the end of the lesson, the learner should be able to:
Perform Experiment 2.2 investigating speed vs radius relationship; Plot graphs of F vs ω² and v² vs r; Analyze experimental results and draw conclusions; Understand the relationship F ∝ mv²/r; Apply experimental findings to solve problems
Q/A on previous experiment results; Setup and performance of Experiment 2.2 - variation of speed with radius; Data collection for different radii; Graph plotting and analysis; Verification of theoretical relationships; Group analysis of experimental errors and improvements; Application of results to problem solving
Same apparatus as Experiment 2.1; Graph paper; Additional measuring equipment; Data recording tables; Calculators; Analysis worksheets
KLB Secondary Physics Form 4, Pages 44-47
4 5
Uniform Circular Motion
Case Examples - Cars and Banking
Case Examples - Cyclists and Conical Pendulum
By the end of the lesson, the learner should be able to:
Explain circular motion of cars on level roads; Understand role of friction in providing centripetal force; Describe banking of roads and its advantages; Derive critical speed for banked tracks; Explain aircraft banking principles
Review of centripetal force concepts; Analysis of car motion on circular bends; Discussion of friction as centripetal force; Introduction to banked roads and critical speed; Mathematical analysis of banking angles; Explanation of aircraft banking mechanisms; Problem-solving involving banking situations
Model cars and tracks; Inclined plane demonstrations; Charts showing banking principles; Calculators; Friction demonstration materials; Pictures of banked roads and aircraft
Model cyclists; Pendulum apparatus; String and masses; Force diagrams; Calculators; Example 5 materials; Protractors for angle measurement
KLB Secondary Physics Form 4, Pages 47-50
5 1
Uniform Circular Motion
Motion in Vertical Circle
By the end of the lesson, the learner should be able to:
Analyze forces in vertical circular motion; Understand variation of tension at different positions; Derive expressions for tension at top and bottom positions; Calculate minimum speed for vertical circular motion; Apply concepts to practical examples (bucket of water, loop-the-loop)
Review of circular motion in horizontal plane; Introduction to vertical circular motion; Force analysis at different positions in vertical circle; Mathematical derivation of tension variations; Discussion of minimum speed requirements; Practical examples and safety considerations; Problem-solving involving vertical motion
String and masses for vertical motion; Bucket and water (demonstration); Model loop-the-loop track; Force analysis charts; Safety equipment; Calculators
KLB Secondary Physics Form 4, Pages 52-54
5 2-3
Uniform Circular Motion
Floating and Sinking
Applications - Centrifuges and Satellites
Introduction and Cause of Upthrust
Upthrust in Gases and Archimedes' Principle
By the end of the lesson, the learner should be able to:
Explain working principles of centrifuges; Describe separation of particles using centripetal force; Understand satellite motion and gravitational force; Apply Newton's law of gravitation to satellite orbits; Explain parking orbits and their applications
Explain upthrust in gases with examples; State Archimedes' principle clearly; Apply Archimedes' principle to solve problems; Solve Examples 1, 2, and 3 from textbook; Calculate apparent weight and upthrust in different fluids
Q/A on centripetal force applications; Detailed study of centrifuge operation; Analysis of particle separation mechanisms; Introduction to satellite motion; Application of universal gravitation law; Discussion of geostationary satellites; Analysis of satellite velocities and orbital periods
Review of upthrust in liquids through Q/A; Discussion of upthrust in gases using balloon examples; Statement and explanation of Archimedes' principle; Step-by-step solution of Examples 1-3; Problem-solving involving apparent weight calculations; Group work on upthrust calculations
Centrifuge model or pictures; Separation demonstration materials; Satellite orbit charts; Calculators; Newton's gravitation materials; Model solar system
Spring balance; Objects (stones); String; Eureka can; Beaker; Water; Measuring cylinder; Beam balance; Dense objects; Charts showing pressure variation
Balloons; Helium or hydrogen (if available); Objects of known density; Calculators; Examples from textbook; Different liquids for demonstration; Measuring equipment
KLB Secondary Physics Form 4, Pages 54-55
KLB Secondary Physics Form 4, Pages 60-66
