If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 2 | 2 |
GAS LAWS
|
Boyle's Law - Introduction and Experimental Investigation
|
By the end of the
lesson, the learner
should be able to:
State Boyle's law Explain Boyle's law using kinetic theory of matter Investigate the relationship between pressure and volume of a fixed mass of gas Plot graphs to illustrate Boyle's law |
Teacher demonstration: Use bicycle pump to show volume-pressure relationship. Students observe force needed to compress gas. Q/A: Review kinetic theory. Class experiment: Investigate pressure-volume relationship using syringes. Record observations in table format. Discuss observations using kinetic theory.
|
Bicycle pump, Syringes, Gas jars, Chart showing volume-pressure relationship
|
KLB Secondary Chemistry Form 3, Pages 1-3
|
|
| 2 | 3 |
GAS LAWS
|
Boyle's Law - Mathematical Expression and Graphical Representation
Boyle's Law - Numerical Problems and Applications |
By the end of the
lesson, the learner
should be able to:
Express Boyle's law mathematically Apply the equation PV = constant Plot and interpret pressure vs volume graphs Plot pressure vs 1/volume graphs |
Q/A: Recall previous lesson observations. Teacher exposition: Derive P₁V₁ = P₂V₂ equation from experimental data. Students plot graphs of pressure vs volume and pressure vs 1/volume. Analyze graph shapes and interpret mathematical relationship.
|
Graph papers, Scientific calculators, Chart showing mathematical expressions
Scientific calculators, Worked example charts, Unit conversion tables |
KLB Secondary Chemistry Form 3, Pages 3-4
|
|
| 2 | 4 |
GAS LAWS
|
Charles's Law - Introduction and Temperature Scales
Charles's Law - Experimental Investigation and Mathematical Expression Charles's Law - Numerical Problems and Applications |
By the end of the
lesson, the learner
should be able to:
State Charles's law Convert temperatures between Celsius and Kelvin scales Define absolute zero temperature Explain the concept of absolute temperature |
Teacher demonstration: Flask with colored water column experiment. Q/A: Observe volume changes with temperature. Exposition: Introduce Kelvin scale and absolute zero concept. Practice: Temperature conversions between °C and K. Discuss absolute zero and ideal gas concept.
|
Round-bottomed flask, Narrow glass tube, Colored water, Rubber bung, Hot and cold water baths
Glass apparatus, Thermometers, Graph papers, Water baths at different temperatures Scientific calculators, Temperature conversion charts, Application examples |
KLB Secondary Chemistry Form 3, Pages 6-8
|
|
| 3 | 1-2 |
GAS LAWS
|
Combined Gas Law and Standard Conditions
Introduction to Diffusion - Experimental Investigation Rates of Diffusion - Comparative Study Graham's Law of Diffusion - Theory and Mathematical Expression |
By the end of the
lesson, the learner
should be able to:
Derive the combined gas law equation Apply PV/T = constant in problem solving Define standard temperature and pressure (s.t.p) Define room temperature and pressure (r.t.p) Compare diffusion rates of different gases Investigate factors affecting diffusion rates Measure relative distances covered by diffusing gases Calculate rates of diffusion using distance and time data |
Q/A: Combine Boyle's and Charles's laws. Teacher exposition: Derive P₁V₁/T₁ = P₂V₂/T₂. Define s.t.p (273K, 760mmHg) and r.t.p (298K, 760mmHg). Worked examples: Problems involving changes in all three variables. Supervised practice: Complex gas law calculations.
