If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 1 |
OPENING WEEK |
|||||||
| 2 | 1 |
Loci
|
Introduction to Loci
|
By the end of the
lesson, the learner
should be able to:
-Define locus and understand its meaning -Distinguish between locus of points, lines, and regions -Identify real-world examples of loci -Understand the concept of movement according to given laws |
-Demonstrate door movement to show path traced by corner -Use string and pencil to show circular locus -Discuss examples: clock hands, pendulum swing -Students trace paths of moving objects |
Exercise books
-Manila paper -String -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 73-75
|
|
| 2 | 2 |
Loci
|
Basic Locus Concepts and Laws
Perpendicular Bisector Locus |
By the end of the
lesson, the learner
should be able to:
-Understand that loci follow specific laws or conditions -Identify the laws governing different types of movement -Distinguish between 2D and 3D loci -Apply locus concepts to simple problems |
-Physical demonstrations with moving objects -Students track movement of classroom door -Identify laws governing pendulum movement -Practice stating locus laws clearly |
Exercise books
-Manila paper -String -Real objects -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 73-75
|
|
| 2 | 3 |
Loci
|
Properties and Applications of Perpendicular Bisector
Locus of Points at Fixed Distance from a Point |
By the end of the
lesson, the learner
should be able to:
-Understand perpendicular bisector in 3D space -Apply perpendicular bisector to find circumcenters -Solve practical problems using perpendicular bisector -Use perpendicular bisector in triangle constructions |
-Find circumcenter of triangle using perpendicular bisectors -Solve water pipe problems (equidistant from two points) -Apply to real-world location problems -Practice with various triangle types |
Exercise books
-Manila paper -Compass -Ruler -String |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
| 2 | 4 |
Loci
|
Locus of Points at Fixed Distance from a Line
Angle Bisector Locus |
By the end of the
lesson, the learner
should be able to:
-Define locus of points at fixed distance from straight line -Construct parallel lines at given distances -Understand cylindrical surface in 3D -Apply to practical problems like road margins |
-Construct parallel lines using ruler and set square -Mark points at equal distances from given line -Discuss road design, river banks, field boundaries -Practice with various distances and orientations |
Exercise books
-Manila paper -Ruler -Set square -Compass -Protractor |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
| 2 | 5 |
Loci
|
Properties and Applications of Angle Bisector
Constant Angle Locus |
By the end of the
lesson, the learner
should be able to:
-Understand relationship between angle bisectors in triangles -Apply angle bisector theorem -Solve problems involving inscribed circles -Use angle bisectors in geometric constructions |
-Construct inscribed circle using angle bisectors -Apply angle bisector theorem to solve problems -Find external angle bisectors -Solve practical surveying problems |
Exercise books
-Manila paper -Compass -Ruler -Protractor |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
| 2 | 6 |
Loci
|
Advanced Constant Angle Constructions
Introduction to Intersecting Loci |
By the end of the
lesson, the learner
should be able to:
-Construct constant angle loci for various angles -Find centers of constant angle arcs -Solve complex constant angle problems -Apply to geometric theorem proving |
-Find centers for 60°, 90°, 120° angle loci -Construct major and minor arcs -Solve problems involving multiple angle constraints -Verify constructions using measurement |
Exercise books
-Manila paper -Compass -Protractor -Ruler |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
| 2 | 7 |
Loci
|
Intersecting Circles and Lines
Triangle Centers Using Intersecting Loci |
By the end of the
lesson, the learner
should be able to:
-Find intersections of circles with lines -Determine intersections of two circles -Solve problems with line and circle combinations -Apply to geometric construction problems |
-Construct intersecting circles and lines -Find common tangents to circles -Solve problems involving circle-line intersections -Apply to wheel and track problems |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 83-89
|
|
| 3 | 1 |
Loci
|
Complex Intersecting Loci Problems
Introduction to Loci of Inequalities |
By the end of the
lesson, the learner
should be able to:
-Solve problems with three or more conditions -Find regions satisfying multiple constraints -Apply intersecting loci to optimization problems -Use systematic approach to complex problems |
