If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 1 | 4-5 |
Thin Lenses
|
Types of Lenses and Effects on Light
Definition of Terms and Ray Diagrams Image Formation by Converging Lenses |
By the end of the
lesson, the learner
should be able to:
Define a lens and distinguish between convex and concave lenses; Describe the effect of lenses on parallel rays of light; Explain convergence and divergence of light rays; Identify practical examples of different lens types Define centre of curvature, principal axis, optical centre, principal focus and focal length; Distinguish between real and virtual focus; State and apply the three important rays for lens diagrams; Construct basic ray diagrams for lenses |
Q/A on refraction concepts; Experiment 1.1 - investigating effects of lenses on parallel rays using sunlight and ray box; Demonstration of convergence and divergence; Group identification of lens types in everyday objects; Drawing and analysis of ray diagrams
Q/A review of lens effects; Guided discovery of lens terminology using practical demonstrations; Step-by-step construction of ray diagrams using the three important rays; Practice drawing ray paths for parallel rays, rays through focus, and rays through optical centre; Group work on ray diagram construction |
Ray box; Various convex and concave lenses; White screen; Plane mirror; Card with parallel slits; Sunlight or strong lamp
Various lenses; Rulers; Graph paper; Ray boxes; Charts showing lens terminology; Drawing materials; Laser pointers (if available) Converging lenses; Objects; White screen; Metre rule; Candle; Graph paper; Charts showing applications; Camera (if available) |
KLB Secondary Physics Form 4, Pages 1-6
KLB Secondary Physics Form 4, Pages 3-8 |
|
| 2 |
OPENER ONE |
|||||||
| 2 | 4-5 |
Thin Lenses
|
Image Formation by Diverging Lenses and Linear Magnification
The Lens Formula Determination of Focal Length I Determination of Focal Length II Power of Lens and Simple Microscope |
By the end of the
lesson, the learner
should be able to:
Construct ray diagrams for diverging lenses; Explain why diverging lenses always form virtual, erect, diminished images; Define linear magnification and derive its formula; Calculate magnification using height and distance ratios; Solve Examples 1, 2, and 3 from textbook Determine focal length using lens formula method (Experiment 1.4); Plot and analyze 1/u vs 1/v graphs; Determine focal length from displacement method (Experiment 1.5); Solve Examples 8, 9, and 10 involving graphical methods |
Q/A on converging lens images; Ray diagram construction for diverging lenses; Mathematical derivation of magnification formulae; Step-by-step solution of textbook examples; Scale drawing practice; Group problem-solving on magnification calculations
Review of previous focal length methods; Setup and performance of Experiment 1.4; Data collection and graph plotting; Analysis of Examples 8-10; Introduction to displacement method and conjugate points; Practical work with different graphical approaches |
Diverging lenses; Graph paper; Rulers; Calculators; Examples from textbook; Objects of known heights; Measuring equipment
Mathematical instruments; Charts showing derivation; Calculators; Worked examples; Sign convention chart; Practice worksheets Converging lenses; Lens holders; Metre rule; White screen; Distant objects; Plane mirror; Pins; Cork; Glass rod; Light source; Cardboard with cross-wires Experimental setup materials; Graph paper; Calculators; Data tables; Examples 8-10 from textbook; Materials for displacement method Various lenses of different focal lengths; Magnifying glasses; Small objects; Calculators; Power calculation charts; Small print materials; Biological specimens |
KLB Secondary Physics Form 4, Pages 11-14
KLB Secondary Physics Form 4, Pages 19-25 |
|
| 3 | 1 |
Thin Lenses
|
Compound Microscope
|
By the end of the
lesson, the learner
should be able to:
Describe structure and working of compound microscope; Explain functions of objective lens and eyepiece; Calculate total magnification; Solve Example 11 involving lens separation; Understand normal adjustment of compound microscope |
Review of simple microscope; Introduction to compound microscope structure; Ray tracing through objective and eyepiece; Mathematical analysis of total magnification; Step-by-step solution of Example 11; Practical demonstration with microscope parts
|
Compound microscope; Charts showing microscope structure; Lenses representing objective and eyepiece; Calculators; Example 11 from textbook; Ray tracing materials
|
KLB Secondary Physics Form 4, Pages 28-30
|
|
| 3 | 2 |
Thin Lenses
|
The Human Eye
Defects of Vision |
By the end of the
lesson, the learner
should be able to:
Describe structure of human eye and functions of each part; Explain accommodation process and role of ciliary muscles; Define near point and far point; Understand how eye focuses at different distances; Compare eye structure with camera |
Introduction to human eye as natural optical instrument; Detailed study of eye structure using charts/models; Demonstration of accommodation using flexible lens model; Practical measurement of near and far points; Comparison table of eye vs camera similarities and differences
|
Charts/models of human eye; Torch for demonstrations; Eye model with flexible lens; Objects at various distances; Measuring equipment; Camera comparison charts