Class experiment: Ammonia and HCl diffusion in glass tube. Insert cotton wool soaked in concentrated NH₃ and HCl at opposite ends. Time the formation of white NH₄Cl ring. Measure distances covered by each gas. Calculate rates: distance/time. Compare molecular masses of NH₃ and HCl. |
Scientific calculators, Combined law derivation charts, Standard conditions reference table
KMnO₄ crystals, Bromine liquid, Gas jars, Combustion tube, Litmus papers, Stopwatch Glass tube (25cm), Cotton wool, Concentrated NH₃ and HCl, Stopwatch, Ruler, Safety equipment Graham's law charts, Molecular mass tables, Mathematical derivation displays |
KLB Secondary Chemistry Form 3, Pages 12-14
KLB Secondary Chemistry Form 3, Pages 16-18 |
|
| 3 | 3 |
GAS LAWS
|
Graham's Law - Numerical Applications and Problem Solving
|
By the end of the
lesson, the learner
should be able to:
Solve numerical problems using Graham's law Calculate relative rates of diffusion Determine molecular masses from diffusion data Compare diffusion times for equal volumes of gases |
Worked examples: Calculate relative diffusion rates using √(M₂/M₁). Problems involving time comparisons for equal volumes. Calculate unknown molecular masses from rate data. Supervised practice: Various Graham's law calculations. Real-life applications: gas separation, gas masks.
|
Scientific calculators, Worked example charts, Molecular mass reference tables
|
KLB Secondary Chemistry Form 3, Pages 20-22
|
|
| 3 | 4 |
ORGANIC CHEMISTRY I
|
Introduction to Organic Chemistry and Hydrocarbons
|
By the end of the
lesson, the learner
should be able to:
Define organic chemistry and hydrocarbons Explain why carbon forms many compounds Classify hydrocarbons into alkanes, alkenes, and alkynes Identify the bonding in carbon compounds |
Teacher exposition: Definition of organic chemistry. Discussion: Unique properties of carbon - tetravalency, catenation, multiple bonding. Q/A: Examples of hydrocarbons in daily life. Introduction to three main groups of hydrocarbons.
|
Carbon models, Hydrocarbon structure charts, Molecular model kits
|
KLB Secondary Chemistry Form 3, Pages 86-87
|
|
| 4 | 1-2 |
ORGANIC CHEMISTRY I
|
Sources of Alkanes - Natural Gas, Biogas, and Crude Oil
Fractional Distillation of Crude Oil Cracking of Alkanes - Thermal and Catalytic Methods |
By the end of the
lesson, the learner
should be able to:
Identify natural sources of alkanes Describe composition of natural gas and biogas Explain crude oil as major source of alkanes Describe biogas digester and its operation Define cracking of alkanes Distinguish between thermal and catalytic cracking Write equations for cracking reactions Explain industrial importance of cracking |
Discussion: Natural gas composition (80% methane). Explanation: Biogas formation from organic waste decomposition. Teacher demonstration: Biogas digester model/diagram. Q/A: Environmental benefits of biogas production.
Teacher exposition: Definition and purpose of cracking. Discussion: Thermal vs catalytic cracking conditions. Worked examples: Cracking equations producing smaller alkanes, alkenes, and hydrogen. Q/A: Industrial applications and hydrogen production. |
Biogas digester model/diagram, Natural gas composition charts, Organic waste samples
Crude oil sample, Boiling tubes, High-temperature thermometer, Sand/porcelain chips, Bunsen burner, Test tubes Cracking process diagrams, Chemical equation charts, Catalyst samples for demonstration |
KLB Secondary Chemistry Form 3, Pages 86-87
KLB Secondary Chemistry Form 3, Pages 89-90 |
|
| 4 | 3 |
ORGANIC CHEMISTRY I
|
Alkane Series and Homologous Series Concept
|
By the end of the
lesson, the learner
should be able to:
Define homologous series using alkanes Write molecular formulas for first 10 alkanes Identify characteristics of homologous series Apply general formula CₙH₂ₙ₊₂ for alkanes |
Teacher exposition: Homologous series definition and characteristics. Table completion: Names, molecular formulas, and structures of first 10 alkanes. Discussion: General formula application. Pattern recognition: Gradual change in physical properties.
