Home






SCHEME OF WORK
Chemistry
Form 4 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 1
ELECTROCHEMISTRY
Redox Reactions and Oxidation Numbers
Oxidation Numbers in Naming and Redox Identification
By the end of the lesson, the learner should be able to:
Define redox reactions in terms of electron transfer
- State rules for assigning oxidation numbers
- Calculate oxidation numbers in compounds
- Identify oxidation and reduction processes
Q/A: Review previous knowledge
- Experiment 4.1: Iron filings + copper(II) sulphate
- Experiment 4.2: Iron(II) ions + hydrogen peroxide
- Discussion on oxidation number rules with examples
Iron filings, 1M CuSO₄, 1M FeSO₄, 2M NaOH, 20V H₂O₂, test tubes
Compound charts, calculators, student books, practice exercises
KLB Secondary Chemistry Form 4, Pages 108-116
2 2-3
ELECTROCHEMISTRY
Displacement Reactions - Metals and Halogens
Electrochemical Cells and Cell Diagrams
Standard Electrode Potentials
Calculating Cell EMF and Predicting Reactions
By the end of the lesson, the learner should be able to:
Explain displacement reactions using electron transfer
- Arrange metals and halogens by reactivity
- Predict displacement reactions
- Compare oxidizing powers of halogens
Define standard electrode potential
- Describe standard hydrogen electrode
- List standard conditions
- Use electrode potential tables effectively
Experiment 4.3: Metal displacement reactions - systematic testing
- Experiment 4.4: Halogen displacement (FUME CUPBOARD)
- Tabulate results and arrange by reactivity
Study standard hydrogen electrode setup
- Discussion of standard conditions (25°C, 1M, 1 atm)
- Introduction to electrode potential series
- Practice reading potential tables
Various metals (Ca, Mg, Zn, Fe, Pb, Cu), metal salt solutions, halogens (Cl₂, Br₂, I₂), halide solutions
Metal electrodes, 1M metal salt solutions, voltmeters, salt bridges, connecting wires
Standard electrode potential table, diagrams, charts showing standard conditions
Calculators, electrode potential data, worked examples, practice problems
KLB Secondary Chemistry Form 4, Pages 116-122
KLB Secondary Chemistry Form 4, Pages 129-133
2 4
ELECTROCHEMISTRY
Types of Electrochemical Cells
By the end of the lesson, the learner should be able to:
Describe functioning of primary and secondary cells
- Compare different cell types
- Explain fuel cell operation
- State applications of electrochemical cells
Study dry cell (Le Clanche) and lead-acid accumulator
- Hydrogen-oxygen fuel cell operation
- Compare cell types and applications
- Discussion on advantages/disadvantages
Cell diagrams, sample batteries, charts showing cell applications
KLB Secondary Chemistry Form 4, Pages 138-141
2 5
ELECTROCHEMISTRY
Electrolysis of Aqueous Solutions I
Electrolysis of Aqueous Solutions II
By the end of the lesson, the learner should be able to:
Define electrolysis and preferential discharge
- Investigate electrolysis of dilute sodium chloride
- Compare dilute vs concentrated solution effects
- Test products formed
Experiment 4.6(a): Electrolysis of dilute NaCl
- Experiment 4.6(b): Electrolysis of brine
- Test gases evolved
- Compare results and explain differences
Dilute and concentrated NaCl solutions, carbon electrodes, gas collection tubes, test equipment
U-tube apparatus, 2M H₂SO₄, 0.5M MgSO₄, platinum/carbon electrodes, gas syringes
KLB Secondary Chemistry Form 4, Pages 141-146
3 1
ELECTROCHEMISTRY
Effect of Electrode Material on Electrolysis
By the end of the lesson, the learner should be able to:
Compare inert vs reactive electrodes
- Investigate electrode dissolution
- Explain electrode selection importance
- Analyze copper purification process
Experiment 4.9: Electrolysis of CuSO₄ with carbon vs copper electrodes
- Weigh electrodes before/after
- Observe color changes
- Discussion on electrode effects
Copper and carbon electrodes, 3M CuSO₄ solution, accurate balance, beakers, connecting wires
KLB Secondary Chemistry Form 4, Pages 141-148
3 2-3
ELECTROCHEMISTRY
Factors Affecting Electrolysis
Applications of Electrolysis I
By the end of the lesson, the learner should be able to:
Identify factors affecting preferential discharge
- Explain electrochemical series influence
- Discuss concentration and electrode effects
- Predict electrolysis products
Describe electrolytic extraction of reactive metals
- Explain electroplating process
- Apply electrolysis principles to metal coating
- Design electroplating setup
Review electrochemical series and discharge order
- Analysis of concentration effects on product formation
- Summary of all factors affecting electrolysis
- Practice prediction problems
Discussion: Extraction of Na, Mg, Al by electrolysis
- Practical: Electroplate iron nail with copper
- Calculate plating requirements
- Industrial applications
Electrochemical series chart, summary tables, practice exercises, student books
Iron nails, copper electrodes, CuSO₄ solution, power supply, industrial process diagrams
KLB Secondary Chemistry Form 4, Pages 153-155
KLB Secondary Chemistry Form 4, Pages 155-157
3 4
ELECTROCHEMISTRY
Applications of Electrolysis I
By the end of the lesson, the learner should be able to:
Describe electrolytic extraction of reactive metals
- Explain electroplating process
- Apply electrolysis principles to metal coating
- Design electroplating setup
Discussion: Extraction of Na, Mg, Al by electrolysis
- Practical: Electroplate iron nail with copper
- Calculate plating requirements
- Industrial applications
Iron nails, copper electrodes, CuSO₄ solution, power supply, industrial process diagrams
KLB Secondary Chemistry Form 4, Pages 155-157
3 5
ELECTROCHEMISTRY
Applications of Electrolysis II
By the end of the lesson, the learner should be able to:
Describe manufacture of NaOH and Cl₂ from brine
- Explain mercury cell operation
- Analyze industrial electrolysis processes
- Discuss environmental considerations
Study mercury cell for NaOH production
- Flow chart analysis of industrial processes
- Discussion on applications and environmental impact
- Purification of metals
Flow charts, mercury cell diagrams, environmental impact data, industrial case studies
KLB Secondary Chemistry Form 4, Pages 155-157
4 1
ELECTROCHEMISTRY
Faraday's Laws and Quantitative Electrolysis
By the end of the lesson, the learner should be able to:
State Faraday's laws of electrolysis
- Define Faraday constant
- Calculate mass deposited in electrolysis
- Relate electricity to amount of substance
Experiment 4.10: Quantitative electrolysis of CuSO₄
- Measure mass vs electricity passed
- Calculate Faraday constant
- Verify Faraday's laws
Accurate balance, copper electrodes, CuSO₄ solution, ammeter, timer, calculators
KLB Secondary Chemistry Form 4, Pages 161-164
4 2-3
ELECTROCHEMISTRY
Electrolysis Calculations I
Electrolysis Calculations II
By the end of the lesson, the learner should be able to:
Calculate mass of products from electrolysis
- Determine volumes of gases evolved
- Apply Faraday's laws to numerical problems
- Solve basic electrolysis calculations
Determine charge on ions from electrolysis data
- Calculate current-time relationships
- Solve complex multi-step problems
- Apply concepts to industrial situations
Worked examples: Mass and volume calculations
- Problems involving different ions
- Practice with Faraday constant
- Basic numerical problems
Complex problems: Determine ionic charges
- Current-time-mass relationships
- Multi-step calculations
- Industrial calculation examples
Calculators, worked examples, practice problems, gas volume data, Faraday constant
Calculators, complex problem sets, industrial data, student books
KLB Secondary Chemistry Form 4, Pages 161-164
4 4
ELECTROCHEMISTRY
Advanced Applications and Problem Solving
By the end of the lesson, the learner should be able to:
Solve examination-type electrochemistry problems
- Apply all concepts in integrated problems
- Analyze real-world electrochemical processes
- Practice complex calculations
Comprehensive problems combining redox, cells, and electrolysis
- Past examination questions
- Industrial case study analysis
- Advanced problem-solving techniques
Past papers, comprehensive problem sets, industrial case studies, calculators
KLB Secondary Chemistry Form 4, Pages 108-164
4 5
METALS
