Home






SCHEME OF WORK
Mathematics
Form 4 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 1
Three Dimensional Geometry
Introduction to 3D Concepts
By the end of the lesson, the learner should be able to:

-Distinguish between 1D, 2D, and 3D objects
-Identify vertices, edges, and faces of 3D solids
-Understand concepts of points, lines, and planes in space
-Recognize real-world 3D objects and their properties

-Use classroom objects to demonstrate dimensions
-Count vertices, edges, faces of cardboard models
-Identify 3D shapes in school environment
-Discuss difference between area and volume
Exercise books
-Cardboard boxes
-Manila paper
-Real 3D objects
KLB Secondary Mathematics Form 4, Pages 113-115
2 2
Three Dimensional Geometry
Properties of Common Solids
Understanding Planes in 3D Space
By the end of the lesson, the learner should be able to:

-Identify properties of cubes, cuboids, pyramids
-Count faces, edges, vertices systematically
-Apply Euler's formula (V - E + F = 2)
-Classify solids by their geometric properties

-Make models using cardboard and tape
-Create table of properties for different solids
-Verify Euler's formula with physical models
-Compare prisms and pyramids systematically
Exercise books
-Cardboard
-Scissors
-Tape/glue
-Manila paper
-Books/boards
-Classroom examples
KLB Secondary Mathematics Form 4, Pages 113-115
2 3
Three Dimensional Geometry
Lines in 3D Space
By the end of the lesson, the learner should be able to:

-Understand different types of lines in 3D
-Identify parallel, intersecting, and skew lines
-Recognize that skew lines don't intersect and aren't parallel
-Find examples of different line relationships

-Use rulers/sticks to demonstrate line relationships
-Show parallel lines using parallel rulers
-Demonstrate skew lines using classroom edges
-Practice identifying line relationships in models
Exercise books
-Rulers/sticks
-3D models
-Manila paper
KLB Secondary Mathematics Form 4, Pages 113-115
2 4
Three Dimensional Geometry
Introduction to Projections
By the end of the lesson, the learner should be able to:

-Understand concept of projection in 3D geometry
-Find projections of points onto planes
-Identify foot of perpendicular from point to plane
-Apply projection concept to shadow problems

-Use light source to create shadows (projections)
-Drop perpendiculars from corners to floor
-Identify projections in architectural drawings
-Practice finding feet of perpendiculars
Exercise books
-Manila paper
-Light source
-3D models
KLB Secondary Mathematics Form 4, Pages 115-123
2 5
Three Dimensional Geometry
Angle Between Line and Plane - Concept
By the end of the lesson, the learner should be able to:

-Define angle between line and plane
-Understand that angle is measured with projection
-Identify the projection of line on plane
-Recognize when line is perpendicular to plane

-Demonstrate using stick against book (plane)
-Show that angle is with projection, not plane itself
-Use protractor to measure angles with projections
-Identify perpendicular lines to planes
Exercise books
-Manila paper
-Protractor
-Rulers/sticks
KLB Secondary Mathematics Form 4, Pages 115-123
2 6
Three Dimensional Geometry
Calculating Angles Between Lines and Planes
Advanced Line-Plane Angle Problems
By the end of the lesson, the learner should be able to:

-Calculate angles using right-angled triangles
-Apply trigonometry to 3D angle problems
-Use Pythagoras theorem in 3D contexts
-Solve problems involving cuboids and pyramids

-Work through step-by-step calculations
-Use trigonometric ratios in 3D problems
-Practice with cuboid diagonal problems
-Apply to pyramid and cone angle calculations
Exercise books
-Manila paper
-Calculators
-3D problem diagrams
-Real scenarios
-Problem sets
KLB Secondary Mathematics Form 4, Pages 115-123
2 7
Three Dimensional Geometry
Introduction to Plane-Plane Angles
By the end of the lesson, the learner should be able to:

-Define angle between two planes
-Understand concept of dihedral angles
-Identify line of intersection of two planes
-Find perpendiculars to intersection line

-Use two books to demonstrate intersecting planes
-Show how planes meet along an edge
-Identify dihedral angles in classroom
-Demonstrate using folded paper
Exercise books
-Manila paper
-Books
-Folded paper
KLB Secondary Mathematics Form 4, Pages 123-128
3-4

Exams

4 4
Three Dimensional Geometry
Finding Angles Between Planes
By the end of the lesson, the learner should be able to:

-Construct perpendiculars to find plane angles
-Apply trigonometry to calculate dihedral angles
-Use right-angled triangles in plane intersection
-Solve angle problems in prisms and pyramids