|
Alkane series chart, Molecular formula worksheets, Periodic table
|
KLB Secondary Chemistry Form 3, Pages 90-92
|
|
| 4 | 4 |
ORGANIC CHEMISTRY I
|
Nomenclature of Alkanes - Straight Chain and Branched
|
By the end of the
lesson, the learner
should be able to:
Name straight-chain alkanes using IUPAC rules Identify parent chains in branched alkanes Name branched alkanes with substituent groups Apply systematic naming rules correctly |
Teacher demonstration: Step-by-step naming of branched alkanes. Rules application: Longest chain identification, numbering from nearest branch, substituent naming. Practice exercises: Various branched alkane structures. Group work: Name complex branched alkanes.
|
Structural formula charts, IUPAC naming rules poster, Molecular model kits
|
KLB Secondary Chemistry Form 3, Pages 90-92
|
|
| 5 | 1-2 |
ORGANIC CHEMISTRY I
|
Isomerism in Alkanes - Structural Isomers
Laboratory Preparation of Methane Laboratory Preparation of Ethane |
By the end of the
lesson, the learner
should be able to:
Define isomerism in alkanes Draw structural isomers of butane and pentane Distinguish between chain and positional isomerism Predict number of isomers for given alkanes Prepare ethane using sodium propanoate and soda lime Compare preparation methods of methane and ethane Test properties of ethane gas Write general equation for alkane preparation |
Teacher exposition: Isomerism definition and types. Practical exercise: Draw all isomers of butane and pentane. Discussion: Physical property differences between isomers. Model building: Use molecular models to show isomeric structures.
Experiment: Prepare ethane from sodium propanoate and soda lime. Compare with methane preparation method. Carry out similar tests as for methane. Discussion: General pattern for alkane preparation from sodium alkanoates. |
Molecular model kits, Isomerism charts, Structural formula worksheets
Sodium ethanoate, Soda lime, Round-bottomed flask, Gas collection apparatus, Bromine water, Wooden splints Sodium propanoate, Soda lime, Gas collection apparatus, Testing materials |
KLB Secondary Chemistry Form 3, Pages 92-94
KLB Secondary Chemistry Form 3, Pages 94-96 |
|
| 5 | 3 |
ORGANIC CHEMISTRY I
|
Physical Properties of Alkanes
|
By the end of the
lesson, the learner
should be able to:
Describe physical properties of alkanes Explain trends in melting and boiling points Relate molecular size to physical properties Compare solubility in different solvents |
Data analysis: Study table of physical properties of first 10 alkanes. Graph plotting: Boiling points vs number of carbon atoms. Discussion: Intermolecular forces and property trends. Q/A: Solubility patterns in polar and non-polar solvents.
|
Physical properties data tables, Graph paper, Calculators, Solubility demonstration materials
|
KLB Secondary Chemistry Form 3, Pages 96-97
|
|
| 5 | 4 |
ORGANIC CHEMISTRY I
|
Chemical Properties of Alkanes - Combustion and Substitution
Uses of Alkanes in Industry and Daily Life |
By the end of the
lesson, the learner
should be able to:
Write equations for complete and incomplete combustion Explain substitution reactions with halogens Describe conditions for halogenation reactions Name halogenated alkane products |
Worked examples: Combustion equations for various alkanes. Teacher demonstration: Methane + bromine in sunlight (or simulation). Discussion: Free radical mechanism in substitution. Practice: Write equations for chlorination of methane.
|
Molecular models, Halogenation reaction charts, Chemical equation worksheets
Industrial application charts, Product samples, Environmental impact materials |
KLB Secondary Chemistry Form 3, Pages 97-98
|
|
| 6 | 1-2 |
ORGANIC CHEMISTRY I
|
Introduction to Alkenes and Functional Groups
Nomenclature of Alkenes |
By the end of the
lesson, the learner
should be able to:
Define alkenes and unsaturation Identify the C=C functional group Write general formula for alkenes (CₙH₂ₙ) Compare alkenes with alkanes Apply IUPAC rules for naming alkenes Number carbon chains to give lowest numbers to double bonds Name branched alkenes with substituents Distinguish position isomers of alkenes |
Teacher exposition: Alkenes definition and unsaturation concept. Introduction: C=C double bond as functional group. Table study: First 6 members of alkene series. Comparison: Alkenes vs alkanes - formulas and structures.