Chief Ores of Metals and General Extraction Methods
Occurrence and Extraction of Sodium
By the end of the lesson, the learner should be able to:
Name chief ores of common metals
- State formulas of metal ores
- Explain general methods of ore concentration
- Describe factors affecting extraction methods
Q/A: Review metallic bonding and reactivity
- Study Table 5.1 - metal ores and formulas
- Discussion on ore concentration methods
- Froth flotation demonstration
Chart of metal ores, ore samples if available, Table 5.1, flotation apparatus demonstration
Down's cell diagram, charts showing sodium occurrence, electrode reaction equations
KLB Secondary Chemistry Form 4, Pages 139-140
5 1
METALS
Occurrence and Extraction of Aluminium I
By the end of the lesson, the learner should be able to:
Describe occurrence and ores of aluminium
- Explain ore concentration process
- Write equations for bauxite purification
- Describe amphoteric nature of aluminium oxide
Study aluminium occurrence and bauxite composition
- Demonstration of amphoteric properties
- Equations for bauxite dissolution in NaOH
- Discussion on impurity removal
Bauxite samples, NaOH solution, charts showing aluminium extraction steps, chemical equations
KLB Secondary Chemistry Form 4, Pages 142-143
5 2-3
METALS
Extraction of Aluminium II - Electrolysis
Occurrence and Extraction of Iron
Extraction of Zinc
Extraction of Lead and Copper
By the end of the lesson, the learner should be able to:
Explain role of cryolite in aluminium extraction
- Describe electrolytic extraction process
- Write electrode equations
- Explain why anodes need replacement
Describe zinc ores and occurrence
- Compare reduction and electrolytic methods
- Write equations for zinc extraction
- Explain lead removal process
Study Hall-Heroult process setup
- Analysis of electrolytic cell diagram
- Write electrode reactions
- Discussion on energy requirements and anode corrosion
Study zinc blende and calamine
- Compare two extraction methods
- Roasting equations and reduction process
- Discussion on electrolytic method advantages
Electrolytic cell diagram, cryolite samples, graphite electrodes, energy consumption data
Blast furnace diagram, iron ore samples, coke, limestone, temperature zone charts
Zinc ore samples, flow charts showing both methods, electrolytic cell diagrams
Lead and copper ore samples, extraction flow charts, electrolytic purification diagrams
KLB Secondary Chemistry Form 4, Pages 142-143
KLB Secondary Chemistry Form 4, Pages 145-148
5 4
METALS
Physical Properties of Metals
Chemical Properties I - Reaction with Air
By the end of the lesson, the learner should be able to:
Compare physical properties of sodium, aluminium, zinc, iron and copper
- Explain metallic bonding effects
- Relate structure to properties
- Analyze property data
Study Table 5.2 - physical properties comparison
- Discussion on metallic bonding and electron sea model
- Analysis of melting points, conductivity, and density trends
Table 5.2, metal samples, conductivity apparatus, density measurement equipment
Deflagrating spoons, metal samples (Na, Al, Zn, Fe, Cu), Bunsen burners, safety equipment
KLB Secondary Chemistry Form 4, Pages 151-152
5 5
METALS
Chemical Properties II - Reaction with Water
By the end of the lesson, the learner should be able to:
Test metal reactions with cold water and steam
- Arrange metals by reactivity
- Explain aluminium's apparent unreactivity
- Write chemical equations for reactions
Experiment 5.2: Test metals with cold water and steam
- Use Table 5.4 for observations
- Test solutions with indicators
- Arrange metals in reactivity order
Metal samples, cold water, steam generator, test tubes, universal indicator, safety equipment
KLB Secondary Chemistry Form 4, Pages 154-156
6 1
METALS
Chemical Properties III - Reaction with Chlorine
By the end of the lesson, the learner should be able to:
Investigate metal reactions with chlorine gas
- Write equations for chloride formation
- Compare reaction vigor
- Observe product characteristics
Experiment 5.3: React hot metals with chlorine gas (FUME CUPBOARD)
- Observe color changes and fume formation