Charts showing vision defects; Converging and diverging lenses; Eye models; Spectacles with different lenses; Vision test materials; Ray diagram materials |
KLB Secondary Physics Form 4, Pages 30-32
|
|
| 3 | 3 |
Thin Lenses
|
The Camera and Applications Review
|
By the end of the
lesson, the learner
should be able to:
Describe camera structure and working principles; Explain functions of camera lens, shutter, aperture, and film; Compare camera with human eye highlighting similarities and differences; Review all applications of lenses in optical instruments |
Review of optical instruments studied; Analysis of camera components and their functions; Detailed comparison of camera and eye; Discussion of focusing mechanisms; Comprehensive review of lens applications in telescope, microscope, camera, spectacles, and magnifying glass
|
Camera (if available); Charts showing camera structure; Comparison tables; Review charts of all applications; Summary materials; Demonstration equipment
|
KLB Secondary Physics Form 4, Pages 33-35
|
|
| 3 | 4-5 |
Uniform Circular Motion
|
Introduction and Angular Displacement
Angular Velocity and Linear Velocity |
By the end of the
lesson, the learner
should be able to:
Define uniform circular motion and give examples; Define angular displacement and its unit (radian); Convert between degrees and radians; Derive the relationship s = rθ; Solve Example 1 from textbook Define angular velocity (ω) and its units; Derive the relationship v = rω; Calculate period (T) and frequency (f) of circular motion; Solve Examples 2(a) and 2(b) from textbook; Relate linear and angular quantities |
Q/A on linear motion concepts; Introduction to circular motion using real-life examples (merry-go-round, wheels, planets); Definition and demonstration of angular displacement; Mathematical relationship between arc length, radius and angle; Practical measurement of angles in radians; Solution of Example 1
Review of angular displacement through Q/A; Introduction to angular velocity concept; Mathematical derivation of v = rω relationship; Exploration of period and frequency relationships; Step-by-step solution of Examples 2(a) and 2(b); Practical demonstration using rotating objects; Group calculations involving different circular motions |
Merry-go-round model or pictures; String and objects for circular motion; Protractors; Calculators; Charts showing degree-radian conversion; Measuring wheels
Stopwatch; Rotating objects (turntables, wheels); String and masses; Calculators; Formula charts; Examples from textbook; Measuring equipment |
KLB Secondary Physics Form 4, Pages 37-39
KLB Secondary Physics Form 4, Pages 38-40 |
|
| 4 | 1 |
Uniform Circular Motion
|
Centripetal Acceleration
|
By the end of the
lesson, the learner
should be able to:
Explain why circular motion involves acceleration despite constant speed; Derive centripetal acceleration formula a = v²/r = rω²; Understand direction of centripetal acceleration; Solve Example 3 from textbook; Apply acceleration concepts to circular motion problems |
Q/A review of velocity and acceleration concepts; Explanation of acceleration in circular motion using vector analysis; Mathematical derivation of centripetal acceleration; Discussion of acceleration direction (toward center); Step-by-step solution of Example 3; Practical demonstration of centripetal acceleration effects
|
Vector diagrams; Rotating objects; Calculators; Charts showing acceleration derivation; Example 3 materials; Demonstration of circular motion with varying speeds
|
KLB Secondary Physics Form 4, Pages 40-42
|
|
| 4 | 2 |
Uniform Circular Motion
|
Centripetal Force and Factors Affecting It
Experimental Investigation of Centripetal Force |
By the end of the
lesson, the learner
should be able to:
Explain the need for centripetal force in circular motion; State factors affecting centripetal force (mass, speed, radius); Derive centripetal force formula F = mv²/r = mrω²; Perform Experiment 2.1 investigating F vs ω²; Solve Example 4 from textbook |
Review of Newton's laws and centripetal acceleration; Introduction to centripetal force concept; Experimental investigation of factors affecting centripetal force; Performance of Experiment 2.1 - relationship between F and ω²; Data collection and analysis; Solution of Example 4; Discussion of practical implications
|
Metal pegs; Turntable and motor; Variable resistor; Dry cell; Metal ball and string; Spring balance; Clock; Graph paper; Calculators
Same apparatus as Experiment 2.1; Graph paper; Additional measuring equipment; Data recording tables; Calculators; Analysis worksheets |
KLB Secondary Physics Form 4, Pages 42-47
|
|
| 4 | 3 |
Uniform Circular Motion
|
Case Examples - Cars and Banking
|
By the end of the
lesson, the learner
should be able to:
Explain circular motion of cars on level roads; Understand role of friction in providing centripetal force; Describe banking of roads and its advantages; Derive critical speed for banked tracks; Explain aircraft banking principles |
Review of centripetal force concepts; Analysis of car motion on circular bends; Discussion of friction as centripetal force; Introduction to banked roads and critical speed; Mathematical analysis of banking angles; Explanation of aircraft banking mechanisms; Problem-solving involving banking situations
|
Model cars and tracks; Inclined plane demonstrations; Charts showing banking principles; Calculators; Friction demonstration materials; Pictures of banked roads and aircraft
|
KLB Secondary Physics Form 4, Pages 47-50