Teacher demonstration: Step-by-step naming of alkenes. Rules application: Longest chain with double bond, numbering from end nearest double bond. Practice exercises: Name various alkene structures. Group work: Complex branched alkenes with substituents. |
Alkene series charts, Molecular models showing double bonds, Functional group posters
IUPAC naming charts for alkenes, Structural formula worksheets, Molecular model kits |
KLB Secondary Chemistry Form 3, Pages 100-101
KLB Secondary Chemistry Form 3, Pages 101-102 |
|
| 6 | 3 |
ORGANIC CHEMISTRY I
|
Isomerism in Alkenes - Branching and Positional
|
By the end of the
lesson, the learner
should be able to:
Draw structural isomers of alkenes Distinguish between branching and positional isomerism Identify geometric isomers in alkenes Predict isomer numbers for given molecular formulas |
Practical exercise: Draw all isomers of butene and pentene. Teacher exposition: Branching vs positional isomerism in alkenes. Model building: Use molecular models for isomer visualization. Discussion: Geometric isomerism introduction (basic level).
|
Molecular model kits, Isomerism worksheets, Geometric isomer models
|
KLB Secondary Chemistry Form 3, Pages 102
|
|
| 6 | 4 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethene
Alternative Preparation of Ethene and Physical Properties |
By the end of the
lesson, the learner
should be able to:
Prepare ethene by dehydration of ethanol Describe role of concentrated sulfuric acid Set up apparatus safely for ethene preparation Test physical and chemical properties of ethene |
Experiment: Dehydration of ethanol using concentrated H₂SO₄ at 170°C. Use sand bath for controlled heating. Pass gas through NaOH to remove impurities. Tests: Bromine water, acidified KMnO₄, combustion. Safety precautions with concentrated acid.
|
Ethanol, Concentrated H₂SO₄, Round-bottomed flask, Sand bath, Gas collection apparatus, Testing solutions
Aluminum oxide catalyst, Glass wool, Alternative apparatus setup, Physical properties charts |
KLB Secondary Chemistry Form 3, Pages 102-104
|
|
| 7 | 1-2 |
ORGANIC CHEMISTRY I
|
Chemical Properties of Alkenes - Addition Reactions
Oxidation Reactions of Alkenes and Polymerization |
By the end of the
lesson, the learner
should be able to:
Explain addition reactions due to C=C double bond Write equations for halogenation of alkenes Describe hydrogenation and hydrohalogenation Explain addition mechanism Describe oxidation by KMnO₄ and K₂Cr₂O₇ Explain polymerization of ethene Define monomers and polymers Write equations for polymer formation |
Teacher exposition: Addition reactions definition and mechanism. Worked examples: Ethene + Cl₂, Br₂, HBr, H₂. Discussion: Markovnikov's rule for unsymmetrical addition. Practice: Various addition reaction equations.
Demonstration: Decolorization of KMnO₄ by alkenes. Teacher exposition: Polymerization process and polymer formation. Examples: Ethene → polyethene formation. Discussion: Industrial importance of polymerization. Practice: Write polymerization equations. |
Addition reaction charts, Mechanism diagrams, Chemical equation worksheets
Oxidizing agents for demonstration, Polymer samples, Polymerization charts, Monomer-polymer models |
KLB Secondary Chemistry Form 3, Pages 105-107
KLB Secondary Chemistry Form 3, Pages 107-108 |
|
| 7 | 3 |
ORGANIC CHEMISTRY I
|
Tests for Alkenes and Uses
Introduction to Alkynes and Triple Bond |
By the end of the
lesson, the learner
should be able to:
Perform chemical tests to identify alkenes Use bromine water and KMnO₄ as test reagents List industrial and domestic uses of alkenes Explain importance in plastic manufacture |
Practical session: Test known alkenes with bromine water and acidified KMnO₄. Observe rapid decolorization compared to alkanes. Discussion: Uses in plastics, ethanol production, fruit ripening, detergents. Assignment: Research alkene applications.