-Work through construction method step-by-step
-Practice finding intersection lines first
-Calculate angles in triangular prisms
-Apply to roof and building angle problems
Exercise books
-Manila paper
-Protractor
-Building examples
KLB Secondary Mathematics Form 4, Pages 123-128
4 5
Three Dimensional Geometry
Complex Plane-Plane Angle Problems
By the end of the lesson, the learner should be able to:

-Solve advanced dihedral angle problems
-Apply to frustums and compound solids
-Use systematic approach for complex shapes
-Verify solutions using geometric properties

-Work with frustum of pyramid problems
-Solve wedge and compound shape angles
-Practice with architectural applications
-Use geometric reasoning to check answers
Exercise books
-Manila paper
-Complex 3D models
-Architecture examples
KLB Secondary Mathematics Form 4, Pages 123-128
4 6
Three Dimensional Geometry
Practical Applications of Plane Angles
Understanding Skew Lines
By the end of the lesson, the learner should be able to:

-Apply plane angles to real-world problems
-Solve engineering and construction problems
-Calculate angles in roof structures
-Use in navigation and surveying contexts

-Calculate roof pitch angles
-Solve bridge construction angle problems
-Apply to mining and tunnel excavation
-Use in aerial navigation problems
Exercise books
-Manila paper
-Real engineering data
-Construction examples
-Rulers
-Building frameworks
KLB Secondary Mathematics Form 4, Pages 123-128
4 7
Three Dimensional Geometry
Angle Between Skew Lines
By the end of the lesson, the learner should be able to:

-Understand how to find angle between skew lines
-Apply translation method for skew line angles
-Use parallel line properties in 3D
-Calculate angles by creating intersecting lines

-Demonstrate translation method using rulers
-Translate one line to intersect the other
-Practice with cuboid edge problems
-Apply to framework and structure problems
Exercise books
-Manila paper
-Rulers
-Translation examples
KLB Secondary Mathematics Form 4, Pages 128-135
5 1
Three Dimensional Geometry
Advanced Skew Line Problems
By the end of the lesson, the learner should be able to:

-Solve complex skew line angle calculations
-Apply to engineering and architectural problems
-Use systematic approach for difficult problems
-Combine with other 3D geometric concepts

-Work through power line and cable problems
-Solve bridge and tower construction angles
-Practice with space frame structures
-Apply to antenna and communication tower problems
Exercise books
-Manila paper
-Engineering examples
-Structure diagrams
KLB Secondary Mathematics Form 4, Pages 128-135
5 2
Three Dimensional Geometry
Distance Calculations in 3D
By the end of the lesson, the learner should be able to:

-Calculate distances between points in 3D
-Find shortest distances between lines and planes
-Apply 3D Pythagoras theorem
-Use distance formula in coordinate geometry

-Calculate space diagonals in cuboids
-Find distances from points to planes
-Apply 3D distance formula systematically
-Solve minimum distance problems
Exercise books
-Manila paper
-Distance calculation charts
-3D coordinate examples
KLB Secondary Mathematics Form 4, Pages 115-135
5 3
Three Dimensional Geometry
Volume and Surface Area Applications
Coordinate Geometry in 3D
By the end of the lesson, the learner should be able to:

-Connect 3D geometry to volume calculations
-Apply angle calculations to surface area problems
-Use 3D relationships in optimization
-Solve practical volume and area problems

-Calculate slant heights using 3D angles
-Find surface areas of pyramids using angles
-Apply to packaging and container problems
-Use in architectural space planning
Exercise books
-Manila paper
-Volume formulas
-Real containers
-3D coordinate grid
-Room corner reference
KLB Secondary Mathematics Form 4, Pages 115-135
5 4
Three Dimensional Geometry
Integration with Trigonometry
By the end of the lesson, the learner should be able to:

-Apply trigonometry extensively to 3D problems
-Use multiple trigonometric ratios in solutions
-Combine trigonometry with 3D geometric reasoning
-Solve complex problems requiring trig and geometry

-Work through problems requiring sin, cos, tan
-Use trigonometric identities in 3D contexts
-Practice angle calculations in pyramids
-Apply to navigation and astronomy problems
Exercise books
-Manila paper
-Trigonometric tables
-Astronomy examples
KLB Secondary Mathematics Form 4, Pages 115-135
5 5
Integration
Introduction to Reverse Differentiation
Basic Integration Rules - Power Functions
Integration of Polynomial Functions
By the end of the lesson, the learner should be able to:

-Define integration as reverse of differentiation
-Understand the concept of antiderivative
-Recognize the relationship between gradient functions and original functions
-Apply reverse thinking to simple differentiation examples