5 4
Floating and Sinking
Law of Flotation and Applications
By the end of the lesson, the learner should be able to:
Perform Experiment 3.2 investigating upthrust on floating objects; State the law of flotation; Explain the relationship between weight of object and weight of displaced fluid; Solve Examples 4, 5, 6, and 7 involving floating objects; Apply law of flotation to balloons and ships
Q/A on Archimedes' principle; Performance of Experiment 3.2 - investigating floating objects; Analysis of experimental observations; Statement of law of flotation; Step-by-step solution of Examples 4-7; Discussion of applications in balloons, ships, and everyday objects
Test tubes; Sand; Measuring cylinder; Water; Balance; Floating objects; Examples from textbook; Calculators; Model boats; Balloon demonstrations
KLB Secondary Physics Form 4, Pages 64-69
5 5
Floating and Sinking
Relative Density Determination
Archimedes' Principle and Moments
By the end of the lesson, the learner should be able to:
Define relative density of solids and liquids; Use Archimedes' principle to determine relative density; Apply the formula: RD = Weight in air/(Weight in air - Weight in fluid); Solve Examples 8, 9, 10, 11, and 12 from textbook; Calculate relative density using different methods
Review of density concepts through Q/A; Introduction to relative density using practical examples; Mathematical derivation of relative density formulae; Step-by-step solution of Examples 8-12; Practical determination of relative density for various materials; Group calculations and comparisons
Spring balance; Various solid objects; Different liquids; Measuring cylinders; Calculators; Examples from textbook; Objects of unknown density; Data recording sheets
Metre rule; Clamps and stands; Solid objects; Metal blocks; Water and other liquids; Graph paper; Calculators; Data recording tables; Balance setup materials
KLB Secondary Physics Form 4, Pages 69-74
6 1
Floating and Sinking
Applications - Hydrometer and Practical Instruments
By the end of the lesson, the learner should be able to:
Explain the working principle of hydrometers; Describe structure and features of practical hydrometers; Solve Examples 12 and 13 involving hydrometer calculations; Understand applications in measuring density of milk, battery acid, and beer; Calculate hydrometer dimensions and floating positions
Review of law of flotation through Q/A; Detailed study of hydrometer structure and operation; Analysis of hydrometer sensitivity and design features; Step-by-step solution of Examples 12-13; Discussion of specialized hydrometers (lactometer, battery acid hydrometer); Practical calculations involving hydrometer floating
Hydrometer (if available); Different density liquids; Measuring cylinders; Calculators; Examples from textbook; Charts showing hydrometer types; Battery acid hydrometer demonstration
KLB Secondary Physics Form 4, Pages 74-77
6 2-3
Floating and Sinking
Electromagnetic Spectrum
Applications - Ships, Submarines, and Balloons
Introduction and Properties of Electromagnetic Waves
Production and Detection of Electromagnetic Waves I
By the end of the lesson, the learner should be able to:
Explain how steel ships float on water; Describe working principle of submarines; Understand how balloons achieve lift and control altitude; Analyze the role of displaced fluid in each application; Apply principles to solve practical problems involving floating vessels
Explain production of gamma rays, X-rays, and ultraviolet radiation; Describe detection methods for high-energy radiations; Understand energy transitions in atoms and nuclei; Relate wave energy to frequency using E = hf; Solve Example 3 involving X-ray calculations
Q/A on hydrometer applications; Analysis of ship design and floating principles; Detailed study of submarine operation and ballast tanks; Exploration of balloon physics and gas density effects; Discussion of load limits and stability; Problem-solving involving practical floating applications
Review of electromagnetic properties through Q/A; Study of high-energy radiation production mechanisms; Analysis of detection methods (photographic plates, G-M tubes, fluorescent materials); Discussion of atomic and nuclear energy changes; Step-by-step solution of Example 3; Safety considerations for high-energy radiations
Model ships and submarines; Balloon demonstrations; Charts showing ship cross-sections; Submarine ballast tank models; Different density materials; Calculators; Application examples