- Record all observations
- Write balanced equations
Chlorine gas, gas jars, metal samples, tongs, deflagrating spoons, fume cupboard, safety equipment
KLB Secondary Chemistry Form 4, Pages 156-157
6 2-3
METALS
Chemical Properties III - Reaction with Chlorine
Chemical Properties IV - Reaction with Acids
By the end of the lesson, the learner should be able to:
Investigate metal reactions with chlorine gas
- Write equations for chloride formation
- Compare reaction vigor
- Observe product characteristics
Test metal reactions with dilute and concentrated acids
- Compare reaction patterns
- Write chemical equations
- Explain passivation effects
Experiment 5.3: React hot metals with chlorine gas (FUME CUPBOARD)
- Observe color changes and fume formation
- Record all observations
- Write balanced equations
Experiment 5.4: Test metals with various acids - HCl, HNO₃, H₂SO₄
- Use Table 5.5 for systematic recording
- Observe gas evolution
- Discuss passivation
Chlorine gas, gas jars, metal samples, tongs, deflagrating spoons, fume cupboard, safety equipment
Various acids (dilute and concentrated), metal strips, test tubes, gas collection apparatus, safety equipment
KLB Secondary Chemistry Form 4, Pages 156-157
KLB Secondary Chemistry Form 4, Pages 157-158
6 4
METALS
Uses of Metals I - Sodium and Aluminium
By the end of the lesson, the learner should be able to:
State uses of sodium and its compounds
- Explain aluminium applications
- Relate properties to uses
- Describe alloy formation and uses
Discussion on sodium uses in industry
- Aluminium applications in transport and construction
- Study duralumin and other alloys
- Property-use relationships
Charts showing metal applications, alloy samples, aircraft parts, cooking vessels
KLB Secondary Chemistry Form 4, Pages 158-159
6 5
METALS
Uses of Metals II - Zinc, Copper and Iron
By the end of the lesson, the learner should be able to:
Explain galvanization process
- Describe copper electrical applications
- Compare iron, steel, and cast iron uses
- Analyze alloy compositions and properties
Study galvanization and rust prevention
- Copper in electrical applications
- Different types of steel and their compositions
- Alloy property comparisons
Galvanized sheets, copper wires, steel samples, alloy composition charts, brass and bronze samples
KLB Secondary Chemistry Form 4, Pages 159-161
7 1
METALS
Steel Types and Alloys
By the end of the lesson, the learner should be able to:
Compare cast iron, wrought iron, and steel
- Analyze different steel compositions
- Explain alloy property enhancement
- Describe specialized steel applications
Study cast iron, wrought iron, mild steel, and stainless steel
- Analyze carbon content effects
- Specialized steels for tools and instruments
- Discussion on alloy design
Steel samples with different compositions, carbon content charts, specialized tools, stainless steel items
KLB Secondary Chemistry Form 4, Pages 159-161
7 2
METALS
Environmental Effects of Metal Extraction
By the end of the lesson, the learner should be able to:
Identify environmental impacts of mining
- Explain pollution from metal extraction
- Describe waste management strategies
- Discuss NEMA regulations in Kenya
Analysis of mining environmental impact
- Air, water, and land pollution from extraction
- Waste management and slag utilization
- NEMA role and regulations
Environmental impact case studies, pollution images, NEMA regulation documents, waste management examples
KLB Secondary Chemistry Form 4, Pages 161-162
7 2-3
METALS
ORGANIC CHEMISTRY II
Environmental Effects of Metal Extraction
Introduction to Alkanols and Nomenclature
By the end of the lesson, the learner should be able to:
Identify environmental impacts of mining
- Explain pollution from metal extraction
- Describe waste management strategies
- Discuss NEMA regulations in Kenya
Define alkanols and identify functional group
- Apply nomenclature rules for alkanols
- Draw structural formulae of simple alkanols
- Compare alkanols with corresponding alkanes
Analysis of mining environmental impact
- Air, water, and land pollution from extraction