-Q/A review on differentiation formulas and rules
-Demonstration of reverse process using simple examples
-Working backwards from derivatives to find original functions
-Discussion on why multiple functions can have same derivative
-Introduction to integration symbol ∫
Graph papers
-Differentiation charts
-Exercise books
-Function examples
Calculators
-Graph papers
-Power rule charts
-Algebraic worksheets
-Polynomial examples
KLB Secondary Mathematics Form 4, Pages 221-223
5 6
Integration
Finding Particular Solutions
Introduction to Definite Integrals
By the end of the lesson, the learner should be able to:

-Use initial conditions to find specific values of constant c
-Solve problems involving boundary conditions
-Apply integration to find equations of curves
-Distinguish between general and particular solutions

-Working examples with given initial conditions
-Finding curve equations when gradient function and point are known
-Practice problems from various contexts
-Discussion on why particular solutions are important
-Problem-solving session with curve-finding exercises
Graph papers
-Calculators
-Curve examples
-Exercise books
-Geometric models
-Integration notation charts
KLB Secondary Mathematics Form 4, Pages 223-225
5 7
Integration
Evaluating Definite Integrals
Area Under Curves - Single Functions
Areas Below X-axis and Mixed Regions
By the end of the lesson, the learner should be able to:

-Apply Fundamental Theorem of Calculus
-Evaluate definite integrals using [F(x)]ₐᵇ = F(b) - F(a)
-Understand why constant of integration cancels
-Practice numerical evaluation of definite integrals

-Step-by-step evaluation process demonstration
-Multiple worked examples showing limit substitution
-Verification that constant c cancels out
-Practice with various polynomial and power functions
-Exercises from textbook Exercise 10.2
Calculators
-Step-by-step worksheets
-Exercise books
-Evaluation charts
Graph papers
-Curve sketching tools
-Colored pencils
-Calculators
-Area grids
-Curve examples
-Colored materials
KLB Secondary Mathematics Form 4, Pages 226-230
6 1
Integration
Area Between Two Curves
By the end of the lesson, the learner should be able to:

-Calculate area between two intersecting curves
-Find intersection points as integration limits
-Apply method: Area = ∫ₐᵇ [f(x) - g(x)]dx
-Handle multiple intersection scenarios

-Method for finding curve intersection points
-Working examples: area between y = x² and y = x
-Step-by-step process for area between curves
-Practice with linear and quadratic function pairs
-Advanced examples with multiple intersections
Graph papers
-Equation solving aids
-Calculators
-Colored pencils
-Exercise books
KLB Secondary Mathematics Form 4, Pages 233-235
6 2
Linear Programming
Introduction to Linear Programming
Forming Linear Inequalities from Word Problems
By the end of the lesson, the learner should be able to:

-Understand the concept of optimization in real life
-Identify decision variables in practical situations
-Recognize constraints and objective functions
-Understand applications of linear programming

-Discuss resource allocation problems in daily life
-Identify optimization scenarios in business and farming
-Introduce decision-making with limited resources
-Use simple examples from student experiences
Exercise books
-Manila paper
-Real-life examples
-Chalk/markers
-Local business examples
-Agricultural scenarios
KLB Secondary Mathematics Form 4, Pages 165-167
6 3
Linear Programming
Types of Constraints
By the end of the lesson, the learner should be able to:

-Identify non-negativity constraints
-Understand resource constraints and their implications
-Form demand and supply constraints
-Apply constraint formation to various industries

-Practice with non-negativity constraints (x ≥ 0, y ≥ 0)
-Form material and labor constraints
-Apply to manufacturing and service industries
-Use school resource allocation examples
Exercise books
-Manila paper
-Industry examples
-School scenarios
KLB Secondary Mathematics Form 4, Pages 165-167
6 4
Linear Programming
Objective Functions
By the end of the lesson, the learner should be able to:

-Define objective functions for maximization problems
-Define objective functions for minimization problems
-Understand profit, cost, and other objective measures
-Connect objective functions to real-world goals

-Form profit maximization functions
-Create cost minimization functions
-Practice with revenue and efficiency objectives
-Apply to business and production scenarios
Exercise books
-Manila paper
-Business examples
-Production scenarios
KLB Secondary Mathematics Form 4, Pages 165-167
6 5
Linear Programming
Complete Problem Formulation
By the end of the lesson, the learner should be able to:

-Combine constraints and objective functions
-Write complete linear programming problems
-Check formulation for completeness and correctness
-Apply systematic approach to problem setup