Electromagnetic spectrum charts; Wave demonstration materials; Calculators; Radio; Mobile phone; Examples from textbook; Charts showing wave properties
Charts showing radiation production; Photographic film; Fluorescent materials; UV lamp (if available); Geiger counter (if available); Example 3 materials; Safety equipment demonstrations
KLB Secondary Physics Form 4, Pages 77
KLB Secondary Physics Form 4, Pages 81-82
6 4
Electromagnetic Spectrum
Production and Detection of Electromagnetic Waves II
Applications of Electromagnetic Waves I
By the end of the lesson, the learner should be able to:
Explain production of visible light, infrared, microwaves, and radio waves; Describe detection methods for each radiation type; Understand role of oscillating circuits in radio wave production; Compare detection mechanisms across the spectrum; Demonstrate detection of some radiations
Q/A on high-energy radiations; Study of lower-energy radiation production (thermal, electronic oscillations); Analysis of detection methods (eyes, thermopiles, crystal detectors, radio receivers); Practical demonstrations of infrared detection; Discussion of antenna and oscillating circuit principles; Group identification of sources and detectors
Infrared sources (heaters); Thermometer with blackened bulb; Radio receivers; Microwave oven (demonstration); Oscillating circuit models; Various electromagnetic sources
X-ray photographs; Medical imaging examples; Industrial radiography charts; Cancer treatment information; Sterilization process diagrams; Safety protocol charts
KLB Secondary Physics Form 4, Pages 81-82
6 5
Electromagnetic Spectrum
Applications of Electromagnetic Waves II
By the end of the lesson, the learner should be able to:
Explain applications of ultraviolet radiation; Describe uses of visible light in technology; Understand infrared applications in heating and imaging; Analyze microwave applications in cooking and radar; Discuss radio wave applications in communication
Q/A on high-energy radiation applications; Study of UV applications (fluorescence, sterilization, vitamin D, forgery detection); Analysis of visible light uses (photography, optical fibers, lasers); Exploration of infrared applications (heating, night vision, remote controls); Discussion of microwave and radio wave technologies
UV lamp demonstrations; Optical fiber samples; Infrared thermometer; Microwave oven (demonstration); Radio equipment; Remote controls; Radar images; Communication devices
KLB Secondary Physics Form 4, Pages 82-85
7 1
Electromagnetic Spectrum
Specific Applications - Radar and Microwave Cooking
Hazards and Safety Considerations
By the end of the lesson, the learner should be able to:
Explain principles of radar (radio detection and ranging); Describe microwave oven operation and safety features; Understand reflection and detection in radar systems; Explain how microwaves heat food molecules; Apply wave principles to practical technologies
Review of microwave and radio wave properties; Detailed analysis of radar operation and applications; Study of microwave oven components (magnetron, stirrer, safety features); Discussion of wave reflection and detection principles; Analysis of molecular heating mechanisms; Safety considerations and precautions
Radar system diagrams; Microwave oven cross-section charts; Wave reflection demonstrations; Safety instruction materials; Magnetron information; Aircraft/ship tracking examples
Radiation hazard charts; Safety equipment demonstrations; Chernobyl disaster information; Biological effect diagrams; Safety protocol materials; Radiation protection examples
KLB Secondary Physics Form 4, Pages 84-85
7 2-3
Electromagnetic Induction
Introduction and Historical Background
Conditions for Electromagnetic Induction - Straight Conductor
Conditions for Electromagnetic Induction - Coils
By the end of the lesson, the learner should be able to:
Define electromagnetic induction and its significance; Explain Faraday's discovery and its impact on modern technology; Understand the relationship between magnetism and electricity; Identify examples of electromagnetic induction in daily life; Appreciate the importance of relative motion in electromagnetic phenomena
Perform Experiment 5.1 using straight conductor; Identify conditions necessary for inducing e.m.f. in a straight conductor; Observe effects of different types of motion on induced current; Understand the importance of relative motion between conductor and magnetic field; Analyze galvanometer deflections