-Solve treasure hunt type problems -Find optimal locations for facilities -Apply to surveying and engineering problems -Practice systematic problem-solving approach |
Exercise books
-Manila paper -Compass -Real-world scenarios -Ruler -Colored pencils |
KLB Secondary Mathematics Form 4, Pages 83-89
|
|
| 3 | 2 |
Loci
|
Distance Inequality Loci
Combined Inequality Loci |
By the end of the
lesson, the learner
should be able to:
-Represent distance inequalities graphically -Solve problems with "less than" and "greater than" distances -Find regions satisfying distance constraints -Apply to safety zone problems |
-Shade regions inside and outside circles -Solve exclusion zone problems -Apply to communication range problems -Practice with multiple distance constraints |
Exercise books
-Manila paper -Compass -Colored pencils -Ruler |
KLB Secondary Mathematics Form 4, Pages 89-92
|
|
| 3 | 3 |
Loci
|
Advanced Inequality Applications
Introduction to Loci Involving Chords |
By the end of the
lesson, the learner
should be able to:
-Apply inequality loci to linear programming introduction -Solve real-world optimization problems -Find maximum and minimum values in regions -Use graphical methods for decision making |
-Solve simple linear programming problems -Find optimal points in feasible regions -Apply to business and farming scenarios -Practice identifying corner points |
Exercise books
-Manila paper -Ruler -Real problem data -Compass |
KLB Secondary Mathematics Form 4, Pages 89-92
|
|
| 3 | 4 |
Loci
|
Chord-Based Constructions
Advanced Chord Problems |
By the end of the
lesson, the learner
should be able to:
-Construct circles through three points using chords -Find loci of chord midpoints -Solve problems with intersecting chords -Apply chord properties to geometric constructions |
-Construct circles using three non-collinear points -Find locus of midpoints of parallel chords -Solve chord intersection problems -Practice with chord-tangent relationships |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 92-94
|
|
| 3 | 5 |
Loci
Three Dimensional Geometry |
Integration of All Loci Types
Introduction to 3D Concepts |
By the end of the
lesson, the learner
should be able to:
-Combine different types of loci in single problems -Solve comprehensive loci challenges -Apply multiple loci concepts simultaneously -Use loci in geometric investigations |
-Solve multi-step loci problems -Combine circle, line, and angle loci -Apply to real-world complex scenarios -Practice systematic problem-solving |
Exercise books
-Manila paper -Compass -Ruler -Cardboard boxes -Real 3D objects |
KLB Secondary Mathematics Form 4, Pages 73-94
|
|
| 3 | 6 |
Three Dimensional Geometry
|
Properties of Common Solids
Understanding Planes in 3D Space |
By the end of the
lesson, the learner
should be able to:
-Identify properties of cubes, cuboids, pyramids -Count faces, edges, vertices systematically -Apply Euler's formula (V - E + F = 2) -Classify solids by their geometric properties |
-Make models using cardboard and tape -Create table of properties for different solids -Verify Euler's formula with physical models -Compare prisms and pyramids systematically |
Exercise books
-Cardboard -Scissors -Tape/glue -Manila paper -Books/boards -Classroom examples |
KLB Secondary Mathematics Form 4, Pages 113-115
|
|
| 3 | 7 |
Three Dimensional Geometry
|
Lines in 3D Space
Introduction to Projections |
By the end of the
lesson, the learner
should be able to:
-Understand different types of lines in 3D -Identify parallel, intersecting, and skew lines -Recognize that skew lines don't intersect and aren't parallel -Find examples of different line relationships |
-Use rulers/sticks to demonstrate line relationships -Show parallel lines using parallel rulers -Demonstrate skew lines using classroom edges -Practice identifying line relationships in models |
Exercise books
-Rulers/sticks -3D models -Manila paper -Light source |
KLB Secondary Mathematics Form 4, Pages 113-115
|
|
| 4 | 1 |
Three Dimensional Geometry
|
Angle Between Line and Plane - Concept
Calculating Angles Between Lines and Planes |
By the end of the
lesson, the learner
should be able to:
-Define angle between line and plane -Understand that angle is measured with projection -Identify the projection of line on plane -Recognize when line is perpendicular to plane |
-Demonstrate using stick against book (plane) -Show that angle is with projection, not plane itself -Use protractor to measure angles with projections -Identify perpendicular lines to planes |
Exercise books