-Work through complete problem formulation process
-Practice with multiple constraint types
-Verify problem setup using logical reasoning
-Apply to comprehensive business scenarios
Exercise books
-Manila paper
-Complete examples
-Systematic templates
KLB Secondary Mathematics Form 4, Pages 165-167
6 6
Linear Programming
Introduction to Graphical Solution Method
Plotting Multiple Constraints
By the end of the lesson, the learner should be able to:

-Understand graphical representation of inequalities
-Plot constraint lines on coordinate plane
-Identify feasible and infeasible regions
-Understand boundary lines and their significance

-Plot simple inequality x + y ≤ 10 on graph
-Shade feasible regions systematically
-Distinguish between ≤ and < inequalities
-Practice with multiple examples on manila paper
Exercise books
-Manila paper
-Rulers
-Colored pencils
-Different colored pencils
KLB Secondary Mathematics Form 4, Pages 166-172
6 7
Linear Programming
Properties of Feasible Regions
By the end of the lesson, the learner should be able to:

-Understand that feasible region is convex
-Identify corner points (vertices) of feasible region
-Understand significance of corner points
-Calculate coordinates of corner points

-Identify all corner points of feasible region
-Calculate intersection points algebraically
-Verify corner points satisfy all constraints
-Understand why corner points are important
Exercise books
-Manila paper
-Calculators
-Algebraic methods
KLB Secondary Mathematics Form 4, Pages 166-172
7 1
Linear Programming
Introduction to Optimization
By the end of the lesson, the learner should be able to:

-Understand concept of optimal solution
-Recognize that optimal solution occurs at corner points
-Learn to evaluate objective function at corner points
-Compare values to find maximum or minimum

-Evaluate objective function at each corner point
-Compare values to identify optimal solution
-Practice with both maximization and minimization
-Verify optimal solution satisfies all constraints
Exercise books
-Manila paper
-Calculators
-Evaluation tables
KLB Secondary Mathematics Form 4, Pages 172-176
7 2
Linear Programming
The Corner Point Method
By the end of the lesson, the learner should be able to:

-Apply systematic corner point evaluation method
-Create organized tables for corner point analysis
-Identify optimal corner point efficiently
-Handle cases with multiple optimal solutions

-Create systematic evaluation table
-Work through corner point method step-by-step
-Practice with various objective functions
-Identify and handle tie cases
Exercise books
-Manila paper
-Evaluation templates
-Systematic approach
KLB Secondary Mathematics Form 4, Pages 172-176
7 3
Linear Programming
The Iso-Profit/Iso-Cost Line Method
Comparing Solution Methods
By the end of the lesson, the learner should be able to:

-Understand concept of iso-profit and iso-cost lines
-Draw family of parallel objective function lines
-Use slope to find optimal point graphically
-Apply sliding line method for optimization

-Draw iso-profit lines for given objective function
-Show family of parallel lines with different values
-Find optimal point by sliding line to extreme position
-Practice with both maximization and minimization
Exercise books
-Manila paper
-Rulers
-Sliding technique
-Method comparison
-Verification examples
KLB Secondary Mathematics Form 4, Pages 172-176
7 4
Linear Programming
Business Applications - Production Planning
By the end of the lesson, the learner should be able to:

-Apply linear programming to production problems
-Solve manufacturing optimization problems
-Handle resource allocation in production
-Apply to Kenyan manufacturing scenarios

-Solve factory production optimization problem
-Apply to textile or food processing examples
-Use local manufacturing scenarios
-Calculate optimal production mix
Exercise books
-Manila paper
-Manufacturing examples
-Kenyan industry data
KLB Secondary Mathematics Form 4, Pages 172-176
7 5
Differentiation
Introduction to Rate of Change
By the end of the lesson, the learner should be able to:

-Understand concept of rate of change in daily life
-Distinguish between average and instantaneous rates
-Identify examples of changing quantities
-Connect rate of change to gradient concepts

-Discuss speed as rate of change of distance
-Examine population growth rates
-Analyze temperature change throughout the day
-Connect to gradients of lines from coordinate geometry
Exercise books
-Manila paper
-Real-world examples
-Graph examples
KLB Secondary Mathematics Form 4, Pages 177-182
7 6
Differentiation
Average Rate of Change
By the end of the lesson, the learner should be able to:

-Calculate average rate of change between two points
-Use formula: average rate = Δy/Δx
-Apply to distance-time and other practical graphs
-Understand limitations of average rate calculations

-Calculate average speed between two time points
-Find average rate of population change
-Use coordinate points to find average rates
-Compare average rates over different intervals
Exercise books
-Manila paper
-Calculators
-Graph paper
KLB Secondary Mathematics Form 4, Pages 177-182
7 7
Differentiation
Instantaneous Rate of Change
Gradient of Curves at Points
By the end of the lesson, the learner should be able to:

-Understand concept of instantaneous rate
-Recognize instantaneous rate as limit of average rates
-Connect to tangent line gradients
-Apply to real-world motion problems

-Demonstrate instantaneous speed using car speedometer
-Show limiting process using smaller intervals
-Connect to tangent line slopes on curves
-Practice with motion and growth examples
Exercise books
-Manila paper
-Tangent demonstrations
-Motion examples
-Rulers
-Curve examples
KLB Secondary Mathematics Form 4, Pages 177-182
8 1
Differentiation
Introduction to Delta Notation
By the end of the lesson, the learner should be able to:

-Understand delta (Δ) notation for small changes
-Use Δx and Δy for coordinate changes
-Apply delta notation to rate calculations
-Practice reading and writing delta expressions

-Introduce delta as symbol for "change in"
-Practice writing Δx, Δy, Δt expressions
-Use delta notation in rate of change formulas
-Apply to coordinate geometry problems
Exercise books
-Manila paper
-Delta notation examples
-Symbol practice
KLB Secondary Mathematics Form 4, Pages 182-184
8 2
Differentiation
The Limiting Process
By the end of the lesson, the learner should be able to:

-Understand concept of limit in differentiation
-Apply "as Δx approaches zero" reasoning
-Use limiting process to find exact derivatives
-Practice systematic limiting calculations

-Demonstrate limiting process with numerical examples
-Show chord approaching tangent as Δx → 0
-Calculate limits using table of values
-Practice systematic limit evaluation
Exercise books
-Manila paper
-Limit tables
-Systematic examples
KLB Secondary Mathematics Form 4, Pages 182-184
8 3
Differentiation
Introduction to Derivatives
Derivative of Linear Functions
By the end of the lesson, the learner should be able to:

-Define derivative as limit of rate of change
-Use dy/dx notation for derivatives
-Understand derivative as gradient function
-Connect derivatives to tangent line slopes

-Introduce derivative notation dy/dx
-Show derivative as gradient of tangent
-Practice derivative concept with simple functions
-Connect to previous gradient work
Exercise books
-Manila paper
-Derivative notation
-Function examples
-Linear function examples
-Verification methods
KLB Secondary Mathematics Form 4, Pages 182-184
8 4
Differentiation
Derivative of y = x^n (Basic Powers)
By the end of the lesson, the learner should be able to:

-Find derivatives of power functions
-Apply the rule d/dx(x^n) = nx^(n-1)
-Practice with x², x³, x⁴, etc.
-Verify using first principles for simple cases

-Derive d/dx(x²) = 2x using first principles
-Apply power rule to various functions
-Practice with x³, x⁴, x⁵ examples
-Verify selected results using definition
Exercise books
-Manila paper
-Power rule examples
-First principles verification
KLB Secondary Mathematics Form 4, Pages 184-188
8 5
Differentiation
Derivative of Constant Functions
By the end of the lesson, the learner should be able to:

-Understand that derivative of constant is zero
-Apply to functions like y = 5, y = -3
-Explain geometric meaning of zero derivative
-Combine with other differentiation rules

-Show that horizontal lines have zero gradient
-Find derivatives of constant functions
-Explain why rate of change of constant is zero
-Apply to mixed functions with constants
Exercise books
-Manila paper
-Constant function graphs
-Geometric explanations
KLB Secondary Mathematics Form 4, Pages 184-188
8 6
Differentiation
Derivative of Coefficient Functions
By the end of the lesson, the learner should be able to:

-Find derivatives of functions like y = ax^n
-Apply constant multiple rule
-Practice with various coefficient values
-Combine coefficient and power rules

-Find derivative of y = 5x³
-Apply rule d/dx(af(x)) = a·f'(x)
-Practice with negative coefficients
-Combine multiple rules systematically
Exercise books
-Manila paper
-Coefficient examples
-Rule combinations
KLB Secondary Mathematics Form 4, Pages 184-188
8 7
Differentiation
Derivative of Polynomial Functions
Applications to Tangent Lines
By the end of the lesson, the learner should be able to:

-Find derivatives of polynomial functions
-Apply term-by-term differentiation
-Practice with various polynomial degrees
-Verify results using first principles

-Differentiate y = x³ + 2x² - 5x + 7
-Apply rule to each term separately
-Practice with various polynomial types
-Check results using definition for simple cases
Exercise books
-Manila paper
-Polynomial examples
-Term-by-term method
-Tangent line examples
-Point-slope applications
KLB Secondary Mathematics Form 4, Pages 184-188
9 1
Differentiation
Applications to Normal Lines
By the end of the lesson, the learner should be able to:

-Find equations of normal lines to curves
-Use negative reciprocal of tangent gradient
-Apply to perpendicular line problems
-Practice with normal line calculations

-Find normal to y = x² at point (2, 4)
-Use negative reciprocal relationship
-Apply perpendicular line concepts
-Practice normal line equation finding
Exercise books
-Manila paper
-Normal line examples
-Perpendicular concepts
KLB Secondary Mathematics Form 4, Pages 187-189
9 2
Differentiation
Introduction to Stationary Points
By the end of the lesson, the learner should be able to:

-Define stationary points as points where dy/dx = 0
-Identify different types of stationary points
-Understand geometric meaning of zero gradient
-Find stationary points by solving dy/dx = 0

-Show horizontal tangents at stationary points
-Find stationary points of y = x² - 4x + 3
-Identify maximum, minimum, and inflection points
-Practice finding where dy/dx = 0
Exercise books
-Manila paper
-Curve sketches
-Stationary point examples
KLB Secondary Mathematics Form 4, Pages 189-195
9 3
Differentiation
Types of Stationary Points
By the end of the lesson, the learner should be able to:

-Distinguish between maximum and minimum points
-Identify points of inflection
-Use first derivative test for classification
-Apply gradient analysis around stationary points

-Analyze gradient changes around stationary points
-Use sign analysis of dy/dx
-Classify stationary points by gradient behavior
-Practice with various function types
Exercise books
-Manila paper
-Sign analysis charts
-Classification examples
KLB Secondary Mathematics Form 4, Pages 189-195
9 4
Differentiation
Finding and Classifying Stationary Points
Curve Sketching Using Derivatives
By the end of the lesson, the learner should be able to:

-Solve dy/dx = 0 to find stationary points
-Apply systematic classification method
-Use organized approach for point analysis
-Practice with polynomial functions

-Work through complete stationary point analysis
-Use systematic gradient sign testing
-Create organized solution format
-Practice with cubic and quartic functions
Exercise books
-Manila paper
-Systematic templates
-Complete examples
-Curve sketching templates
-Systematic method
KLB Secondary Mathematics Form 4, Pages 189-195
9 5
Differentiation
Introduction to Kinematics Applications
By the end of the lesson, the learner should be able to:

-Apply derivatives to displacement-time relationships
-Understand velocity as first derivative of displacement
-Find velocity functions from displacement functions
-Apply to motion problems

-Find velocity from s = t³ - 2t² + 5t
-Apply v = ds/dt to motion problems
-Practice with various displacement functions
-Connect to real-world motion scenarios
Exercise books
-Manila paper
-Motion examples
-Kinematics applications
KLB Secondary Mathematics Form 4, Pages 197-201
9 6
Differentiation
Acceleration as Second Derivative
By the end of the lesson, the learner should be able to:

-Understand acceleration as derivative of velocity
-Apply a = dv/dt = d²s/dt² notation
-Find acceleration functions from displacement
-Apply to motion analysis problems

-Find acceleration from velocity functions
-Use second derivative notation
-Apply to projectile motion problems
-Practice with particle motion scenarios
Exercise books
-Manila paper
-Second derivative examples
-Motion analysis
KLB Secondary Mathematics Form 4, Pages 197-201
9 7
Differentiation
Motion Problems and Applications
By the end of the lesson, the learner should be able to:

-Solve complete motion analysis problems
-Find displacement, velocity, acceleration relationships
-Apply to real-world motion scenarios
-Use derivatives for motion optimization

-Analyze complete motion of falling object
-Find when particle changes direction
-Calculate maximum height in projectile motion
-Apply to vehicle motion problems
Exercise books
-Manila paper
-Complete motion examples
-Real scenarios
KLB Secondary Mathematics Form 4, Pages 197-201
10 1
Differentiation
Introduction to Optimization
Geometric Optimization Problems
By the end of the lesson, the learner should be able to:

-Apply derivatives to find maximum and minimum values
-Understand optimization in real-world contexts
-Use calculus for practical optimization problems
-Connect to business and engineering applications

-Find maximum area of rectangle with fixed perimeter
-Apply calculus to profit maximization
-Use derivatives for cost minimization
-Practice with geometric optimization
Exercise books
-Manila paper
-Optimization examples
-Real applications
-Geometric examples
-Design applications
KLB Secondary Mathematics Form 4, Pages 201-204
10 2
Differentiation
Business and Economic Applications
By the end of the lesson, the learner should be able to:

-Apply derivatives to profit and cost functions
-Find marginal cost and marginal revenue
-Use calculus for business optimization
-Apply to Kenyan business scenarios