|
|
| 4 | 4-5 |
Uniform Circular Motion
|
Case Examples - Cyclists and Conical Pendulum
Motion in Vertical Circle |
By the end of the
lesson, the learner
should be able to:
Analyze forces on cyclists moving in circular tracks; Explain cyclist leaning and conditions for no skidding; Describe conical pendulum motion; Derive equations for conical pendulum; Solve Example 5 from textbook Analyze forces in vertical circular motion; Understand variation of tension at different positions; Derive expressions for tension at top and bottom positions; Calculate minimum speed for vertical circular motion; Apply concepts to practical examples (bucket of water, loop-the-loop) |
Q/A on banking concepts; Analysis of cyclist motion on circular tracks; Force analysis and conditions for stability; Introduction to conical pendulum; Mathematical analysis of pendulum motion; Step-by-step solution of Example 5; Practical demonstration of conical pendulum
Review of circular motion in horizontal plane; Introduction to vertical circular motion; Force analysis at different positions in vertical circle; Mathematical derivation of tension variations; Discussion of minimum speed requirements; Practical examples and safety considerations; Problem-solving involving vertical motion |
Model cyclists; Pendulum apparatus; String and masses; Force diagrams; Calculators; Example 5 materials; Protractors for angle measurement
String and masses for vertical motion; Bucket and water (demonstration); Model loop-the-loop track; Force analysis charts; Safety equipment; Calculators |
KLB Secondary Physics Form 4, Pages 50-52
KLB Secondary Physics Form 4, Pages 52-54 |
|
| 5 | 1 |
Uniform Circular Motion
|
Applications - Centrifuges and Satellites
|
By the end of the
lesson, the learner
should be able to:
Explain working principles of centrifuges; Describe separation of particles using centripetal force; Understand satellite motion and gravitational force; Apply Newton's law of gravitation to satellite orbits; Explain parking orbits and their applications |
Q/A on centripetal force applications; Detailed study of centrifuge operation; Analysis of particle separation mechanisms; Introduction to satellite motion; Application of universal gravitation law; Discussion of geostationary satellites; Analysis of satellite velocities and orbital periods
|
Centrifuge model or pictures; Separation demonstration materials; Satellite orbit charts; Calculators; Newton's gravitation materials; Model solar system
|
KLB Secondary Physics Form 4, Pages 54-55
|
|
| 5 | 2 |
Floating and Sinking
|
Introduction and Cause of Upthrust
Upthrust in Gases and Archimedes' Principle |
By the end of the
lesson, the learner
should be able to:
Explain why objects feel lighter in fluids; Define upthrust and identify its effects; Perform Experiment 3.1 investigating upthrust and weight of fluid displaced; Derive mathematical expression for upthrust using pressure concepts; Verify Archimedes' principle experimentally |
Q/A on pressure in liquids; Introduction using steel ferry floating on water; Performance of Experiment 3.1 - relationship between upthrust and weight of displaced fluid; Mathematical derivation of upthrust U = ρVg; Analysis of experimental results; Discussion of pressure differences causing upthrust
|
Spring balance; Objects (stones); String; Eureka can; Beaker; Water; Measuring cylinder; Beam balance; Dense objects; Charts showing pressure variation
Balloons; Helium or hydrogen (if available); Objects of known density; Calculators; Examples from textbook; Different liquids for demonstration; Measuring equipment |
KLB Secondary Physics Form 4, Pages 58-63
|
|
| 5 | 3 |
Floating and Sinking
|
Law of Flotation and Applications
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 3.2 investigating upthrust on floating objects; State the law of flotation; Explain the relationship between weight of object and weight of displaced fluid; Solve Examples 4, 5, 6, and 7 involving floating objects; Apply law of flotation to balloons and ships |
Q/A on Archimedes' principle; Performance of Experiment 3.2 - investigating floating objects; Analysis of experimental observations; Statement of law of flotation; Step-by-step solution of Examples 4-7; Discussion of applications in balloons, ships, and everyday objects
|
Test tubes; Sand; Measuring cylinder; Water; Balance; Floating objects; Examples from textbook; Calculators; Model boats; Balloon demonstrations
|
KLB Secondary Physics Form 4, Pages 64-69
|
|
| 5 | 4-5 |
Floating and Sinking
|
Relative Density Determination
Archimedes' Principle and Moments |
By the end of the
lesson, the learner
should be able to:
Define relative density of solids and liquids; Use Archimedes' principle to determine relative density; Apply the formula: RD = Weight in air/(Weight in air - Weight in fluid); Solve Examples 8, 9, 10, 11, and 12 from textbook; Calculate relative density using different methods Perform Experiment 3.3 determining relative density using moments; Understand the principle of moments in relative density determination; Plot graphs of d₁ against d₂ and determine slopes; Apply moments method to determine relative density of liquids; Explain advantages of moments method over direct weighing |
Review of density concepts through Q/A; Introduction to relative density using practical examples; Mathematical derivation of relative density formulae; Step-by-step solution of Examples 8-12; Practical determination of relative density for various materials; Group calculations and comparisons
