If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 |
Opening and Revision of end of term 2 exams |
|||||||
2 | 1 |
METALS
|
Chemical Properties I - Reaction with Air
|
By the end of the
lesson, the learner
should be able to:
Investigate metal reactions with air and oxygen - Write balanced equations for metal oxidation - Compare reactivity patterns - Explain tarnishing and oxide formation |
Experiment 5.1: Heat metals in air - sodium, aluminium, zinc, iron, copper
- Observe color changes and products - Record observations in Table 5.3 - Write oxidation equations |
Deflagrating spoons, metal samples (Na, Al, Zn, Fe, Cu), Bunsen burners, safety equipment
|
KLB Secondary Chemistry Form 4, Pages 152-154
|
|
2 | 2 |
METALS
|
Chemical Properties II - Reaction with Water
|
By the end of the
lesson, the learner
should be able to:
Test metal reactions with cold water and steam - Arrange metals by reactivity - Explain aluminium's apparent unreactivity - Write chemical equations for reactions |
Experiment 5.2: Test metals with cold water and steam
- Use Table 5.4 for observations - Test solutions with indicators - Arrange metals in reactivity order |
Metal samples, cold water, steam generator, test tubes, universal indicator, safety equipment
|
KLB Secondary Chemistry Form 4, Pages 154-156
|
|
2 | 3 |
METALS
|
Chemical Properties III - Reaction with Chlorine
|
By the end of the
lesson, the learner
should be able to:
Investigate metal reactions with chlorine gas - Write equations for chloride formation - Compare reaction vigor - Observe product characteristics |
Experiment 5.3: React hot metals with chlorine gas (FUME CUPBOARD)
- Observe color changes and fume formation - Record all observations - Write balanced equations |
Chlorine gas, gas jars, metal samples, tongs, deflagrating spoons, fume cupboard, safety equipment
|
KLB Secondary Chemistry Form 4, Pages 156-157
|
|
2 | 4-5 |
METALS
|
Chemical Properties IV - Reaction with Acids
Uses of Metals I - Sodium and Aluminium Uses of Metals II - Zinc, Copper and Iron |
By the end of the
lesson, the learner
should be able to:
Test metal reactions with dilute and concentrated acids - Compare reaction patterns - Write chemical equations - Explain passivation effects State uses of sodium and its compounds - Explain aluminium applications - Relate properties to uses - Describe alloy formation and uses |
Experiment 5.4: Test metals with various acids - HCl, HNO₃, H₂SO₄
- Use Table 5.5 for systematic recording - Observe gas evolution - Discuss passivation Discussion on sodium uses in industry - Aluminium applications in transport and construction - Study duralumin and other alloys - Property-use relationships |
Various acids (dilute and concentrated), metal strips, test tubes, gas collection apparatus, safety equipment
Charts showing metal applications, alloy samples, aircraft parts, cooking vessels Galvanized sheets, copper wires, steel samples, alloy composition charts, brass and bronze samples |
KLB Secondary Chemistry Form 4, Pages 157-158
KLB Secondary Chemistry Form 4, Pages 158-159 |
|
3 | 1 |
METALS
|
Steel Types and Alloys
|
By the end of the
lesson, the learner
should be able to:
Compare cast iron, wrought iron, and steel - Analyze different steel compositions - Explain alloy property enhancement - Describe specialized steel applications |
Study cast iron, wrought iron, mild steel, and stainless steel
- Analyze carbon content effects - Specialized steels for tools and instruments - Discussion on alloy design |
Steel samples with different compositions, carbon content charts, specialized tools, stainless steel items
|
KLB Secondary Chemistry Form 4, Pages 159-161
|
|
3 | 2 |
METALS
ORGANIC CHEMISTRY II |
Environmental Effects of Metal Extraction
Introduction to Alkanols and Nomenclature |
By the end of the
lesson, the learner
should be able to:
Identify environmental impacts of mining - Explain pollution from metal extraction - Describe waste management strategies - Discuss NEMA regulations in Kenya |
Analysis of mining environmental impact
- Air, water, and land pollution from extraction - Waste management and slag utilization - NEMA role and regulations |
Environmental impact case studies, pollution images, NEMA regulation documents, waste management examples
Molecular models, Table 6.1 and 6.2, alkanol structure charts, student books |
KLB Secondary Chemistry Form 4, Pages 161-162
|
|
3 | 3 |