- Waste management and slag utilization
- NEMA role and regulations
Q/A: Review alkanes, alkenes from Form 3
- Study functional group -OH concept
- Practice naming alkanols using IUPAC rules
- Complete Table 6.2 - alkanol structures
Environmental impact case studies, pollution images, NEMA regulation documents, waste management examples
Molecular models, Table 6.1 and 6.2, alkanol structure charts, student books
KLB Secondary Chemistry Form 4, Pages 161-162
KLB Secondary Chemistry Form 4, Pages 167-170
7 4
ORGANIC CHEMISTRY II
Isomerism in Alkanols
Laboratory Preparation of Ethanol
By the end of the lesson, the learner should be able to:
Explain positional and chain isomerism
- Draw isomers of given alkanols
- Name different isomeric forms
- Classify isomers as primary, secondary, or tertiary
Study positional isomerism examples (propan-1-ol vs propan-2-ol)
- Practice drawing chain isomers
- Exercises on isomer identification and naming
- Discussion on structural differences
Isomer structure charts, molecular models, practice worksheets, student books
Sugar, yeast, warm water, conical flask, delivery tube, lime water, thermometer
KLB Secondary Chemistry Form 4, Pages 170-171
7 5
ORGANIC CHEMISTRY II
Industrial Preparation and Physical Properties
Chemical Properties of Alkanols I
By the end of the lesson, the learner should be able to:
Explain hydration of ethene method
- Compare laboratory and industrial methods
- Analyze physical properties of alkanols
- Relate properties to molecular structure
Study ethene hydration using phosphoric acid catalyst
- Compare fermentation vs industrial methods
- Analyze Table 6.3 - physical properties
- Discussion on hydrogen bonding effects
Table 6.3, industrial process diagrams, ethene structure models, property comparison charts
Ethanol, sodium metal, universal indicator, concentrated H₂SO₄, ethanoic acid, test tubes
KLB Secondary Chemistry Form 4, Pages 171-173
8 1
ORGANIC CHEMISTRY II
Chemical Properties of Alkanols II
By the end of the lesson, the learner should be able to:
Investigate oxidation and esterification reactions
- Test oxidizing agents on ethanol
- Prepare esters from alkanols
- Explain dehydration reactions
Complete Experiment 6.2: Test with acidified K₂Cr₂O₇ and KMnO₄
- Observe color changes
- Esterification with ethanoic acid
- Study dehydration conditions
Acidified potassium chromate/manganate, ethanoic acid, concentrated H₂SO₄, heating apparatus
KLB Secondary Chemistry Form 4, Pages 173-176
8 2-3
ORGANIC CHEMISTRY II
Uses of Alkanols and Health Effects
Introduction to Alkanoic Acids
Laboratory Preparation of Ethanoic Acid
By the end of the lesson, the learner should be able to:
State various uses of alkanols
- Explain health effects of alcohol consumption
- Discuss methylated spirits
- Analyze alcohol in society
Prepare ethanoic acid by oxidation
- Write equations for preparation
- Set up oxidation apparatus
- Identify product by testing
Discussion on alkanol applications as solvents, fuels, antiseptics
- Health effects of alcohol consumption
- Methylated spirits composition
- Social implications
Experiment 6.3: Oxidize ethanol using acidified KMnO₄
- Set up heating and distillation apparatus
- Collect distillate at 118°C
- Test product properties
Charts showing alkanol uses, health impact data, methylated spirit samples, discussion materials
Alkanoic acid structure charts, Table 6.5 and 6.6, molecular models, student books
Ethanol, KMnO₄, concentrated H₂SO₄, distillation apparatus, thermometer, round-bottom flask
KLB Secondary Chemistry Form 4, Pages 176-177
KLB Secondary Chemistry Form 4, Pages 179-180
8 4
ORGANIC CHEMISTRY II
Physical and Chemical Properties of Alkanoic Acids
By the end of the lesson, the learner should be able to:
Investigate chemical reactions of ethanoic acid
- Test with various reagents
- Write chemical equations
- Analyze acid strength
Experiment following Table 6.8: Test ethanoic acid with indicators, metals, carbonates, bases
- Record observations
- Write equations
- Discuss weak acid behavior
2M ethanoic acid, universal indicator, Mg strip, Na₂CO₃, NaOH, phenolphthalein, test tubes