Q/A on magnetic fields and electric current relationships from previous studies; Introduction to Michael Faraday's discovery and its historical significance; Discussion of electromagnetic induction examples in daily life (generators, transformers, motors); Overview of chapter content and learning objectives; Introduction to practical applications in power generation and electronics
Performance of Experiment 5.1 using straight conductor AB in U-shaped magnet; Systematic investigation of conductor movement (vertical up/down, parallel to field, stationary, different angles); Observation and recording of galvanometer deflections; Analysis of current direction changes with motion reversal; Discussion of relative motion importance and field cutting concept
Charts showing Faraday's experiments; Pictures of power stations; Transformers; Generators; Historical timeline of electromagnetic discoveries; Real-world applications display
Thick electric conductor; U-shaped magnet; Galvanometer; Connecting wires; Clamp and stand setup; Data recording sheets
Coils of different sizes; Magnets of various strengths; Galvanometer; Connecting wires; Comparison data sheets
KLB Secondary Physics Form 4, Pages 86
KLB Secondary Physics Form 4, Pages 86-87
7 4
Electromagnetic Induction
Factors Affecting Induced E.M.F. - Rate of Change
By the end of the lesson, the learner should be able to:
Perform Experiment 5.2 investigating rate of change effects; Understand relationship between speed of motion and induced e.m.f.; Collect and analyze data on rate of flux change; Establish that faster changes produce larger e.m.f.; Apply findings to practical situations
Performance of Experiment 5.2 investigating relationship between rate of change of magnetic flux and induced e.m.f.; Systematic variation of magnet withdrawal speeds (very fast, moderate, very slow); Recording and comparison of galvanometer deflections; Data analysis and conclusion drawing; Discussion of practical implications in generators and other applications
Coil of at least 50 turns; Sensitive galvanometer; Magnet; Stopwatch; Data collection tables; Graph paper for analysis
KLB Secondary Physics Form 4, Pages 88-89
7 5
Electromagnetic Induction
Factors Affecting Induced E.M.F. - Magnetic Field Strength
Factors Affecting Induced E.M.F. - Number of Turns
By the end of the lesson, the learner should be able to:
Perform Experiment 5.3 investigating magnetic field strength effects; Understand relationship between field strength and induced e.m.f.; Control variables in electromagnetic experiments; Use electromagnets to vary field strength; Apply experimental findings to solve problems
Performance of Experiment 5.3 investigating relationship between magnetic field strength and induced e.m.f.; Setup of electromagnet with variable current control; Investigation of wire PQ movement in different field strengths; Recording galvanometer deflections for different electromagnet currents; Analysis of results and relationship establishment
U-shaped electromagnet; Variable resistor; Wire PQ; Galvanometer; Ammeter; Connecting wires; Power supply; Data recording materials
Insulated copper wire; Sensitive galvanometer; Magnet; Connecting wires; Wire cutting and measuring tools; Data analysis sheets
KLB Secondary Physics Form 4, Pages 89
8

Mid term exams / break

9 1
Electromagnetic Induction
Lenz's Law and Direction of Induced Current
By the end of the lesson, the learner should be able to:
Perform Experiment 5.5 determining direction of induced current; State Lenz's law and explain its significance; Understand energy conservation in electromagnetic induction; Predict current direction using Lenz's law; Relate Lenz's law to conservation of energy principle
Performance of Experiment 5.5(a) establishing galvanometer deflection direction; Performance of Experiment 5.5(b) investigating induced current direction with magnet movement; Analysis of current directions and magnetic pole formation; Statement and explanation of Lenz's law; Discussion of energy conservation and opposition principle; Practice in predicting current directions
Variable resistor; Sensitive center-zero galvanometer; Connecting wires; Coil; Magnet; Switch; Battery; Direction analysis charts
KLB Secondary Physics Form 4, Pages 90-93
9 2-3
Electromagnetic Induction
Fleming's Right-Hand Rule
Applications of Induction Laws
Mutual Induction
By the end of the lesson, the learner should be able to:
Perform Experiment 5.6 with straight conductors; State Fleming's right-hand rule (dynamo rule); Apply the rule to determine direction of induced current; Understand relationship between motion, field, and current directions; Solve Example 1 involving square loop movement