ORGANIC CHEMISTRY II
|
Isomerism in Alkanols
Laboratory Preparation of Ethanol Industrial Preparation and Physical Properties |
By the end of the
lesson, the learner
should be able to:
Explain positional and chain isomerism - Draw isomers of given alkanols - Name different isomeric forms - Classify isomers as primary, secondary, or tertiary |
Study positional isomerism examples (propan-1-ol vs propan-2-ol)
- Practice drawing chain isomers - Exercises on isomer identification and naming - Discussion on structural differences |
Isomer structure charts, molecular models, practice worksheets, student books
Sugar, yeast, warm water, conical flask, delivery tube, lime water, thermometer Table 6.3, industrial process diagrams, ethene structure models, property comparison charts |
KLB Secondary Chemistry Form 4, Pages 170-171
|
|
3 | 4-5 |
ORGANIC CHEMISTRY II
|
Chemical Properties of Alkanols I
Chemical Properties of Alkanols II Uses of Alkanols and Health Effects Introduction to Alkanoic Acids Laboratory Preparation of Ethanoic Acid |
By the end of the
lesson, the learner
should be able to:
Test reactions of ethanol with various reagents - Write equations for ethanol reactions - Identify products formed - Explain reaction mechanisms State various uses of alkanols - Explain health effects of alcohol consumption - Discuss methylated spirits - Analyze alcohol in society |
Experiment 6.2: Test ethanol with burning, universal indicator, sodium metal, acids
- Record observations in Table 6.4 - Write balanced equations - Discuss reaction types Discussion on alkanol applications as solvents, fuels, antiseptics - Health effects of alcohol consumption - Methylated spirits composition - Social implications |
Ethanol, sodium metal, universal indicator, concentrated H₂SO₄, ethanoic acid, test tubes
Acidified potassium chromate/manganate, ethanoic acid, concentrated H₂SO₄, heating apparatus Charts showing alkanol uses, health impact data, methylated spirit samples, discussion materials Alkanoic acid structure charts, Table 6.5 and 6.6, molecular models, student books Ethanol, KMnO₄, concentrated H₂SO₄, distillation apparatus, thermometer, round-bottom flask |
KLB Secondary Chemistry Form 4, Pages 173-175
KLB Secondary Chemistry Form 4, Pages 176-177 |
|
4 | 1 |
ORGANIC CHEMISTRY II
|
Physical and Chemical Properties of Alkanoic Acids
|
By the end of the
lesson, the learner
should be able to:
Investigate chemical reactions of ethanoic acid - Test with various reagents - Write chemical equations - Analyze acid strength |
Experiment following Table 6.8: Test ethanoic acid with indicators, metals, carbonates, bases
- Record observations - Write equations - Discuss weak acid behavior |
2M ethanoic acid, universal indicator, Mg strip, Na₂CO₃, NaOH, phenolphthalein, test tubes
|
KLB Secondary Chemistry Form 4, Pages 180-182
|
|
4 | 2 |
ORGANIC CHEMISTRY II
|
Esterification and Uses of Alkanoic Acids
|
By the end of the
lesson, the learner
should be able to:
Explain ester formation process - Write esterification equations - State uses of alkanoic acids - Prepare simple esters |
Complete esterification experiments
- Study concentrated H₂SO₄ as catalyst - Write general esterification equation - Discuss applications in food, drugs, synthetic fibres |
Ethanoic acid, ethanol, concentrated H₂SO₄, test tubes, heating apparatus, cold water
|
KLB Secondary Chemistry Form 4, Pages 182-183
|
|
4 | 3 |
ORGANIC CHEMISTRY II
|
Introduction to Detergents and Soap Preparation
|
By the end of the
lesson, the learner
should be able to:
Define detergents and classify types - Explain saponification process - Prepare soap in laboratory - Compare soapy and soapless detergents |
Study soap vs soapless detergent differences
- Experiment 6.5: Saponify castor oil with NaOH - Add salt for salting out - Test soap formation |
Castor oil, 4M NaOH, NaCl, evaporating dish, water bath, stirring rod, filter paper
|
KLB Secondary Chemistry Form 4, Pages 183-186
|
|
4 | 4-5 |
ORGANIC CHEMISTRY II
|
Mode of Action of Soap and Hard Water Effects
Soapless Detergents and Environmental Effects Introduction to Polymers and Addition Polymerization |
By the end of the
lesson, the learner
should be able to:
Explain soap molecule structure - Describe cleaning mechanism - Investigate hard water effects - Compare soap performance in different waters Define polymers, monomers, and polymerization - Explain addition polymerization - Draw polymer structures - Calculate polymer properties |