KLB Secondary Chemistry Form 4, Pages 180-182
8 5
ORGANIC CHEMISTRY II
Esterification and Uses of Alkanoic Acids
By the end of the lesson, the learner should be able to:
Explain ester formation process
- Write esterification equations
- State uses of alkanoic acids
- Prepare simple esters
Complete esterification experiments
- Study concentrated H₂SO₄ as catalyst
- Write general esterification equation
- Discuss applications in food, drugs, synthetic fibres
Ethanoic acid, ethanol, concentrated H₂SO₄, test tubes, heating apparatus, cold water
KLB Secondary Chemistry Form 4, Pages 182-183
9 1
ORGANIC CHEMISTRY II
Introduction to Detergents and Soap Preparation
By the end of the lesson, the learner should be able to:
Define detergents and classify types
- Explain saponification process
- Prepare soap in laboratory
- Compare soapy and soapless detergents
Study soap vs soapless detergent differences
- Experiment 6.5: Saponify castor oil with NaOH
- Add salt for salting out
- Test soap formation
Castor oil, 4M NaOH, NaCl, evaporating dish, water bath, stirring rod, filter paper
KLB Secondary Chemistry Form 4, Pages 183-186
9 2-3
ORGANIC CHEMISTRY II
Mode of Action of Soap and Hard Water Effects
Soapless Detergents and Environmental Effects
By the end of the lesson, the learner should be able to:
Explain soap molecule structure
- Describe cleaning mechanism
- Investigate hard water effects
- Compare soap performance in different waters
Explain soapless detergent preparation
- Compare advantages/disadvantages
- Discuss environmental impact
- Analyze pollution effects
Study hydrophobic and hydrophilic ends
- Demonstrate micelle formation
- Test soap in distilled vs hard water
- Observe scum formation
- Write precipitation equations
Study alkylbenzene sulphonate preparation
- Compare Table 6.9 - soap vs soapless
- Discussion on eutrophication and biodegradability
- Environmental awareness
Soap samples, distilled water, hard water (CaCl₂/MgSO₄ solutions), test tubes, demonstration materials
Flow charts of detergent manufacture, Table 6.9, environmental impact data, sample detergents
KLB Secondary Chemistry Form 4, Pages 186-188
KLB Secondary Chemistry Form 4, Pages 188-191
9 4
ORGANIC CHEMISTRY II
Introduction to Polymers and Addition Polymerization
By the end of the lesson, the learner should be able to:
Define polymers, monomers, and polymerization
- Explain addition polymerization
- Draw polymer structures
- Calculate polymer properties
Study polymer concept and terminology
- Practice drawing addition polymers from monomers
- Examples: polyethene, polypropene, PVC
- Calculate molecular masses
Polymer samples, monomer structure charts, molecular models, calculators, polymer formation diagrams
KLB Secondary Chemistry Form 4, Pages 191-195
9 5
ORGANIC CHEMISTRY II
Introduction to Polymers and Addition Polymerization
By the end of the lesson, the learner should be able to:
Define polymers, monomers, and polymerization
- Explain addition polymerization
- Draw polymer structures
- Calculate polymer properties
Study polymer concept and terminology
- Practice drawing addition polymers from monomers
- Examples: polyethene, polypropene, PVC
- Calculate molecular masses
Polymer samples, monomer structure charts, molecular models, calculators, polymer formation diagrams
KLB Secondary Chemistry Form 4, Pages 191-195
10 1
ORGANIC CHEMISTRY II
Addition Polymers - Types and Properties
By the end of the lesson, the learner should be able to:
Identify different addition polymers
- Draw structures from monomers
- Name common polymers
- Relate structure to properties
Study polystyrene, PTFE, perspex formation
- Practice identifying monomers from polymer structures
- Work through polymer calculation examples
- Properties analysis
Various polymer samples, structure identification exercises, calculation worksheets, Table 6.10
KLB Secondary Chemistry Form 4, Pages 195-197
10 2-3
ORGANIC CHEMISTRY II
Condensation Polymerization and Natural Polymers
Polymer Properties and Applications
By the end of the lesson, the learner should be able to:
Explain condensation polymerization