Q/A on relative density calculations; Setup and performance of Experiment 3.3 - relative density using moments; Data collection and graph plotting; Analysis of graph slopes and their significance; Application to liquids determination; Discussion of method advantages and accuracy |
Spring balance; Various solid objects; Different liquids; Measuring cylinders; Calculators; Examples from textbook; Objects of unknown density; Data recording sheets
Metre rule; Clamps and stands; Solid objects; Metal blocks; Water and other liquids; Graph paper; Calculators; Data recording tables; Balance setup materials |
KLB Secondary Physics Form 4, Pages 69-74
KLB Secondary Physics Form 4, Pages 71-74 |
|
| 6 | 1 |
Floating and Sinking
|
Applications - Hydrometer and Practical Instruments
Applications - Ships, Submarines, and Balloons |
By the end of the
lesson, the learner
should be able to:
Explain the working principle of hydrometers; Describe structure and features of practical hydrometers; Solve Examples 12 and 13 involving hydrometer calculations; Understand applications in measuring density of milk, battery acid, and beer; Calculate hydrometer dimensions and floating positions |
Review of law of flotation through Q/A; Detailed study of hydrometer structure and operation; Analysis of hydrometer sensitivity and design features; Step-by-step solution of Examples 12-13; Discussion of specialized hydrometers (lactometer, battery acid hydrometer); Practical calculations involving hydrometer floating
|
Hydrometer (if available); Different density liquids; Measuring cylinders; Calculators; Examples from textbook; Charts showing hydrometer types; Battery acid hydrometer demonstration
Model ships and submarines; Balloon demonstrations; Charts showing ship cross-sections; Submarine ballast tank models; Different density materials; Calculators; Application examples |
KLB Secondary Physics Form 4, Pages 74-77
|
|
| 6 | 2 |
Electromagnetic Spectrum
|
Introduction and Properties of Electromagnetic Waves
|
By the end of the
lesson, the learner
should be able to:
Define electromagnetic waves and identify their nature; State properties common to all electromagnetic waves; Arrange electromagnetic radiations in order of wavelength and frequency; Calculate wave properties using c = fλ; Solve Examples 1 and 2 from textbook |
Q/A on wave concepts from previous studies; Introduction to electromagnetic waves using everyday examples; Study of electromagnetic spectrum chart; Discussion of wave properties (speed, frequency, wavelength); Mathematical relationship between wave parameters; Solution of Examples 1 and 2 involving calculations
|
Electromagnetic spectrum charts; Wave demonstration materials; Calculators; Radio; Mobile phone; Examples from textbook; Charts showing wave properties
|
KLB Secondary Physics Form 4, Pages 79-81
|
|
| 6 | 3 |
Electromagnetic Spectrum
|
Production and Detection of Electromagnetic Waves I
|
By the end of the
lesson, the learner
should be able to:
Explain production of gamma rays, X-rays, and ultraviolet radiation; Describe detection methods for high-energy radiations; Understand energy transitions in atoms and nuclei; Relate wave energy to frequency using E = hf; Solve Example 3 involving X-ray calculations |
Review of electromagnetic properties through Q/A; Study of high-energy radiation production mechanisms; Analysis of detection methods (photographic plates, G-M tubes, fluorescent materials); Discussion of atomic and nuclear energy changes; Step-by-step solution of Example 3; Safety considerations for high-energy radiations
|
Charts showing radiation production; Photographic film; Fluorescent materials; UV lamp (if available); Geiger counter (if available); Example 3 materials; Safety equipment demonstrations
|
KLB Secondary Physics Form 4, Pages 81-82
|
|
| 6-8 |
END TERM EXAM AND MID TERM BREAK |
|||||||
| 8 | 2 |
Electromagnetic Spectrum
|
Production and Detection of Electromagnetic Waves II
|
By the end of the
lesson, the learner
should be able to:
Explain production of visible light, infrared, microwaves, and radio waves; Describe detection methods for each radiation type; Understand role of oscillating circuits in radio wave production; Compare detection mechanisms across the spectrum; Demonstrate detection of some radiations |
Q/A on high-energy radiations; Study of lower-energy radiation production (thermal, electronic oscillations); Analysis of detection methods (eyes, thermopiles, crystal detectors, radio receivers); Practical demonstrations of infrared detection; Discussion of antenna and oscillating circuit principles; Group identification of sources and detectors
|
Infrared sources (heaters); Thermometer with blackened bulb; Radio receivers; Microwave oven (demonstration); Oscillating circuit models; Various electromagnetic sources
|
KLB Secondary Physics Form 4, Pages 81-82
|
|
| 8 | 3 |
Electromagnetic Spectrum
|
Applications of Electromagnetic Waves I
|
By the end of the
lesson, the learner
should be able to:
Describe medical applications of gamma rays and X-rays; Explain industrial uses of high-energy radiations; Understand applications in sterilization and cancer therapy; Discuss X-ray photography and crystallography; Analyze benefits and limitations of high-energy radiation applications |