|
Test alkenes, Bromine water, Acidified KMnO₄, Plastic samples, Uses reference charts
Alkyne series charts, Triple bond molecular models, Unsaturation comparison charts |
KLB Secondary Chemistry Form 3, Pages 108-109
|
|
| 7 | 4 |
ORGANIC CHEMISTRY I
|
Nomenclature and Isomerism in Alkynes
|
By the end of the
lesson, the learner
should be able to:
Apply IUPAC naming rules for alkynes Name branched alkynes with substituents Draw structural isomers of alkynes Identify branching and positional isomerism |
Teacher demonstration: Systematic naming of alkynes using -yne suffix. Practice exercises: Name various alkyne structures. Drawing exercise: Isomers of pentyne and hexyne. Group work: Complex branched alkynes with multiple substituents.
|
IUPAC naming rules for alkynes, Structural formula worksheets, Molecular model kits
|
KLB Secondary Chemistry Form 3, Pages 110-111
|
|
| 8 | 1-2 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethyne
Physical and Chemical Properties of Alkynes |
By the end of the
lesson, the learner
should be able to:
Prepare ethyne from calcium carbide and water Set up gas collection apparatus safely Test physical and chemical properties of ethyne Write equation for ethyne preparation Describe physical properties of alkynes Compare alkyne properties with alkenes and alkanes Write combustion equations for alkynes Explain addition reactions of alkynes |
Experiment: Calcium carbide + water reaction. Use sand layer for heat absorption. Collect ethyne over water. Tests: Color, smell, combustion, bromine water, acidified KMnO₄. Safety: Dry apparatus, controlled water addition.
Data analysis: Physical properties of alkynes table. Comparison: Alkynes vs alkenes vs alkanes properties. Worked examples: Combustion reactions of ethyne. Teacher exposition: Two-step addition reactions due to triple bond. |
Calcium carbide, Sand, Flat-bottomed flask, Dropping funnel, Gas collection apparatus, Testing solutions
Physical properties charts, Comparison tables, Combustion equation examples |
KLB Secondary Chemistry Form 3, Pages 111-112
KLB Secondary Chemistry Form 3, Pages 112-113 |
|
| 8 | 3 |
ORGANIC CHEMISTRY I
|
Addition Reactions of Alkynes and Chemical Tests
Uses of Alkynes and Industrial Applications |
By the end of the
lesson, the learner
should be able to:
Write equations for halogenation of alkynes Describe hydrogenation and hydrohalogenation Compare reaction rates: alkynes vs alkenes Perform chemical tests for alkynes |
Worked examples: Two-step addition reactions of ethyne with Br₂, Cl₂, H₂. Discussion: Faster reaction rates in alkynes compared to alkenes. Practical session: Test alkynes with oxidizing agents. Comparison: Rate of decolorization vs alkenes.
|
Addition reaction charts, Chemical equation worksheets, Test solutions, Stopwatch for rate comparison
Industrial application charts, Welding equipment demonstration/video, Synthetic fiber samples |
KLB Secondary Chemistry Form 3, Pages 113-115
|
|
| 8 | 4 |
NITROGEN AND ITS COMPOUNDS
|
Introduction to Nitrogen - Properties and Occurrence
|
By the end of the
lesson, the learner
should be able to:
Describe position of nitrogen in the periodic table State electron configuration of nitrogen Identify natural occurrence of nitrogen Explain why nitrogen exists as diatomic molecules |
Teacher exposition: Nitrogen as Group V element, atomic number 7, electron arrangement Discussion: 78% of atmosphere is nitrogen. Q/A: Combined nitrogen in compounds - nitrates, proteins. Explanation: N≡N triple bond strength.