- Compare with addition polymerization
- Study natural polymers
- Analyze nylon formation
Compare advantages and disadvantages of synthetic polymers
- State uses of different polymers
- Discuss environmental concerns
- Analyze polymer selection
Study nylon 6,6 formation from diamine and dioic acid
- Natural polymers: starch, protein, rubber
- Vulcanization process
- Compare synthetic vs natural
Study Table 6.10 - polymer uses
- Advantages: strength, lightness, moldability
- Disadvantages: non-biodegradability, toxic gases
- Application analysis
Nylon samples, rubber samples, condensation reaction diagrams, natural polymer examples
Table 6.10, polymer application samples, environmental impact studies, product examples
KLB Secondary Chemistry Form 4, Pages 197-200
KLB Secondary Chemistry Form 4, Pages 200-201
10 4
ORGANIC CHEMISTRY II
Comprehensive Problem Solving and Integration
By the end of the lesson, the learner should be able to:
Solve complex problems involving alkanols and acids
- Apply knowledge to practical situations
- Integrate polymer concepts
- Practice examination questions
Worked examples on organic synthesis
- Problem-solving on isomers, reactions, polymers
- Integration of all unit concepts
- Practice examination-style questions
Comprehensive problem sets, past examination papers, calculators, organic chemistry summary charts
KLB Secondary Chemistry Form 4, Pages 167-201
10 5
RADIOACTIVITY
Introduction, Nuclear Stability and Types of Radioactivity
Types of Radiation and Their Properties
By the end of the lesson, the learner should be able to:
Define nuclide, isotope, and radioisotope
- Compare nuclear vs chemical reactions
- Explain neutron/proton ratios
- Distinguish natural from artificial radioactivity
Q/A: Review atomic structure from Form 2
- Study Table 7.1 - nuclear vs chemical reactions
- Analysis of neutron/proton ratios and nuclear stability
- Discussion on natural vs artificial radioactivity
Periodic table, atomic structure charts, Table 7.1, nuclear stability diagrams
Radiation type charts, penetration diagrams, electric field illustrations, safety equipment charts
KLB Secondary Chemistry Form 4, Pages 199-201
11 1
RADIOACTIVITY
Radioactive Decay and Half-Life Concept
Half-Life Calculations and Problem Solving
By the end of the lesson, the learner should be able to:
Define half-life of radioactive isotopes
- Plot radioactive decay curves
- Calculate remaining amounts after decay
- Apply conservation of mass and energy
Study Table 7.2 - iodine-131 decay data
- Plot decay graph using given data
- Calculate fractions remaining after multiple half-lives
- Practice basic half-life problems
Graph paper, Table 7.2 data, calculators, decay curve examples, half-life data table
Calculators, comprehensive problem sets, worked examples, isotope half-life comparison tables
KLB Secondary Chemistry Form 4, Pages 204-206
11 2-3
RADIOACTIVITY
Nuclear Reactions and Equations
Radioactive Decay Series and Sequential Reactions
Nuclear Fission and Chain Reactions
By the end of the lesson, the learner should be able to:
Write balanced nuclear equations
- Apply conservation laws for mass and atomic numbers
- Explain alpha and beta emission effects
- Balance complex nuclear reactions
Explain sequential radioactive decay
- Trace decay series pathways
- Identify stable end products
- Complete partial decay series
Practice writing nuclear equations for alpha emission
- Study beta emission examples
- Apply mass and atomic number conservation
- Balance various nuclear reactions with missing nuclides
Study thorium-232 decay series example
- Trace sequential alpha and beta emissions
- Identify stable lead-208 endpoint
- Practice completing decay series with missing nuclides
Nuclear equation examples, periodic table, conservation law charts, practice worksheets
Decay series charts, thorium series diagram, nuclide stability charts, practice decay series
Fission reaction diagrams, chain reaction illustrations, nuclear reactor diagrams, energy calculation examples
KLB Secondary Chemistry Form 4, Pages 205-207
KLB Secondary Chemistry Form 4, Pages 206-207
11 4
RADIOACTIVITY