Study hydrophobic and hydrophilic ends
- Demonstrate micelle formation - Test soap in distilled vs hard water - Observe scum formation - Write precipitation equations Study polymer concept and terminology - Practice drawing addition polymers from monomers - Examples: polyethene, polypropene, PVC - Calculate molecular masses |
Soap samples, distilled water, hard water (CaCl₂/MgSO₄ solutions), test tubes, demonstration materials
Flow charts of detergent manufacture, Table 6.9, environmental impact data, sample detergents Polymer samples, monomer structure charts, molecular models, calculators, polymer formation diagrams |
KLB Secondary Chemistry Form 4, Pages 186-188
KLB Secondary Chemistry Form 4, Pages 191-195 |
|
5 | 1 |
ORGANIC CHEMISTRY II
|
Addition Polymers - Types and Properties
|
By the end of the
lesson, the learner
should be able to:
Identify different addition polymers - Draw structures from monomers - Name common polymers - Relate structure to properties |
Study polystyrene, PTFE, perspex formation
- Practice identifying monomers from polymer structures - Work through polymer calculation examples - Properties analysis |
Various polymer samples, structure identification exercises, calculation worksheets, Table 6.10
|
KLB Secondary Chemistry Form 4, Pages 195-197
|
|
5 | 2 |
ORGANIC CHEMISTRY II
|
Condensation Polymerization and Natural Polymers
Polymer Properties and Applications |
By the end of the
lesson, the learner
should be able to:
Explain condensation polymerization - Compare with addition polymerization - Study natural polymers - Analyze nylon formation |
Study nylon 6,6 formation from diamine and dioic acid
- Natural polymers: starch, protein, rubber - Vulcanization process - Compare synthetic vs natural |
Nylon samples, rubber samples, condensation reaction diagrams, natural polymer examples
Table 6.10, polymer application samples, environmental impact studies, product examples |
KLB Secondary Chemistry Form 4, Pages 197-200
|
|
5 | 3 |
ORGANIC CHEMISTRY II
|
Comprehensive Problem Solving and Integration
|
By the end of the
lesson, the learner
should be able to:
Solve complex problems involving alkanols and acids - Apply knowledge to practical situations - Integrate polymer concepts - Practice examination questions |
Worked examples on organic synthesis
- Problem-solving on isomers, reactions, polymers - Integration of all unit concepts - Practice examination-style questions |
Comprehensive problem sets, past examination papers, calculators, organic chemistry summary charts
|
KLB Secondary Chemistry Form 4, Pages 167-201
|
|
5 | 4-5 |
RADIOACTIVITY
|
Introduction, Nuclear Stability and Types of Radioactivity
Types of Radiation and Their Properties Radioactive Decay and Half-Life Concept Half-Life Calculations and Problem Solving Nuclear Reactions and Equations |
By the end of the
lesson, the learner
should be able to:
Define nuclide, isotope, and radioisotope - Compare nuclear vs chemical reactions - Explain neutron/proton ratios - Distinguish natural from artificial radioactivity Solve complex half-life problems - Determine original amounts from remaining masses - Apply step-by-step and formula methods - Compare isotope decay rates |
Q/A: Review atomic structure from Form 2
- Study Table 7.1 - nuclear vs chemical reactions - Analysis of neutron/proton ratios and nuclear stability - Discussion on natural vs artificial radioactivity Worked examples on half-life calculations using both methods - Practice determining original amounts - Study various isotope half-lives - Comprehensive problem-solving sessions |
Periodic table, atomic structure charts, Table 7.1, nuclear stability diagrams
Radiation type charts, penetration diagrams, electric field illustrations, safety equipment charts Graph paper, Table 7.2 data, calculators, decay curve examples, half-life data table Calculators, comprehensive problem sets, worked examples, isotope half-life comparison tables Nuclear equation examples, periodic table, conservation law charts, practice worksheets |
KLB Secondary Chemistry Form 4, Pages 199-201
KLB Secondary Chemistry Form 4, Pages 204-206 |
|
6 | 1 |
RADIOACTIVITY
|
Radioactive Decay Series and Sequential Reactions
Nuclear Fission and Chain Reactions Nuclear Fusion and Energy Comparisons |
By the end of the
lesson, the learner
should be able to:
Explain sequential radioactive decay - Trace decay series pathways - Identify stable end products - Complete partial decay series |
Study thorium-232 decay series example
- Trace sequential alpha and beta emissions - Identify stable lead-208 endpoint - Practice completing decay series with missing nuclides |
Decay series charts, thorium series diagram, nuclide stability charts, practice decay series
Fission reaction diagrams, chain reaction illustrations, nuclear reactor diagrams, energy calculation examples Fusion reaction diagrams, comparison tables, stellar fusion charts, energy comparison data |
KLB Secondary Chemistry Form 4, Pages 206-207
|
|
6 | 2 |
RADIOACTIVITY
|
Medical and Diagnostic Applications
|
By the end of the
lesson, the learner
should be able to:
Describe medical applications of radioisotopes - Explain cancer treatment using radiation - Discuss diagnostic procedures and imaging - Analyze therapeutic vs diagnostic uses |
Study cobalt-60 and caesium-137 in cancer treatment
- Iodine-131 in thyroid monitoring - Bone growth and fracture healing monitoring - Sterilization of surgical instruments |
Medical radioisotope charts, treatment procedure diagrams, diagnostic equipment images, case studies
|
KLB Secondary Chemistry Form 4, Pages 208-209
|
|
6 | 3 |
RADIOACTIVITY
|
Industrial, Agricultural and Dating Applications
Radiation Hazards and Environmental Impact |
By the end of the
lesson, the learner
should be able to:
Explain industrial leak detection - Describe agricultural monitoring techniques - Discuss carbon-14 dating principles - Analyze food preservation methods |
Study leak detection using short half-life isotopes
- Carbon-14 dating of archaeological materials - Phosphorus tracking in agriculture - Gamma radiation food preservation |
Carbon dating examples, agricultural application charts, industrial use diagrams, food preservation data
Accident case studies, environmental impact data, radiation exposure charts, contamination maps |
KLB Secondary Chemistry Form 4, Pages 208-209
|
|
6 | 4-5 |
RADIOACTIVITY
|
Safety Measures and International Control
Half-Life Problem Solving and Graph Analysis |
By the end of the
lesson, the learner
should be able to:
Explain radiation protection principles - Describe proper storage and disposal methods - Discuss IAEA role and standards - Analyze monitoring and control systems Solve comprehensive half-life problems - Analyze experimental decay data - Plot and interpret decay curves - Determine half-lives graphically |
Study IAEA guidelines and international cooperation
- Radiation protection protocols and ALARA principle - Safe storage, transport and disposal methods - Environmental monitoring systems Plot decay curves from experimental data - Determine half-lives from graphs - Analyze count rate vs time data - Complex half-life calculation problems |
IAEA guidelines, safety protocol charts, monitoring equipment diagrams, international cooperation data
Graph paper, experimental data sets, calculators, statistical analysis examples, comprehensive problem sets |
KLB Secondary Chemistry Form 4, Pages 209-210
KLB Secondary Chemistry Form 4, Pages 199-210 |
|
7 | 1 |
RADIOACTIVITY
ORGANIC CHEMISTRY I |
Nuclear Equations and Conservation Laws
Introduction to Organic Chemistry and Hydrocarbons |
By the end of the
lesson, the learner
should be able to:
Balance complex nuclear equations - Complete nuclear reaction series - Identify unknown nuclides using conservation laws - Apply mass-energy relationships |
Practice balancing nuclear reactions with multiple steps
- Complete partial decay series - Identify missing nuclides using conservation principles - Mass-energy calculation problems |
Nuclear equation worksheets, periodic table, decay series diagrams, conservation law examples
Carbon models, Hydrocarbon structure charts, Molecular model kits |
KLB Secondary Chemistry Form 4, Pages 199-210
|
|
7 | 2 |
ORGANIC CHEMISTRY I
|
Sources of Alkanes - Natural Gas, Biogas, and Crude Oil
|
By the end of the
lesson, the learner
should be able to:
Identify natural sources of alkanes Describe composition of natural gas and biogas Explain crude oil as major source of alkanes Describe biogas digester and its operation |
Discussion: Natural gas composition (80% methane). Explanation: Biogas formation from organic waste decomposition. Teacher demonstration: Biogas digester model/diagram. Q/A: Environmental benefits of biogas production.