-Manila paper -Protractor -Rulers/sticks -Calculators -3D problem diagrams |
KLB Secondary Mathematics Form 4, Pages 115-123
|
|
| 4 | 2 |
Three Dimensional Geometry
|
Advanced Line-Plane Angle Problems
Introduction to Plane-Plane Angles |
By the end of the
lesson, the learner
should be able to:
-Solve complex angle problems systematically -Apply coordinate geometry methods where helpful -Use multiple right-angled triangles in solutions -Verify answers using different approaches |
-Practice with tent and roof angle problems -Solve ladder against wall problems in 3D -Work through architectural angle calculations -Use real-world engineering applications |
Exercise books
-Manila paper -Real scenarios -Problem sets -Books -Folded paper |
KLB Secondary Mathematics Form 4, Pages 115-123
|
|
| 4 | 3 |
Three Dimensional Geometry
|
Finding Angles Between Planes
Complex Plane-Plane Angle Problems |
By the end of the
lesson, the learner
should be able to:
-Construct perpendiculars to find plane angles -Apply trigonometry to calculate dihedral angles -Use right-angled triangles in plane intersection -Solve angle problems in prisms and pyramids |
-Work through construction method step-by-step -Practice finding intersection lines first -Calculate angles in triangular prisms -Apply to roof and building angle problems |
Exercise books
-Manila paper -Protractor -Building examples -Complex 3D models -Architecture examples |
KLB Secondary Mathematics Form 4, Pages 123-128
|
|
| 4 | 4 |
Three Dimensional Geometry
|
Practical Applications of Plane Angles
Understanding Skew Lines |
By the end of the
lesson, the learner
should be able to:
-Apply plane angles to real-world problems -Solve engineering and construction problems -Calculate angles in roof structures -Use in navigation and surveying contexts |
-Calculate roof pitch angles -Solve bridge construction angle problems -Apply to mining and tunnel excavation -Use in aerial navigation problems |
Exercise books
-Manila paper -Real engineering data -Construction examples -Rulers -Building frameworks |
KLB Secondary Mathematics Form 4, Pages 123-128
|
|
| 4 | 5 |
Three Dimensional Geometry
|
Angle Between Skew Lines
Advanced Skew Line Problems Distance Calculations in 3D |
By the end of the
lesson, the learner
should be able to:
-Understand how to find angle between skew lines -Apply translation method for skew line angles -Use parallel line properties in 3D -Calculate angles by creating intersecting lines |
-Demonstrate translation method using rulers -Translate one line to intersect the other -Practice with cuboid edge problems -Apply to framework and structure problems |
Exercise books
-Manila paper -Rulers -Translation examples -Engineering examples -Structure diagrams -Distance calculation charts -3D coordinate examples |
KLB Secondary Mathematics Form 4, Pages 128-135
|
|
| 4 | 6 |
Three Dimensional Geometry
|
Volume and Surface Area Applications
Coordinate Geometry in 3D |
By the end of the
lesson, the learner
should be able to:
-Connect 3D geometry to volume calculations -Apply angle calculations to surface area problems -Use 3D relationships in optimization -Solve practical volume and area problems |
-Calculate slant heights using 3D angles -Find surface areas of pyramids using angles -Apply to packaging and container problems -Use in architectural space planning |
Exercise books
-Manila paper -Volume formulas -Real containers -3D coordinate grid -Room corner reference |
KLB Secondary Mathematics Form 4, Pages 115-135
|
|
| 4 | 7 |
Three Dimensional Geometry
Longitudes and Latitudes |
Integration with Trigonometry
Introduction to Earth as a Sphere |
By the end of the
lesson, the learner
should be able to:
-Apply trigonometry extensively to 3D problems -Use multiple trigonometric ratios in solutions -Combine trigonometry with 3D geometric reasoning -Solve complex problems requiring trig and geometry |
-Work through problems requiring sin, cos, tan -Use trigonometric identities in 3D contexts -Practice angle calculations in pyramids -Apply to navigation and astronomy problems |
Exercise books
-Manila paper -Trigonometric tables -Astronomy examples -Globe/spherical ball -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 115-135
|
|
| 5 | 1 |
Longitudes and Latitudes
|
Great and Small Circles
Understanding Latitude |
By the end of the
lesson, the learner
should be able to:
-Define great circles and small circles on a sphere -Identify properties of great and small circles -Understand that great circles divide sphere into hemispheres -Recognize examples of great and small circles on Earth |