-Find maximum profit using calculus
-Calculate marginal cost and revenue
-Apply to agricultural and manufacturing examples
-Use derivatives for business decision-making
Exercise books
-Manila paper
-Business examples
-Economic applications
KLB Secondary Mathematics Form 4, Pages 201-204
10 3
Differentiation
Paper 1 Revision
Advanced Optimization Problems
Section I: Mixed Question Practice
By the end of the lesson, the learner should be able to:

-Solve complex optimization with multiple constraints
-Apply systematic optimization methodology
-Use calculus for engineering applications
-Practice with advanced real-world problems

-Solve complex geometric optimization problems
-Apply to engineering design scenarios
-Use systematic optimization approach
-Practice with multi-variable situations
Exercise books
-Manila paper
-Complex examples
-Engineering applications
Past Papers, Marking Schemes
KLB Secondary Mathematics Form 4, Pages 201-204
10 4
REVISION

Paper 1 Revision
Paper 1 Revision
Section II: Structured Questions
By the end of the lesson, the learner should be able to:
– develop detailed structured responses – organize answers step by step – apply concepts in real-life problem settings
Group brainstorming on selected structured questions Teacher gives feedback on presentation
Past Paper 1s, Marking Schemes
Graph Papers, Geometry Sets, Past Papers
KLB Math Bk 1–4
paper 1 question paper
10 5
paper 2 Revision
Section I: Short Answer Questions
Section I: Short Answer Questions
Section I: Mixed Question Practice
By the end of the lesson, the learner should be able to:
– attempt compulsory short-answer questions – show clear working for full marks – apply speed and accuracy in solving problems
Students attempt selected questions individually Peer-marking and teacher correction
Past paper 2 exams, Marking Schemes
Chalkboard, Past Papers, Calculators
Past Papers, Marking Schemes
KLB Math Bk 1–4, paper 2 question paper
10 6
paper 2 Revision
Section II: Structured Questions
By the end of the lesson, the learner should be able to:
– develop detailed structured responses – organize answers step by step – apply concepts in real-life problem settings
Group brainstorming on selected structured questions Teacher gives feedback on presentation
Past Paper 2s, Marking Schemes
Graph Papers, Geometry Sets, Past Papers
KLB Math Bk 1–4
paper 2 question paper
10 7
Paper 1 Revision
Section I: Short Answer Questions
Section I: Short Answer Questions
Section I: Mixed Question Practice
By the end of the lesson, the learner should be able to:
– attempt compulsory short-answer questions – show clear working for full marks – apply speed and accuracy in solving problems
Students attempt selected questions individually Peer-marking and teacher correction
Past Paper 1 exams, Marking Schemes
Chalkboard, Past Papers, Calculators
Past Papers, Marking Schemes
KLB Math Bk 1–4, paper 1 question paper
11 1
Paper 1 Revision
Section II: Structured Questions
By the end of the lesson, the learner should be able to:
– develop detailed structured responses – organize answers step by step – apply concepts in real-life problem settings
Group brainstorming on selected structured questions Teacher gives feedback on presentation
Past Paper 1s, Marking Schemes
Graph Papers, Geometry Sets, Past Papers
KLB Math Bk 1–4
paper 1 question paper
11 2
paper 2 Revision
Section I: Short Answer Questions
Section I: Short Answer Questions
Section I: Mixed Question Practice
By the end of the lesson, the learner should be able to:
– attempt compulsory short-answer questions – show clear working for full marks – apply speed and accuracy in solving problems
Students attempt selected questions individually Peer-marking and teacher correction
Past paper 2 exams, Marking Schemes
Chalkboard, Past Papers, Calculators
Past Papers, Marking Schemes
KLB Math Bk 1–4, paper 2 question paper
11 3
paper 2 Revision
Section II: Structured Questions
By the end of the lesson, the learner should be able to:
– develop detailed structured responses – organize answers step by step – apply concepts in real-life problem settings
Group brainstorming on selected structured questions Teacher gives feedback on presentation
Past Paper 2s, Marking Schemes
Graph Papers, Geometry Sets, Past Papers
KLB Math Bk 1–4
paper 2 question paper
11 4
Paper 1 Revision
Section I: Short Answer Questions
Section I: Short Answer Questions
Section I: Mixed Question Practice
By the end of the lesson, the learner should be able to:
– attempt compulsory short-answer questions – show clear working for full marks – apply speed and accuracy in solving problems
Students attempt selected questions individually Peer-marking and teacher correction
Past Paper 1 exams, Marking Schemes
Chalkboard, Past Papers, Calculators
Past Papers, Marking Schemes
KLB Math Bk 1–4, paper 1 question paper