|
Biogas digester model/diagram, Natural gas composition charts, Organic waste samples
|
KLB Secondary Chemistry Form 3, Pages 86-87
|
|
7 | 3 |
ORGANIC CHEMISTRY I
|
Fractional Distillation of Crude Oil
|
By the end of the
lesson, the learner
should be able to:
Explain fractional distillation process Perform fractional distillation of crude oil Identify different fractions and their uses Relate boiling points to molecular size |
Experiment: Fractional distillation of crude oil using improvised column. Collect fractions at different temperatures (120°C intervals up to 350°C). Test fractions for appearance, flammability, and viscosity. Record observations and relate to molecular size.
|
Crude oil sample, Boiling tubes, High-temperature thermometer, Sand/porcelain chips, Bunsen burner, Test tubes
|
KLB Secondary Chemistry Form 3, Pages 87-89
|
|
7 | 4-5 |
ORGANIC CHEMISTRY I
|
Cracking of Alkanes - Thermal and Catalytic Methods
Alkane Series and Homologous Series Concept Nomenclature of Alkanes - Straight Chain and Branched |
By the end of the
lesson, the learner
should be able to:
Define cracking of alkanes Distinguish between thermal and catalytic cracking Write equations for cracking reactions Explain industrial importance of cracking Define homologous series using alkanes Write molecular formulas for first 10 alkanes Identify characteristics of homologous series Apply general formula CₙH₂ₙ₊₂ for alkanes |
Teacher exposition: Definition and purpose of cracking. Discussion: Thermal vs catalytic cracking conditions. Worked examples: Cracking equations producing smaller alkanes, alkenes, and hydrogen. Q/A: Industrial applications and hydrogen production.
Teacher exposition: Homologous series definition and characteristics. Table completion: Names, molecular formulas, and structures of first 10 alkanes. Discussion: General formula application. Pattern recognition: Gradual change in physical properties. |
Cracking process diagrams, Chemical equation charts, Catalyst samples for demonstration
Alkane series chart, Molecular formula worksheets, Periodic table Structural formula charts, IUPAC naming rules poster, Molecular model kits |
KLB Secondary Chemistry Form 3, Pages 89-90
KLB Secondary Chemistry Form 3, Pages 90-92 |
|
8 | 1 |
ORGANIC CHEMISTRY I
|
Isomerism in Alkanes - Structural Isomers
|
By the end of the
lesson, the learner
should be able to:
Define isomerism in alkanes Draw structural isomers of butane and pentane Distinguish between chain and positional isomerism Predict number of isomers for given alkanes |
Teacher exposition: Isomerism definition and types. Practical exercise: Draw all isomers of butane and pentane. Discussion: Physical property differences between isomers. Model building: Use molecular models to show isomeric structures.
|
Molecular model kits, Isomerism charts, Structural formula worksheets
|
KLB Secondary Chemistry Form 3, Pages 92-94
|
|
8 | 2 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Methane
|
By the end of the
lesson, the learner
should be able to:
Describe laboratory preparation of methane Perform methane preparation experiment safely Test physical and chemical properties of methane Write equation for methane preparation |
Experiment: Heat mixture of sodium ethanoate and soda lime. Collect methane gas over water. Tests: Color, smell, combustion, reaction with bromine in dark. Record observations in table format. Safety precautions during gas collection.
|
Sodium ethanoate, Soda lime, Round-bottomed flask, Gas collection apparatus, Bromine water, Wooden splints
|
KLB Secondary Chemistry Form 3, Pages 94-96
|
|
8 | 3 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethane
Physical Properties of Alkanes |
By the end of the
lesson, the learner
should be able to:
Prepare ethane using sodium propanoate and soda lime Compare preparation methods of methane and ethane Test properties of ethane gas Write general equation for alkane preparation |
Experiment: Prepare ethane from sodium propanoate and soda lime. Compare with methane preparation method. Carry out similar tests as for methane. Discussion: General pattern for alkane preparation from sodium alkanoates.