-Demonstrate great circles using globe and string -Show that great circles pass through center -Compare radii of great and small circles -Identify equator as the largest circle |
Exercise books
-Globe -String -Manila paper -Tape/string -Protractor |
KLB Secondary Mathematics Form 4, Pages 136-139
|
|
| 5 | 2 |
Longitudes and Latitudes
|
Properties of Latitude Lines
Understanding Longitude |
By the end of the
lesson, the learner
should be able to:
-Understand that latitude lines are parallel circles -Recognize that latitude lines are small circles (except equator) -Calculate radii of latitude circles using trigonometry -Apply formula r = R cos θ for latitude circle radius |
-Demonstrate parallel nature of latitude lines -Calculate radius of latitude circle at 60°N -Show relationship between latitude and circle size -Use trigonometry to find circle radii |
Exercise books
-Globe -Calculator -Manila paper -String -World map |
KLB Secondary Mathematics Form 4, Pages 136-139
|
|
| 5 | 3 |
Longitudes and Latitudes
|
Properties of Longitude Lines
Position of Places on Earth |
By the end of the
lesson, the learner
should be able to:
-Understand that longitude lines are great circles -Recognize that all longitude lines pass through poles -Understand that longitude lines converge at poles -Identify that opposite longitudes differ by 180° |
-Show longitude lines converging at poles -Demonstrate that longitude lines are great circles -Find opposite longitude positions -Compare longitude and latitude line properties |
Exercise books
-Globe -String -Manila paper -World map -Kenya map |
KLB Secondary Mathematics Form 4, Pages 136-139
|
|
| 5 | 4 |
Longitudes and Latitudes
|
Latitude and Longitude Differences
Introduction to Distance Calculations |
By the end of the
lesson, the learner
should be able to:
-Calculate latitude differences between two points -Calculate longitude differences between two points -Understand angular differences on same and opposite sides -Apply difference calculations to navigation problems |
-Calculate difference between Nairobi and Cairo -Practice with points on same and opposite sides -Work through systematic calculation methods -Apply to real navigation scenarios |
Exercise books
-Manila paper -Calculator -Navigation examples -Globe -Conversion charts |
KLB Secondary Mathematics Form 4, Pages 139-143
|
|
| 5 | 5 |
Longitudes and Latitudes
|
Distance Along Great Circles
Distance Along Small Circles (Parallels) |
By the end of the
lesson, the learner
should be able to:
-Calculate distances along meridians (longitude lines) -Calculate distances along equator -Apply formula: distance = angle × 60 nm -Convert distances between nautical miles and kilometers |
-Calculate distance from Nairobi to Cairo (same longitude) -Find distance between two points on equator -Practice conversion between units -Apply to real geographical examples |
Exercise books
-Manila paper -Calculator -Real examples -African city examples |
KLB Secondary Mathematics Form 4, Pages 143-156
|
|
| 5 | 6 |
Longitudes and Latitudes
|
Shortest Distance Problems
Advanced Distance Calculations |
By the end of the
lesson, the learner
should be able to:
-Understand that shortest distance is along great circle -Compare great circle and parallel distances -Calculate shortest distances between any two points -Apply to navigation and flight path problems |
-Compare distances: parallel vs great circle routes -Calculate shortest distance between London and New York -Apply to aircraft flight planning -Discuss practical navigation implications |
Exercise books
-Manila paper -Calculator -Flight path examples -Surveying examples |
KLB Secondary Mathematics Form 4, Pages 143-156
|
|
| 5 | 7 |
Longitudes and Latitudes
|
Introduction to Time and Longitude
Local Time Calculations |
By the end of the
lesson, the learner
should be able to:
-Understand relationship between longitude and time -Learn that Earth rotates 360° in 24 hours -Calculate that 15° longitude = 1 hour time difference -Understand concept of local time |
-Demonstrate Earth's rotation using globe -Show how sun position determines local time -Calculate time differences for various longitudes -Apply to understanding sunrise/sunset times |
Exercise books
-Globe -Light source -Time zone examples -Manila paper -World time examples -Calculator |
KLB Secondary Mathematics Form 4, Pages 156-161
|
|
| 6 | 1 |
Longitudes and Latitudes
|
Greenwich Mean Time (GMT)
Complex Time Problems |
By the end of the
lesson, the learner
should be able to:
-Understand Greenwich as reference for world time -Calculate local times relative to GMT -Apply GMT to solve international time problems -Understand time zones and their practical applications |