Review of radiation properties and production; Detailed study of gamma ray applications (sterilization, cancer treatment, flaw detection); Analysis of X-ray applications (medical photography, security, crystallography); Discussion of controlled radiation exposure; Examination of X-ray photographs and medical applications
|
X-ray photographs; Medical imaging examples; Industrial radiography charts; Cancer treatment information; Sterilization process diagrams; Safety protocol charts
|
KLB Secondary Physics Form 4, Pages 82-84
|
|
| 8 | 4-5 |
Electromagnetic Spectrum
|
Applications of Electromagnetic Waves II
Specific Applications - Radar and Microwave Cooking Hazards and Safety Considerations |
By the end of the
lesson, the learner
should be able to:
Explain applications of ultraviolet radiation; Describe uses of visible light in technology; Understand infrared applications in heating and imaging; Analyze microwave applications in cooking and radar; Discuss radio wave applications in communication Identify hazards of high-energy electromagnetic radiations; Explain biological effects of UV, X-rays, and gamma rays; Describe safety measures for radiation protection; Understand delayed effects like cancer and genetic damage; Apply safety principles in radiation use |
Q/A on high-energy radiation applications; Study of UV applications (fluorescence, sterilization, vitamin D, forgery detection); Analysis of visible light uses (photography, optical fibers, lasers); Exploration of infrared applications (heating, night vision, remote controls); Discussion of microwave and radio wave technologies
Q/A on electromagnetic applications; Study of radiation hazards and biological effects; Analysis of skin damage, cell destruction, and genetic effects; Discussion of Chernobyl disaster and radiation accidents; Exploration of safety measures (shielding, distance, time limits); Application of ALARA principle (As Low As Reasonably Achievable) |
UV lamp demonstrations; Optical fiber samples; Infrared thermometer; Microwave oven (demonstration); Radio equipment; Remote controls; Radar images; Communication devices
Radar system diagrams; Microwave oven cross-section charts; Wave reflection demonstrations; Safety instruction materials; Magnetron information; Aircraft/ship tracking examples Radiation hazard charts; Safety equipment demonstrations; Chernobyl disaster information; Biological effect diagrams; Safety protocol materials; Radiation protection examples |
KLB Secondary Physics Form 4, Pages 82-85
KLB Secondary Physics Form 4, Pages 85 |
|
| 9 | 1 |
Electromagnetic Induction
|
Introduction and Historical Background
|
By the end of the
lesson, the learner
should be able to:
Define electromagnetic induction and its significance; Explain Faraday's discovery and its impact on modern technology; Understand the relationship between magnetism and electricity; Identify examples of electromagnetic induction in daily life; Appreciate the importance of relative motion in electromagnetic phenomena |
Q/A on magnetic fields and electric current relationships from previous studies; Introduction to Michael Faraday's discovery and its historical significance; Discussion of electromagnetic induction examples in daily life (generators, transformers, motors); Overview of chapter content and learning objectives; Introduction to practical applications in power generation and electronics
|
Charts showing Faraday's experiments; Pictures of power stations; Transformers; Generators; Historical timeline of electromagnetic discoveries; Real-world applications display
|
KLB Secondary Physics Form 4, Pages 86
|
|
| 9 | 2 |
Electromagnetic Induction
|
Conditions for Electromagnetic Induction - Straight Conductor
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.1 using straight conductor; Identify conditions necessary for inducing e.m.f. in a straight conductor; Observe effects of different types of motion on induced current; Understand the importance of relative motion between conductor and magnetic field; Analyze galvanometer deflections |
Performance of Experiment 5.1 using straight conductor AB in U-shaped magnet; Systematic investigation of conductor movement (vertical up/down, parallel to field, stationary, different angles); Observation and recording of galvanometer deflections; Analysis of current direction changes with motion reversal; Discussion of relative motion importance and field cutting concept
|
Thick electric conductor; U-shaped magnet; Galvanometer; Connecting wires; Clamp and stand setup; Data recording sheets
|
KLB Secondary Physics Form 4, Pages 86-87
|
|
| 9 | 3 |
Electromagnetic Induction
|
Conditions for Electromagnetic Induction - Coils
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.1 using coils; Compare induction effects in straight conductors vs coils; Observe effects of magnet movement into and out of coils; Understand flux linkage concept; Analyze why coils are more effective than single conductors |
Continuation of Experiment 5.1 using coil instead of straight conductor; Investigation of magnet movement into coil, out of coil, and stationary positions; Comparison of deflection magnitudes between straight conductor and coil setups; Analysis of why coils produce larger induced e.m.f.; Discussion of magnetic flux and flux linkage concepts
|
Coils of different sizes; Magnets of various strengths; Galvanometer; Connecting wires; Comparison data sheets
|
KLB Secondary Physics Form 4, Pages 87-88
|
|
| 9 | 4-5 |
Electromagnetic Induction
|
Factors Affecting Induced E.M.F. - Rate of Change