Define mutual induction and demonstrate its occurrence; Perform Experiment 5.7 showing mutual induction between coils; Explain factors affecting mutual induction; Understand primary and secondary coil relationships; Discuss enhancement methods using iron cores
Performance of Experiment 5.6 determining induced current direction in straight conductor; Introduction and demonstration of Fleming's right-hand rule; Practice applying the rule to various conductor movements; Step-by-step solution of Example 1 (square loop in magnetic field); Analysis of current directions in different parts of the loop; Verification of Fleming's rule consistency with Lenz's law
Q/A on electromagnetic induction principles; Introduction to mutual induction concept and definition; Performance of Experiment 5.7 demonstrating mutual induction between primary and secondary coils; Investigation of switching effects, current changes, and A.C. source effects; Analysis of mutual induction enhancement using soft iron rod and ring; Discussion of applications in transformers
U-shaped magnet; Thick wire AB; Marked center-zero galvanometer; Hand models for rule demonstration; Example 1 setup materials; Direction analysis worksheets
Examples 2 and 3 setup materials; Problem-solving worksheets; Charts showing current direction analysis; Group work materials; Calculators
Two coils P and S; Galvanometer; Battery; A.C. power source; Switch; Rheostat; Connecting wires; Soft iron rod; Soft iron ring; Enhancement demonstration materials
KLB Secondary Physics Form 4, Pages 93-97
KLB Secondary Physics Form 4, Pages 97-100
9 4
Electromagnetic Induction
Transformers - Basic Principles
Transformer Equations and Calculations
By the end of the lesson, the learner should be able to:
Describe transformer structure and components; Explain working principle based on mutual induction; Perform Experiment 5.10 investigating secondary e.m.f. variation; Understand primary and secondary coil functions; Distinguish between step-up and step-down transformers
Review of mutual induction through Q/A; Introduction to transformer structure (primary coil, secondary coil, iron core); Performance of Experiment 5.10 - variation of secondary e.m.f. with number of turns; Observation of bulb brightness changes with turn variations; Analysis of step-up vs step-down transformer characteristics; Introduction to transformer symbols and representations
Long insulated copper wire; Soft iron rod; Low frequency A.C. source; A.C. voltmeter; Switch; Bulb; Transformer construction materials; Symbol charts
Calculators; Examples 4 and 5 materials; Mathematical derivation charts; Efficiency calculation worksheets; Transformer specification data
KLB Secondary Physics Form 4, Pages 100-102
9 5
Electromagnetic Induction
Transformer Energy Losses and Example 6
By the end of the lesson, the learner should be able to:
Identify four main energy losses in transformers; Explain methods to minimize each type of energy loss; Understand lamination and its purpose; Solve Example 6 involving power transmission system; Calculate efficiency and power losses in practical systems
Review of ideal transformer equations; Analysis of energy losses (flux leakage, copper losses, eddy currents, hysteresis loss); Study of loss minimization techniques including core lamination; Discussion of practical transformer efficiency; Step-by-step solution of Example 6 (complex power transmission system); Analysis of step-up and step-down transformer roles
Charts showing energy losses; Laminated core samples; Example 6 complex setup; Power transmission diagrams; Efficiency calculation materials; Loss minimization demonstration aids
KLB Secondary Physics Form 4, Pages 105-108
10 1
Electromagnetic Induction
Mains Electricity
Mains Electricity
Applications - Generators, Microphones, and Induction Coils
Sources of Mains Electricity
The Grid System and Power Transmission
By the end of the lesson, the learner should be able to:
Explain structure and working of A.C. and D.C. generators; Describe moving-coil microphone operation; Understand induction coil structure and applications; Compare slip rings with split ring commutators; Analyze generator output waveforms and applications
Review of electromagnetic induction in rotating systems; Detailed study of A.C. generator structure and sinusoidal output; Analysis of D.C. generator with split ring commutator; Explanation of moving-coil microphone components and sound conversion; Description of induction coil operation and high voltage generation; Discussion of applications in car ignition systems