|
Periodic table charts, Atmospheric composition diagrams, Molecular models showing N≡N triple bond
|
KLB Secondary Chemistry Form 3, Pages 119
|
|
| 9 | 1-2 |
NITROGEN AND ITS COMPOUNDS
|
Isolation of Nitrogen from Air - Industrial and Laboratory Methods
Laboratory Preparation of Nitrogen Gas |
By the end of the
lesson, the learner
should be able to:
Describe isolation of nitrogen from air Explain fractional distillation of liquid air Set up apparatus for laboratory isolation Identify impurities removed during isolation Prepare nitrogen gas from ammonium compounds Use sodium nitrite and ammonium chloride method Test physical and chemical properties of nitrogen Write equations for nitrogen preparation |
Experiment: Laboratory isolation using aspirator. Pass air through KOH solution to remove CO₂, then over heated copper to remove oxygen. Teacher demonstration: Fractional distillation principles. Flow chart study: Industrial nitrogen production steps.
Experiment: Mix sodium nitrite (7g) and ammonium chloride ( 5g) with water. Heat gently and collect gas over water. Tests: Color, smell, burning splint, litmus paper, lime water, burning Mg and S. Safety precautions during heating. |
Aspirator, KOH solution, Copper turnings, Heating apparatus, Fractional distillation flow chart
Sodium nitrite, Ammonium chloride, Round-bottomed flask, Gas collection apparatus, Test reagents, Deflagrating spoon |
KLB Secondary Chemistry Form 3, Pages 119-121
KLB Secondary Chemistry Form 3, Pages 121-123 |
|
| 9 | 3 |
NITROGEN AND ITS COMPOUNDS
|
Properties and Uses of Nitrogen Gas
Nitrogen(I) Oxide - Preparation and Properties |
By the end of the
lesson, the learner
should be able to:
Describe physical properties of nitrogen Explain chemical inertness of nitrogen Describe reactions at high temperatures List industrial uses of nitrogen |
Analysis of test results: Colorless, odorless, does not burn or support combustion. Discussion: Triple bond strength and chemical inertness. High temperature reactions with metals forming nitrides. Uses: Haber process, light bulbs, refrigerant, inert atmosphere.
|
Property summary charts, Uses of nitrogen displays, Industrial application diagrams
Ammonium nitrate, Test tubes, Gas collection apparatus, Copper turnings, Sulfur, Glowing splints |
KLB Secondary Chemistry Form 3, Pages 121-123
|
|
| 9 | 4 |
NITROGEN AND ITS COMPOUNDS
|
Nitrogen(II) Oxide - Preparation and Properties
|
By the end of the
lesson, the learner
should be able to:
Prepare nitrogen(II) oxide from copper and dilute nitric acid Observe colorless gas and brown fumes formation Test reactions with air and iron(II) sulfate Explain oxidation in air to NO₂ |
Experiment: Add dilute HNO₃ to copper turnings. Observe brown fumes formation then disappearance. Tests: Effect on litmus, burning splint, FeSO₄ complex formation. Discussion: NO oxidation to NO₂ in air.
|
Copper turnings, Dilute nitric acid, Gas collection apparatus, Iron(II) sulfate solution, Test reagents
|
KLB Secondary Chemistry Form 3, Pages 125-127
|
|
| 10 | 1-2 |
NITROGEN AND ITS COMPOUNDS
|
Nitrogen(IV) Oxide - Preparation and Properties
Comparison of Nitrogen Oxides and Environmental Effects Laboratory Preparation of Ammonia |
By the end of the
lesson, the learner
should be able to:
Prepare nitrogen(IV) oxide from copper and concentrated nitric acid Prepare from thermal decomposition of nitrates Test properties including equilibrium with N₂O₄ Describe reactions and uses Compare preparation methods of nitrogen oxides Distinguish between different nitrogen oxides Explain formation in vehicle engines Describe environmental pollution effects |
Experiment: Add concentrated HNO₃ to copper turnings. Collect red-brown gas by downward delivery. Alternative: Heat lead(II) nitrate with cooling U-tube. Tests: Solubility, effect on litmus, burning elements, cooling/heating effects.