Factors Affecting Induced E.M.F. - Magnetic Field Strength Factors Affecting Induced E.M.F. - Number of Turns |
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.2 investigating rate of change effects; Understand relationship between speed of motion and induced e.m.f.; Collect and analyze data on rate of flux change; Establish that faster changes produce larger e.m.f.; Apply findings to practical situations Perform Experiment 5.4 investigating effect of coil turns; Understand relationship between number of turns and induced e.m.f.; Construct coils with different numbers of turns; Analyze why more turns produce larger e.m.f.; State Faraday's law of electromagnetic induction |
Performance of Experiment 5.2 investigating relationship between rate of change of magnetic flux and induced e.m.f.; Systematic variation of magnet withdrawal speeds (very fast, moderate, very slow); Recording and comparison of galvanometer deflections; Data analysis and conclusion drawing; Discussion of practical implications in generators and other applications
Performance of Experiment 5.4 investigating relationship between number of turns and induced e.m.f.; Construction of solenoids with 60, 50, 40, 30, and 20 turns; Systematic testing with same magnet withdrawal speed; Recording and analysis of galvanometer readings; Mathematical relationship establishment; Statement of Faraday's law based on experimental evidence |
Coil of at least 50 turns; Sensitive galvanometer; Magnet; Stopwatch; Data collection tables; Graph paper for analysis
U-shaped electromagnet; Variable resistor; Wire PQ; Galvanometer; Ammeter; Connecting wires; Power supply; Data recording materials Insulated copper wire; Sensitive galvanometer; Magnet; Connecting wires; Wire cutting and measuring tools; Data analysis sheets |
KLB Secondary Physics Form 4, Pages 88-89
KLB Secondary Physics Form 4, Pages 89-90 |
|
| 10 | 1 |
Electromagnetic Induction
|
Lenz's Law and Direction of Induced Current
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.5 determining direction of induced current; State Lenz's law and explain its significance; Understand energy conservation in electromagnetic induction; Predict current direction using Lenz's law; Relate Lenz's law to conservation of energy principle |
Performance of Experiment 5.5(a) establishing galvanometer deflection direction; Performance of Experiment 5.5(b) investigating induced current direction with magnet movement; Analysis of current directions and magnetic pole formation; Statement and explanation of Lenz's law; Discussion of energy conservation and opposition principle; Practice in predicting current directions
|
Variable resistor; Sensitive center-zero galvanometer; Connecting wires; Coil; Magnet; Switch; Battery; Direction analysis charts
|
KLB Secondary Physics Form 4, Pages 90-93
|
|
| 10 | 2 |
Electromagnetic Induction
|
Fleming's Right-Hand Rule
|
By the end of the
lesson, the learner
should be able to:
Perform Experiment 5.6 with straight conductors; State Fleming's right-hand rule (dynamo rule); Apply the rule to determine direction of induced current; Understand relationship between motion, field, and current directions; Solve Example 1 involving square loop movement |
Performance of Experiment 5.6 determining induced current direction in straight conductor; Introduction and demonstration of Fleming's right-hand rule; Practice applying the rule to various conductor movements; Step-by-step solution of Example 1 (square loop in magnetic field); Analysis of current directions in different parts of the loop; Verification of Fleming's rule consistency with Lenz's law
|
U-shaped magnet; Thick wire AB; Marked center-zero galvanometer; Hand models for rule demonstration; Example 1 setup materials; Direction analysis worksheets
|
KLB Secondary Physics Form 4, Pages 93-97
|
|
| 10 | 3 |
Electromagnetic Induction
|
Applications of Induction Laws
|
By the end of the
lesson, the learner
should be able to:
Solve Examples 2 and 3 involving current direction; Apply Lenz's law to predict current directions in circuits; Understand induced current effects in neighboring circuits; Analyze changing magnetic fields and their effects; Use both Fleming's rule and Lenz's law in problem solving |
Q/A review of Fleming's rule and Lenz's law; Step-by-step solution of Example 2 (current in conductor AB affecting nearby loop); Detailed analysis of Example 3 (magnet movement and coil current direction); Practice problems involving current direction prediction; Group work on applying both laws to various scenarios; Discussion of consistency between different methods
|
Examples 2 and 3 setup materials; Problem-solving worksheets; Charts showing current direction analysis; Group work materials; Calculators
|
KLB Secondary Physics Form 4, Pages 94-97
|
|
| 10 | 4-5 |
Electromagnetic Induction
|
Mutual Induction
Transformers - Basic Principles Transformer Equations and Calculations |
By the end of the
lesson, the learner
should be able to:
Define mutual induction and demonstrate its occurrence; Perform Experiment 5.7 showing mutual induction between coils; Explain factors affecting mutual induction; Understand primary and secondary coil relationships; Discuss enhancement methods using iron cores Derive transformer turns rule equation; Apply transformer equations for voltage and current relationships; Calculate transformer efficiency; Solve Examples 4 and 5 involving transformer problems; Understand ideal vs practical transformer differences |