|
Sodium propanoate, Soda lime, Gas collection apparatus, Testing materials
Physical properties data tables, Graph paper, Calculators, Solubility demonstration materials |
KLB Secondary Chemistry Form 3, Pages 94-96
|
|
8 | 4-5 |
ORGANIC CHEMISTRY I
|
Chemical Properties of Alkanes - Combustion and Substitution
Uses of Alkanes in Industry and Daily Life |
By the end of the
lesson, the learner
should be able to:
Write equations for complete and incomplete combustion Explain substitution reactions with halogens Describe conditions for halogenation reactions Name halogenated alkane products List major uses of different alkanes Explain industrial applications of alkanes Describe environmental considerations Evaluate economic importance of alkanes |
Worked examples: Combustion equations for various alkanes. Teacher demonstration: Methane + bromine in sunlight (or simulation). Discussion: Free radical mechanism in substitution. Practice: Write equations for chlorination of methane.
Discussion: Uses of gaseous alkanes as fuels. Teacher exposition: Industrial applications - carbon black, methanol production, hydrogen source. Q/A: Environmental impact and cleaner fuel initiatives. Assignment: Research local uses of alkane products. |
Molecular models, Halogenation reaction charts, Chemical equation worksheets
Industrial application charts, Product samples, Environmental impact materials |
KLB Secondary Chemistry Form 3, Pages 97-98
KLB Secondary Chemistry Form 3, Pages 98-100 |
|
9 | 1 |
ORGANIC CHEMISTRY I
|
Introduction to Alkenes and Functional Groups
|
By the end of the
lesson, the learner
should be able to:
Define alkenes and unsaturation Identify the C=C functional group Write general formula for alkenes (CₙH₂ₙ) Compare alkenes with alkanes |
Teacher exposition: Alkenes definition and unsaturation concept. Introduction: C=C double bond as functional group. Table study: First 6 members of alkene series. Comparison: Alkenes vs alkanes - formulas and structures.
|
Alkene series charts, Molecular models showing double bonds, Functional group posters
|
KLB Secondary Chemistry Form 3, Pages 100-101
|
|
9 | 2 |
ORGANIC CHEMISTRY I
|
Nomenclature of Alkenes
Isomerism in Alkenes - Branching and Positional |
By the end of the
lesson, the learner
should be able to:
Apply IUPAC rules for naming alkenes Number carbon chains to give lowest numbers to double bonds Name branched alkenes with substituents Distinguish position isomers of alkenes |
Teacher demonstration: Step-by-step naming of alkenes. Rules application: Longest chain with double bond, numbering from end nearest double bond. Practice exercises: Name various alkene structures. Group work: Complex branched alkenes with substituents.
|
IUPAC naming charts for alkenes, Structural formula worksheets, Molecular model kits
Molecular model kits, Isomerism worksheets, Geometric isomer models |
KLB Secondary Chemistry Form 3, Pages 101-102
|
|
9 | 3 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethene
|
By the end of the
lesson, the learner
should be able to:
Prepare ethene by dehydration of ethanol Describe role of concentrated sulfuric acid Set up apparatus safely for ethene preparation Test physical and chemical properties of ethene |
Experiment: Dehydration of ethanol using concentrated H₂SO₄ at 170°C. Use sand bath for controlled heating. Pass gas through NaOH to remove impurities. Tests: Bromine water, acidified KMnO₄, combustion. Safety precautions with concentrated acid.
|
Ethanol, Concentrated H₂SO₄, Round-bottomed flask, Sand bath, Gas collection apparatus, Testing solutions
|
KLB Secondary Chemistry Form 3, Pages 102-104
|
|
9 | 4-5 |
ORGANIC CHEMISTRY I
|
Alternative Preparation of Ethene and Physical Properties
Chemical Properties of Alkenes - Addition Reactions |
By the end of the
lesson, the learner
should be able to:
Describe catalytic dehydration using aluminum oxide Compare different preparation methods List physical properties of ethene Explain trends in alkene physical properties Explain addition reactions due to C=C double bond Write equations for halogenation of alkenes Describe hydrogenation and hydrohalogenation Explain addition mechanism |
Demonstration: Alternative method using Al₂O₃ catalyst. Comparison: Acid vs catalytic dehydration methods. Data analysis: Physical properties of alkenes table. Discussion: Property trends with increasing molecular size.