-Use Greenwich as time reference point -Calculate local times for cities worldwide -Apply to international business scenarios -Discuss practical applications of GMT |
Exercise books
-Manila paper -World map -Time zone charts -International examples -Travel scenarios |
KLB Secondary Mathematics Form 4, Pages 156-161
|
|
| 6 | 2 |
Longitudes and Latitudes
Linear Programming |
Speed Calculations
Introduction to Linear Programming |
By the end of the
lesson, the learner
should be able to:
-Define knot as nautical mile per hour -Calculate speeds in knots and km/h -Apply speed calculations to navigation problems -Solve problems involving time, distance, and speed |
-Calculate ship speeds in knots -Convert between knots and km/h -Apply to aircraft and ship navigation -Practice with maritime and aviation examples |
Exercise books
-Manila paper -Calculator -Navigation examples -Real-life examples -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 156-161
|
|
| 6 | 3 |
Linear Programming
|
Forming Linear Inequalities from Word Problems
Types of Constraints |
By the end of the
lesson, the learner
should be able to:
-Translate real-world constraints into mathematical inequalities -Identify decision variables in word problems -Form inequalities from resource limitations -Use correct mathematical notation for constraints |
-Work through farmer's crop planning problem -Practice translating budget constraints into inequalities -Form inequalities from production capacity limits -Use Kenyan business examples for relevance |
Exercise books
-Manila paper -Local business examples -Agricultural scenarios -Industry examples -School scenarios |
KLB Secondary Mathematics Form 4, Pages 165-167
|
|
| 6 | 4 |
Linear Programming
|
Objective Functions
Complete Problem Formulation |
By the end of the
lesson, the learner
should be able to:
-Define objective functions for maximization problems -Define objective functions for minimization problems -Understand profit, cost, and other objective measures -Connect objective functions to real-world goals |
-Form profit maximization functions -Create cost minimization functions -Practice with revenue and efficiency objectives -Apply to business and production scenarios |
Exercise books
-Manila paper -Business examples -Production scenarios -Complete examples -Systematic templates |
KLB Secondary Mathematics Form 4, Pages 165-167
|
|
| 6 | 5 |
Linear Programming
|
Introduction to Graphical Solution Method
Plotting Multiple Constraints |
By the end of the
lesson, the learner
should be able to:
-Understand graphical representation of inequalities -Plot constraint lines on coordinate plane -Identify feasible and infeasible regions -Understand boundary lines and their significance |
-Plot simple inequality x + y ≤ 10 on graph -Shade feasible regions systematically -Distinguish between ≤ and < inequalities -Practice with multiple examples on manila paper |
Exercise books
-Manila paper -Rulers -Colored pencils -Different colored pencils |
KLB Secondary Mathematics Form 4, Pages 166-172
|
|
| 6 | 6 |
Linear Programming
|
Properties of Feasible Regions
Introduction to Optimization |
By the end of the
lesson, the learner
should be able to:
-Understand that feasible region is convex -Identify corner points (vertices) of feasible region -Understand significance of corner points -Calculate coordinates of corner points |
-Identify all corner points of feasible region -Calculate intersection points algebraically -Verify corner points satisfy all constraints -Understand why corner points are important |
Exercise books
-Manila paper -Calculators -Algebraic methods -Evaluation tables |
KLB Secondary Mathematics Form 4, Pages 166-172
|
|
| 6 | 7 |
Linear Programming
|
The Corner Point Method
The Iso-Profit/Iso-Cost Line Method Comparing Solution Methods Business Applications - Production Planning |
By the end of the
lesson, the learner
should be able to:
-Apply systematic corner point evaluation method -Create organized tables for corner point analysis -Identify optimal corner point efficiently -Handle cases with multiple optimal solutions |
-Create systematic evaluation table -Work through corner point method step-by-step -Practice with various objective functions -Identify and handle tie cases |
Exercise books
-Manila paper -Evaluation templates -Systematic approach -Rulers -Sliding technique -Method comparison -Verification examples -Manufacturing examples -Kenyan industry data |
KLB Secondary Mathematics Form 4, Pages 172-176
|
|
| 7-8 |
EXAMINATION WEEK |
|||||||
| 9 |
CLOSING WEEK |
|||||||
Your Name Comes Here