11 5
Paper 1 Revision
Section II: Structured Questions
By the end of the lesson, the learner should be able to:
– develop detailed structured responses – organize answers step by step – apply concepts in real-life problem settings
Group brainstorming on selected structured questions Teacher gives feedback on presentation
Past Paper 1s, Marking Schemes
Graph Papers, Geometry Sets, Past Papers
KLB Math Bk 1–4
paper 1 question paper
11 6
paper 2 Revision
Section I: Short Answer Questions
Section I: Short Answer Questions
Section I: Mixed Question Practice
By the end of the lesson, the learner should be able to:
– attempt compulsory short-answer questions – show clear working for full marks – apply speed and accuracy in solving problems
Students attempt selected questions individually Peer-marking and teacher correction
Past paper 2 exams, Marking Schemes
Chalkboard, Past Papers, Calculators
Past Papers, Marking Schemes
KLB Math Bk 1–4, paper 2 question paper
11 7
paper 2 Revision
Section II: Structured Questions
By the end of the lesson, the learner should be able to:
– develop detailed structured responses – organize answers step by step – apply concepts in real-life problem settings
Group brainstorming on selected structured questions Teacher gives feedback on presentation
Past Paper 2s, Marking Schemes
Graph Papers, Geometry Sets, Past Papers
KLB Math Bk 1–4
paper 2 question paper
12 1
Paper 1 Revision
Section I: Short Answer Questions
Section I: Short Answer Questions
Section I: Mixed Question Practice
By the end of the lesson, the learner should be able to:
– attempt compulsory short-answer questions – show clear working for full marks – apply speed and accuracy in solving problems
Students attempt selected questions individually Peer-marking and teacher correction
Past Paper 1 exams, Marking Schemes
Chalkboard, Past Papers, Calculators
Past Papers, Marking Schemes
KLB Math Bk 1–4, paper 1 question paper
12 2
Paper 1 Revision
Section II: Structured Questions
By the end of the lesson, the learner should be able to:
– develop detailed structured responses – organize answers step by step – apply concepts in real-life problem settings
Group brainstorming on selected structured questions Teacher gives feedback on presentation
Past Paper 1s, Marking Schemes
Graph Papers, Geometry Sets, Past Papers
KLB Math Bk 1–4
paper 1 question paper
12 3
paper 2 Revision
Section I: Short Answer Questions
Section I: Short Answer Questions
Section I: Mixed Question Practice
By the end of the lesson, the learner should be able to:
– attempt compulsory short-answer questions – show clear working for full marks – apply speed and accuracy in solving problems
Students attempt selected questions individually Peer-marking and teacher correction
Past paper 2 exams, Marking Schemes
Chalkboard, Past Papers, Calculators
Past Papers, Marking Schemes
KLB Math Bk 1–4, paper 2 question paper
12 4
paper 2 Revision
Section II: Structured Questions
By the end of the lesson, the learner should be able to:
– develop detailed structured responses – organize answers step by step – apply concepts in real-life problem settings
Group brainstorming on selected structured questions Teacher gives feedback on presentation
Past Paper 2s, Marking Schemes
Graph Papers, Geometry Sets, Past Papers
KLB Math Bk 1–4
paper 2 question paper
12 5
Paper 1 Revision
Section I: Short Answer Questions
Section I: Short Answer Questions
Section I: Mixed Question Practice
By the end of the lesson, the learner should be able to:
– attempt compulsory short-answer questions – show clear working for full marks – apply speed and accuracy in solving problems
Students attempt selected questions individually Peer-marking and teacher correction
Past Paper 1 exams, Marking Schemes
Chalkboard, Past Papers, Calculators
Past Papers, Marking Schemes
KLB Math Bk 1–4, paper 1 question paper
12 6
Paper 1 Revision
Section II: Structured Questions
By the end of the lesson, the learner should be able to:
– develop detailed structured responses – organize answers step by step – apply concepts in real-life problem settings
Group brainstorming on selected structured questions Teacher gives feedback on presentation
Past Paper 1s, Marking Schemes
Graph Papers, Geometry Sets, Past Papers
KLB Math Bk 1–4
paper 1 question paper
12 7
paper 2 Revision
Section I: Short Answer Questions
Section I: Short Answer Questions
By the end of the lesson, the learner should be able to:
– attempt compulsory short-answer questions – show clear working for full marks – apply speed and accuracy in solving problems
Students attempt selected questions individually Peer-marking and teacher correction
Past paper 2 exams, Marking Schemes
Chalkboard, Past Papers, Calculators
KLB Math Bk 1–4, paper 2 question paper

Your Name Comes Here


Download

Feedback