Comparative study: Properties table of N₂O, NO, NO₂. Discussion: Formation in internal combustion engines. Environmental effects: Acid rain formation, smog, health problems. Worked examples: Distinguishing tests for each oxide. |
Copper turnings, Concentrated nitric acid, Lead(II) nitrate, Gas collection apparatus, U-tube with ice, Testing materials
Comparison charts, Environmental impact diagrams, Vehicle emission illustrations Calcium hydroxide, Ammonium chloride, Round-bottomed flask, Calcium oxide, HCl solution, Glass rod, Litmus paper |
KLB Secondary Chemistry Form 3, Pages 127-131
KLB Secondary Chemistry Form 3, Pages 123-131 |
|
| 10 | 3 |
NITROGEN AND ITS COMPOUNDS
|
Preparation of Aqueous Ammonia and Solubility
|
By the end of the
lesson, the learner
should be able to:
Prepare aqueous ammonia solution Demonstrate high solubility using fountain experiment Explain alkaline properties of aqueous ammonia Write equations for ammonia in water |
Experiment: Dissolve ammonia in water using inverted funnel method. Fountain experiment: Show partial vacuum formation due to high solubility. Tests: Effect on universal indicator, pH measurement. Theory: NH₃ + H₂O equilibrium.
|
Ammonia generation apparatus, Funnel, Universal indicator, Fountain apparatus, pH meter/paper
|
KLB Secondary Chemistry Form 3, Pages 134-136
|
|
| 10 | 4 |
NITROGEN AND ITS COMPOUNDS
|
Reactions of Aqueous Ammonia with Metal Ions
|
By the end of the
lesson, the learner
should be able to:
Test reactions of aqueous ammonia with various metal ions Observe precipitate formation and dissolution Explain complex ion formation Use reactions for metal ion identification |
Experiment: Add aqueous ammonia dropwise to solutions of Ca²⁺, Mg²⁺, Al³⁺, Zn²⁺, Fe²⁺, Fe³⁺, Pb²⁺, Cu²⁺. Record observations with few drops vs excess ammonia. Identify complex ion formation with Zn²⁺ and Cu²⁺.
|
Various metal salt solutions, Aqueous ammonia, Test tubes, Droppers, Observation recording tables
|
KLB Secondary Chemistry Form 3, Pages 136-138
|
|
| 11 | 1-2 |
NITROGEN AND ITS COMPOUNDS
|
Chemical Properties of Ammonia - Reactions with Acids and Combustion
Industrial Manufacture of Ammonia - The Haber Process Uses of Ammonia and Introduction to Nitrogenous Fertilizers |
By the end of the
lesson, the learner
should be able to:
Test neutralization reactions with acids Investigate combustion of ammonia Examine catalytic oxidation with platinum Study reducing properties with metal oxides Describe raw materials and their sources Explain optimum conditions for ammonia synthesis Draw flow diagram of Haber process Explain economic considerations and catalyst use |
Experiments: (a) Neutralize H₂SO₄, HCl, HNO₃ with aqueous ammonia using indicators. (b) Attempt combustion in air and oxygen. (c) Catalytic oxidation with heated platinum wire. (d) Reduction of CuO by ammonia. Record all observations.