A.C. generator model; D.C. generator model; Moving-coil microphone demonstration; Induction coil setup; Output waveform charts; Slip ring and commutator comparisons; Bicycle dynamo
Pictures of power stations
Charts showing different energy sources
Videos of power generation
Maps of Kenya's power grid
Sample coal, biomass materials
Chart of national grid system
Transmission line models
Maps showing power lines
Transformer models
Voltage measurement devices
KLB Secondary Physics Form 4, Pages 108-112
10 2-3
Mains Electricity
High Voltage Transmission and Power Losses
Domestic Wiring System
Fuses, Circuit Breakers and Safety Devices
Ring Mains Circuit and Three-Pin Plugs
Electrical Energy Consumption and Costing
Problem Solving and Applications
By the end of the lesson, the learner should be able to:

Explain why power is transmitted at high voltage
Calculate power losses in transmission
State dangers of high voltage transmission
Apply the formula P = I²R to transmission problems

Describe the ring mains circuit
Explain advantages of ring mains system
Wire a three-pin plug correctly
Identify wire color coding in electrical systems
Review of Ohm's law and power formulas
Demonstration of power loss calculations
Worked examples on transmission efficiency
Discussion on safety measures for transmission lines
Group problem-solving activities
Q&A on fuses and safety devices
Drawing ring mains circuit diagrams
Practical wiring of three-pin plugs
Color coding identification exercise
Safety demonstration with earthing
Calculators
Worked example sheets
Pictures of transmission towers
Safety warning signs
Formula charts
House wiring components
Fuse box model
Different types of fuses
Electrical cables (samples)
Circuit diagrams
Multimeter
Various fuses (2A, 5A, 13A)
Circuit breakers
Fuse wire samples
Electrical appliances
Safety equipment samples
Three-pin plugs
Electrical cables
Wire strippers
Screwdrivers
Ring mains circuit model
Color-coded wires
Calculators
Sample electricity bills
Electrical appliances with ratings
Stop watches
Energy meter model
Formula charts
Problem sheets
Past examination questions
Real electricity bills
Energy conservation charts
KLB Secondary Physics Form 4, Pages 118-121
KLB Secondary Physics Form 4, Pages 124-125
10 4
Cathode Rays and Cathode Ray Tube
Thermionic Emission
Production and Properties of Cathode Rays
Structure of Cathode Ray Oscilloscope
By the end of the lesson, the learner should be able to:

Define thermionic emission
Explain the process of electron emission from heated metals
Describe a simple experiment to demonstrate thermionic emission
State factors affecting thermionic emission
Q&A on electron structure and energy
Demonstration of thermionic emission using simple circuit
Discussion on work function of different metals
Explanation of electron emission process
Identification of materials used in cathodes
Simple thermionic emission apparatus
Low voltage power supply (6V)
Milliammeter
Evacuated glass bulb
Heated filament
Charts showing electron emission
Cathode ray tube (simple)
High voltage supply (EHT)
Fluorescent screen
Maltese cross or opaque object
Bar magnets
Charged plates
CRO (demonstration model)
Charts showing CRO structure
Diagrams of electron gun
Models of deflection plates
High voltage power supply
KLB Secondary Physics Form 4, Pages 131-132
10 5
Cathode Rays and Cathode Ray Tube
CRO Controls and Operation
CRO as a Voltmeter
Frequency Measurement using CRO
The Television Tube
Problem Solving and Applications
By the end of the lesson, the learner should be able to:

Explain the function of brightness and focus controls
Describe vertical and horizontal deflection systems
Explain the time base operation
Demonstrate basic CRO operation
Review of CRO structure
Demonstration of CRO controls
Explanation of time base voltage
Practice with focus and brightness adjustment
Observation of spot movement across screen
Working CRO
Signal generator
Connecting leads
Various input signals
Time base control charts
Oscilloscope manual
DC power supplies
AC signal sources
Digital voltmeter
Graph paper
Calculators
Working CRO with time base
Audio frequency generator
Graph paper for measurements
Stop watch
TV tube (demonstration model)
Deflection coils
TV receiver (old CRT type)
Charts comparing TV and CRO
Color TV tube diagram
Problem-solving worksheets
Sample CRO traces
Past examination questions
Reference materials
KLB Secondary Physics Form 4, Pages 135-137

Your Name Comes Here


Download

Feedback