Teacher exposition: Addition reactions definition and mechanism. Worked examples: Ethene + Cl₂, Br₂, HBr, H₂. Discussion: Markovnikov's rule for unsymmetrical addition. Practice: Various addition reaction equations. |
Aluminum oxide catalyst, Glass wool, Alternative apparatus setup, Physical properties charts
Addition reaction charts, Mechanism diagrams, Chemical equation worksheets |
KLB Secondary Chemistry Form 3, Pages 102-104
KLB Secondary Chemistry Form 3, Pages 105-107 |
|
10 | 1 |
ORGANIC CHEMISTRY I
|
Oxidation Reactions of Alkenes and Polymerization
Tests for Alkenes and Uses |
By the end of the
lesson, the learner
should be able to:
Describe oxidation by KMnO₄ and K₂Cr₂O₇ Explain polymerization of ethene Define monomers and polymers Write equations for polymer formation |
Demonstration: Decolorization of KMnO₄ by alkenes. Teacher exposition: Polymerization process and polymer formation. Examples: Ethene → polyethene formation. Discussion: Industrial importance of polymerization. Practice: Write polymerization equations.
|
Oxidizing agents for demonstration, Polymer samples, Polymerization charts, Monomer-polymer models
Test alkenes, Bromine water, Acidified KMnO₄, Plastic samples, Uses reference charts |
KLB Secondary Chemistry Form 3, Pages 107-108
|
|
10 | 2 |
ORGANIC CHEMISTRY I
|
Introduction to Alkynes and Triple Bond
|
By the end of the
lesson, the learner
should be able to:
Define alkynes and triple bond structure Write general formula for alkynes (CₙH₂ₙ₋₂) Identify first members of alkyne series Compare degree of unsaturation in hydrocarbons |
Teacher exposition: Alkynes definition and C≡C triple bond. Table study: First 6 members of alkyne series with structures. Discussion: Degrees of unsaturation - alkanes vs alkenes vs alkynes. Model demonstration: Triple bond representation.
|
Alkyne series charts, Triple bond molecular models, Unsaturation comparison charts
|
KLB Secondary Chemistry Form 3, Pages 109-110
|
|
10 | 3 |
ORGANIC CHEMISTRY I
|
Nomenclature and Isomerism in Alkynes
|
By the end of the
lesson, the learner
should be able to:
Apply IUPAC naming rules for alkynes Name branched alkynes with substituents Draw structural isomers of alkynes Identify branching and positional isomerism |
Teacher demonstration: Systematic naming of alkynes using -yne suffix. Practice exercises: Name various alkyne structures. Drawing exercise: Isomers of pentyne and hexyne. Group work: Complex branched alkynes with multiple substituents.
|
IUPAC naming rules for alkynes, Structural formula worksheets, Molecular model kits
|
KLB Secondary Chemistry Form 3, Pages 110-111
|
|
10 | 4-5 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethyne
Physical and Chemical Properties of Alkynes Addition Reactions of Alkynes and Chemical Tests Uses of Alkynes and Industrial Applications |
By the end of the
lesson, the learner
should be able to:
Prepare ethyne from calcium carbide and water Set up gas collection apparatus safely Test physical and chemical properties of ethyne Write equation for ethyne preparation Write equations for halogenation of alkynes Describe hydrogenation and hydrohalogenation Compare reaction rates: alkynes vs alkenes Perform chemical tests for alkynes |
Experiment: Calcium carbide + water reaction. Use sand layer for heat absorption. Collect ethyne over water. Tests: Color, smell, combustion, bromine water, acidified KMnO₄. Safety: Dry apparatus, controlled water addition.
Worked examples: Two-step addition reactions of ethyne with Br₂, Cl₂, H₂. Discussion: Faster reaction rates in alkynes compared to alkenes. Practical session: Test alkynes with oxidizing agents. Comparison: Rate of decolorization vs alkenes. |
Calcium carbide, Sand, Flat-bottomed flask, Dropping funnel, Gas collection apparatus, Testing solutions
Physical properties charts, Comparison tables, Combustion equation examples Addition reaction charts, Chemical equation worksheets, Test solutions, Stopwatch for rate comparison Industrial application charts, Welding equipment demonstration/video, Synthetic fiber samples |
KLB Secondary Chemistry Form 3, Pages 111-112
KLB Secondary Chemistry Form 3, Pages 113-115 |
|
11 |
EXAMINATIONS |
Your Name Comes Here