Teacher exposition: N₂ from air, H₂ from natural gas/cracking. Process conditions: 500°C, 200 atm, iron catalyst. Flow diagram study: Purification, compression, catalytic chamber, separation, recycling. Economic factors: Compromise between yield and rate. |
Various dilute acids, Methyl orange, Oxygen supply, Platinum wire, Copper(II) oxide, Combustion apparatus, U-tube for collection
Haber process flow charts, Industrial diagrams, Catalyst samples, Economic analysis sheets Fertilizer samples, Percentage calculation worksheets, Use application charts, Calculator |
KLB Secondary Chemistry Form 3, Pages 138-140
KLB Secondary Chemistry Form 3, Pages 140-141 |
|
| 11 | 3 |
NITROGEN AND ITS COMPOUNDS
|
Nitrogenous Fertilizers - Types and Calculations
|
By the end of the
lesson, the learner
should be able to:
Calculate percentage nitrogen in various fertilizers Compare fertilizer effectiveness Prepare simple nitrogenous fertilizers Discuss environmental considerations |
Worked examples: Calculate % N in (NH₄)₂SO₄, NH₄NO₃, (NH₄)₃PO₄, CO(NH₂)₂, CAN. Comparison: Urea has highest nitrogen content. Practical: Prepare ammonium sulfate from ammonia and sulfuric acid. Environmental impact discussion.
|
Various fertilizer formulas, Scientific calculators, Laboratory preparation materials, Environmental impact data
|
KLB Secondary Chemistry Form 3, Pages 141-144
|
|
| 11 | 4 |
NITROGEN AND ITS COMPOUNDS
|
Laboratory Preparation of Nitric(V) Acid
|
By the end of the
lesson, the learner
should be able to:
Prepare nitric acid from nitrate and concentrated sulfuric acid Set up all-glass apparatus safely Explain brown fumes and yellow color Purify nitric acid by air bubbling |
Experiment: Heat mixture of KNO₃ and concentrated H₂SO₄ in all-glass apparatus. Collect yellow nitric acid. Explain brown fumes (NO₂) and yellow color. Bubble air through to remove dissolved NO₂. Safety: Gentle heating, fume cupboard.
|
Potassium nitrate, Concentrated sulfuric acid, All-glass apparatus, Condenser, Retort stand, Safety equipment
|
KLB Secondary Chemistry Form 3, Pages 144-145
|
|
| 12 | 1-2 |
NITROGEN AND ITS COMPOUNDS
|
Industrial Manufacture of Nitric(V) Acid
Reactions of Dilute Nitric(V) Acid with Metals Reactions of Dilute Nitric(V) Acid with Carbonates and Hydroxides Reactions of Concentrated Nitric(V) Acid - Oxidizing Properties |
By the end of the
lesson, the learner
should be able to:
Describe catalytic oxidation process Explain raw materials and conditions Draw flow diagram of industrial process Calculate theoretical yields and efficiency Test reactions with carbonates and hydrogen carbonates Test neutralization with metal hydroxides and oxides Identify products formed Write balanced chemical equations |
Teacher exposition: Ostwald process - NH₃ oxidation with Pt-Rh catalyst at 900°C. Flow diagram: Oxidation chamber, cooling, absorption tower. Equations: NH₃ → NO → NO₂ → HNO₃. Economic factors: Catalyst cost, heat recovery.
Experiments: (a) Add dilute HNO₃ to Na₂CO₃, CaCO₃, ZnCO₃, CuCO₃, NaHCO₃. Test gas evolved with lime water. (b) Neutralize NaOH, CaO, CuO, PbO with dilute HNO₃. Record color changes and write equations. |
Industrial process flow charts, Catalyst samples, Process condition charts, Efficiency calculation sheets
Various metals (Mg, Zn, Cu), Dilute nitric acid, Test tubes, Gas testing apparatus, Burning splints Various carbonates and hydroxides, Dilute nitric acid, Lime water, Universal indicator, Test tubes Concentrated nitric acid, Iron(II) sulfate, Sulfur powder, Copper turnings, Test tubes, Fume cupboard access |
KLB Secondary Chemistry Form 3, Pages 145-147
KLB Secondary Chemistry Form 3, Pages 147-150 |
Your Name Comes Here