Q/A on electromagnetic induction principles; Introduction to mutual induction concept and definition; Performance of Experiment 5.7 demonstrating mutual induction between primary and secondary coils; Investigation of switching effects, current changes, and A.C. source effects; Analysis of mutual induction enhancement using soft iron rod and ring; Discussion of applications in transformers
Q/A on transformer working principles; Mathematical derivation of turns rule (Vp/Vs = Np/Ns); Development of current relationship (IpVp = IsVs for ideal transformer); Introduction to efficiency calculations; Step-by-step solution of Examples 4 and 5; Discussion of ideal transformer assumptions vs practical limitations |
Two coils P and S; Galvanometer; Battery; A.C. power source; Switch; Rheostat; Connecting wires; Soft iron rod; Soft iron ring; Enhancement demonstration materials
Long insulated copper wire; Soft iron rod; Low frequency A.C. source; A.C. voltmeter; Switch; Bulb; Transformer construction materials; Symbol charts Calculators; Examples 4 and 5 materials; Mathematical derivation charts; Efficiency calculation worksheets; Transformer specification data |
KLB Secondary Physics Form 4, Pages 97-100
KLB Secondary Physics Form 4, Pages 102-105 |
|
| 11 | 1 |
Electromagnetic Induction
|
Transformer Energy Losses and Example 6
|
By the end of the
lesson, the learner
should be able to:
Identify four main energy losses in transformers; Explain methods to minimize each type of energy loss; Understand lamination and its purpose; Solve Example 6 involving power transmission system; Calculate efficiency and power losses in practical systems |
Review of ideal transformer equations; Analysis of energy losses (flux leakage, copper losses, eddy currents, hysteresis loss); Study of loss minimization techniques including core lamination; Discussion of practical transformer efficiency; Step-by-step solution of Example 6 (complex power transmission system); Analysis of step-up and step-down transformer roles
|
Charts showing energy losses; Laminated core samples; Example 6 complex setup; Power transmission diagrams; Efficiency calculation materials; Loss minimization demonstration aids
|
KLB Secondary Physics Form 4, Pages 105-108
|
|
| 11 | 2 |
Electromagnetic Induction
Mains Electricity |
Applications - Generators, Microphones, and Induction Coils
Sources of Mains Electricity |
By the end of the
lesson, the learner
should be able to:
Explain structure and working of A.C. and D.C. generators; Describe moving-coil microphone operation; Understand induction coil structure and applications; Compare slip rings with split ring commutators; Analyze generator output waveforms and applications |
Review of electromagnetic induction in rotating systems; Detailed study of A.C. generator structure and sinusoidal output; Analysis of D.C. generator with split ring commutator; Explanation of moving-coil microphone components and sound conversion; Description of induction coil operation and high voltage generation; Discussion of applications in car ignition systems
|
A.C. generator model; D.C. generator model; Moving-coil microphone demonstration; Induction coil setup; Output waveform charts; Slip ring and commutator comparisons; Bicycle dynamo
Pictures of power stations Charts showing different energy sources Videos of power generation Maps of Kenya's power grid Sample coal, biomass materials |
KLB Secondary Physics Form 4, Pages 108-112
|
|
| 11 | 3 |
Mains Electricity
|
The Grid System and Power Transmission
High Voltage Transmission and Power Losses |
By the end of the
lesson, the learner
should be able to:
Define the national grid system Explain the need for interconnected power stations Describe high voltage transmission State the voltage levels in power transmission |
Q&A on previous lesson
Drawing and labeling the grid system Discussion on power transmission in Kenya Explaining voltage step-up process Problem-solving on power transmission |
Chart of national grid system
Transmission line models Maps showing power lines Transformer models Voltage measurement devices Calculators Worked example sheets Pictures of transmission towers Safety warning signs Formula charts |
KLB Secondary Physics Form 4, Pages 117-118
|
|
| 11 | 4-5 |
Mains Electricity
|
Domestic Wiring System
Fuses, Circuit Breakers and Safety Devices Ring Mains Circuit and Three-Pin Plugs Electrical Energy Consumption and Costing Problem Solving and Applications |
By the end of the
lesson, the learner
should be able to:
Describe the domestic wiring system Identify components of consumer fuse box Explain the function of live, neutral and earth wires Draw simple domestic wiring circuits Define kilowatt-hour (kWh) Calculate electrical energy consumption Determine cost of electrical energy Apply energy formulas to practical problems |
Q&A on transmission systems
Examination of house wiring components Drawing domestic wiring diagrams Identification of electrical safety features Practical observation of electrical installations Review of power and energy concepts Introduction to kilowatt-hour unit Worked examples on energy calculations Practice problems on electricity billing Analysis of electricity bills |
House wiring components