Nuclear Fusion and Energy Comparisons
Medical and Diagnostic Applications
By the end of the lesson, the learner should be able to:
Define nuclear fusion process
- Compare fusion with fission processes
- Write fusion equations
- Explain stellar energy production and fusion applications
Study hydrogen fusion examples
- Compare fusion vs fission characteristics and energy yields
- Stellar fusion processes
- Hydrogen bomb vs nuclear reactor principles
Fusion reaction diagrams, comparison tables, stellar fusion charts, energy comparison data
Medical radioisotope charts, treatment procedure diagrams, diagnostic equipment images, case studies
KLB Secondary Chemistry Form 4, Pages 207-208
11 5
RADIOACTIVITY
Industrial, Agricultural and Dating Applications
By the end of the lesson, the learner should be able to:
Explain industrial leak detection
- Describe agricultural monitoring techniques
- Discuss carbon-14 dating principles
- Analyze food preservation methods
Study leak detection using short half-life isotopes
- Carbon-14 dating of archaeological materials
- Phosphorus tracking in agriculture
- Gamma radiation food preservation
Carbon dating examples, agricultural application charts, industrial use diagrams, food preservation data
KLB Secondary Chemistry Form 4, Pages 208-209
12 1
RADIOACTIVITY
Radiation Hazards and Environmental Impact
By the end of the lesson, the learner should be able to:
Identify radiation health hazards
- Explain genetic mutation effects
- Discuss major nuclear accidents
- Analyze long-term environmental contamination
Study Chernobyl and Three Mile Island accidents
- Genetic mutation and cancer effects
- Long-term radiation exposure consequences
- Nuclear waste disposal challenges
Accident case studies, environmental impact data, radiation exposure charts, contamination maps
KLB Secondary Chemistry Form 4, Pages 209-210
12 2-3
RADIOACTIVITY
Radiation Hazards and Environmental Impact
Safety Measures and International Control
By the end of the lesson, the learner should be able to:
Identify radiation health hazards
- Explain genetic mutation effects
- Discuss major nuclear accidents
- Analyze long-term environmental contamination
Explain radiation protection principles
- Describe proper storage and disposal methods
- Discuss IAEA role and standards
- Analyze monitoring and control systems
Study Chernobyl and Three Mile Island accidents
- Genetic mutation and cancer effects
- Long-term radiation exposure consequences
- Nuclear waste disposal challenges
Study IAEA guidelines and international cooperation
- Radiation protection protocols and ALARA principle
- Safe storage, transport and disposal methods
- Environmental monitoring systems
Accident case studies, environmental impact data, radiation exposure charts, contamination maps
IAEA guidelines, safety protocol charts, monitoring equipment diagrams, international cooperation data
KLB Secondary Chemistry Form 4, Pages 209-210
12 4
RADIOACTIVITY
Half-Life Problem Solving and Graph Analysis
By the end of the lesson, the learner should be able to:
Solve comprehensive half-life problems
- Analyze experimental decay data
- Plot and interpret decay curves
- Determine half-lives graphically
Plot decay curves from experimental data
- Determine half-lives from graphs
- Analyze count rate vs time data
- Complex half-life calculation problems
Graph paper, experimental data sets, calculators, statistical analysis examples, comprehensive problem sets
KLB Secondary Chemistry Form 4, Pages 199-210
12 5
RADIOACTIVITY
Nuclear Equations and Conservation Laws
By the end of the lesson, the learner should be able to:
Balance complex nuclear equations
- Complete nuclear reaction series
- Identify unknown nuclides using conservation laws
- Apply mass-energy relationships
Practice balancing nuclear reactions with multiple steps
- Complete partial decay series
- Identify missing nuclides using conservation principles
- Mass-energy calculation problems
Nuclear equation worksheets, periodic table, decay series diagrams, conservation law examples
KLB Secondary Chemistry Form 4, Pages 199-210

Your Name Comes Here


Download

Feedback