Fuse box model Different types of fuses Electrical cables (samples) Circuit diagrams Multimeter Various fuses (2A, 5A, 13A) Circuit breakers Fuse wire samples Electrical appliances Calculators Safety equipment samples Three-pin plugs Electrical cables Wire strippers Screwdrivers Ring mains circuit model Color-coded wires Calculators Sample electricity bills Electrical appliances with ratings Stop watches Energy meter model Formula charts Problem sheets Past examination questions Real electricity bills Energy conservation charts |
KLB Secondary Physics Form 4, Pages 121-124
KLB Secondary Physics Form 4, Pages 125-128 |
|
| 12 | 1 |
Cathode Rays and Cathode Ray Tube
|
Thermionic Emission
Production and Properties of Cathode Rays Structure of Cathode Ray Oscilloscope |
By the end of the
lesson, the learner
should be able to:
Define thermionic emission Explain the process of electron emission from heated metals Describe a simple experiment to demonstrate thermionic emission State factors affecting thermionic emission |
Q&A on electron structure and energy
Demonstration of thermionic emission using simple circuit Discussion on work function of different metals Explanation of electron emission process Identification of materials used in cathodes |
Simple thermionic emission apparatus
Low voltage power supply (6V) Milliammeter Evacuated glass bulb Heated filament Charts showing electron emission Cathode ray tube (simple) High voltage supply (EHT) Fluorescent screen Maltese cross or opaque object Bar magnets Charged plates CRO (demonstration model) Charts showing CRO structure Diagrams of electron gun Models of deflection plates High voltage power supply |
KLB Secondary Physics Form 4, Pages 131-132
|
|
| 12 | 2 |
Cathode Rays and Cathode Ray Tube
|
CRO Controls and Operation
CRO as a Voltmeter |
By the end of the
lesson, the learner
should be able to:
Explain the function of brightness and focus controls Describe vertical and horizontal deflection systems Explain the time base operation Demonstrate basic CRO operation |
Review of CRO structure
Demonstration of CRO controls Explanation of time base voltage Practice with focus and brightness adjustment Observation of spot movement across screen |
Working CRO
Signal generator Connecting leads Various input signals Time base control charts Oscilloscope manual DC power supplies AC signal sources Digital voltmeter Graph paper Calculators |
KLB Secondary Physics Form 4, Pages 135-137
|
|
| 12-13 |
OPENER TWO |
|||||||
| 13 | 3 |
Cathode Rays and Cathode Ray Tube
|
Frequency Measurement using CRO
The Television Tube |
By the end of the
lesson, the learner
should be able to:
Measure frequency of AC signals using CRO Calculate period and frequency from CRO traces Apply the relationship f = 1/T Determine peak voltage of AC signals |
Review of voltage measurement with CRO
Demonstration of AC signal display on CRO Measurement of wavelength and period Calculation of frequency from time base setting Practice problems on frequency determination |
Working CRO with time base
Audio frequency generator Connecting leads Graph paper for measurements Calculators Stop watch TV tube (demonstration model) Deflection coils TV receiver (old CRT type) Charts comparing TV and CRO Color TV tube diagram |
KLB Secondary Physics Form 4, Pages 139-141
|
|
| 13 | 4-5 |
Cathode Rays and Cathode Ray Tube
X-Rays X-Rays |
Problem Solving and Applications
Production of X-Rays Properties of X-Rays and Energy Concepts Hard and Soft X-Rays Uses of X-Rays in Medicine and Industry Dangers of X-Rays and Safety Precautions Problem Solving and Applications Review |
By the end of the
lesson, the learner
should be able to:
Solve numerical problems on CRO measurements Apply CRO principles to practical situations Analyze waveforms displayed on CRO Evaluate the importance of cathode ray technology Distinguish between hard and soft X-rays Explain factors affecting X-ray hardness Relate accelerating voltage to X-ray penetrating power Describe intensity and quantity control of X-rays |
Review of all chapter concepts
Problem-solving exercises on voltage and frequency measurements Analysis of complex waveforms Discussion on modern applications of cathode ray technology Assessment preparation Q&A on X-ray properties and energy Comparison of hard and soft X-rays characteristics Discussion on penetrating power differences Explanation of voltage effects on X-ray quality Analysis of X-ray intensity control methods |
Calculators
Problem-solving worksheets Sample CRO traces Past examination questions Graph paper Reference materials Charts showing X-ray tube structure Diagram of X-ray production process Models of rotating anode Pictures of medical X-ray equipment Video clips of X-ray tube operation Electromagnetic spectrum chart Energy calculation worksheets Constants and formulae charts Sample X-ray images Comparison charts of hard vs soft X-rays Penetration demonstration materials Voltage control diagrams Medical X-ray examples Industrial X-ray applications Medical X-ray images CT scan pictures Industrial radiography examples Crystal diffraction patterns Airport security equipment photos Charts of various X-ray applications Safety equipment samples (lead aprons) Radiation warning signs Pictures of X-ray protection facilities Dosimeter badges Charts showing radiation effects Safety protocol posters Calculators Problem-solving worksheets Past examination questions Real X-ray case studies Modern X-ray technology articles Assessment materials |
KLB Secondary Physics Form 4, Pages 131-142
KLB Secondary Physics Form 4, Pages 147-148 |
|
Your Name Comes Here