If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 |
SCHOOL OPENING AND REPORTING |
|||||||
1 | 3 |
Approximations and Errors
|
Computing using calculators
|
By the end of the
lesson, the learner
should be able to:
Solve basic operations using calculators Use calculator functions effectively Apply calculator to mathematical computations |
Q/A on calculator familiarity
Discussions on calculator operations Solving basic arithmetic problems Demonstrations of calculator functions Explaining proper calculator usage |
Calculators, operation guides
|
KLB Mathematics Book Three Pg 24-26
|
|
1 | 4 |
Approximations and Errors
|
Computing using calculators
Approximation |
By the end of the
lesson, the learner
should be able to:
Solve basic operations using calculators Perform complex calculations accurately Verify calculator results |
Q/A on calculator accuracy
Discussions on verification methods Solving complex computational problems Demonstrations of result checking Explaining calculation verification |
Calculators, verification worksheets
Calculators, rounding charts |
KLB Mathematics Book Three Pg 26-28
|
|
1 | 5 |
Approximations and Errors
|
Estimation
|
By the end of the
lesson, the learner
should be able to:
Approximate values by truncation Estimate values using appropriate methods Compare estimation techniques |
Q/A on estimation strategies
Discussions on truncation vs rounding Solving estimation problems Demonstrations of truncation methods Explaining when to use different techniques |
Calculators, estimation guides
|
KLB Mathematics Book Three Pg 30
|
|
1 | 6 |
Approximations and Errors
|
Accuracy and errors
|
By the end of the
lesson, the learner
should be able to:
Find the absolute error Calculate relative error Distinguish between different error types |
Q/A on error concepts
Discussions on error calculations Solving absolute and relative error problems Demonstrations of error computation Explaining error significance |
Calculators, error calculation sheets
|
KLB Mathematics Book Three Pg 31-32
|
|
1 | 7 |
Approximations and Errors
|
Percentage error
Rounding off error and truncation error |
By the end of the
lesson, the learner
should be able to:
Find the percentage error of a given value Calculate percentage error accurately Interpret percentage error results |
Q/A on percentage concepts
Discussions on percentage error meaning Solving percentage error problems Demonstrations of percentage calculations Explaining error interpretation |
Calculators, percentage error worksheets
Calculators, error comparison charts |
KLB Mathematics Book Three Pg 32-34
|
|
2 | 1 |
Approximations and Errors
|
Propagation of errors
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in addition and subtraction Calculate combined errors Apply error propagation rules |
Q/A on error propagation concepts
Discussions on addition/subtraction errors Solving error propagation problems Demonstrations of error combination Explaining propagation principles |
Calculators, error propagation guides
|
KLB Mathematics Book Three Pg 35-36
|
|
2 | 2 |
Approximations and Errors
|
Propagation of errors
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in addition and subtraction Apply error propagation to complex problems Verify error calculations |
Q/A on propagation mastery
Discussions on complex error scenarios Solving advanced propagation problems Demonstrations of verification methods Explaining error validation |
Calculators, verification worksheets
|
KLB Mathematics Book Three Pg 35-36
|
|
2 | 3 |
Approximations and Errors
|
Propagation of errors in multiplication
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in multiplication Calculate relative errors in products Apply multiplication error rules |
Q/A on multiplication error concepts
Discussions on product error calculation Solving multiplication error problems Demonstrations of relative error computation Explaining multiplication error principles |
Calculators, multiplication error guides
Calculators, method comparison charts |
KLB Mathematics Book Three Pg 36-37
|
|
2 | 4 |
Approximations and Errors
|
Propagation of errors in division
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in division Calculate errors in quotients Apply division error rules |
Q/A on division error concepts
Discussions on quotient error calculation Solving division error problems Demonstrations of division error methods Explaining division error principles |
Calculators, division error worksheets
|
KLB Mathematics Book Three Pg 37-38
|
|
2 | 5 |
Approximations and Errors
|
Propagation of errors in division
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in division Solve complex division error problems Verify division error calculations |
Q/A on division error mastery
Discussions on complex division scenarios Solving advanced division error problems Demonstrations of error verification Explaining accuracy in division errors |
Calculators, verification guides
|
KLB Mathematics Book Three Pg 37-38
|
|
2 | 6 |
Approximations and Errors
Surds |
Word problems
Rational and irrational numbers |
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors of a word problem Apply error analysis to real-world situations Solve comprehensive error problems |
Q/A on chapter consolidation
Discussions on real-world applications Solving comprehensive word problems Demonstrations of problem-solving strategies Explaining practical error analysis |
Calculators, word problem sets, comprehensive review sheets
Calculators, number classification charts |
KLB Mathematics Book Three Pg 39-40
|
|
2 | 7 |
Surds
|
Order of surds and simplification
|
By the end of the
lesson, the learner
should be able to:
State the order of surds Identify surd orders correctly Simplify surds to lowest terms |
Q/A on surd definition and properties
Discussions on surd order concepts Solving order identification problems Demonstrations of surd simplification Explaining simplification techniques |
Calculators, surd order examples
|
KLB Mathematics Book Three Pg 78-79
|
|
3 | 1 |
Surds
|
Simplification of surds practice
|
By the end of the
lesson, the learner
should be able to:
Simplify surds using factorization Express surds in simplest form Apply systematic simplification methods |
Q/A on factorization techniques
Discussions on factor identification Solving extensive simplification problems Demonstrations of step-by-step methods Explaining perfect square extraction |
Calculators, factor trees, simplification worksheets
|
KLB Mathematics Book Three Pg 79-80
|
|
3 | 2 |
Surds
|
Addition of surds
Subtraction of surds |
By the end of the
lesson, the learner
should be able to:
Add surds with like terms Combine surds of the same order Simplify surd addition expressions |
Q/A on like term concepts
Discussions on surd addition rules Solving addition problems systematically Demonstrations of combining techniques Explaining when surds can be added |
Calculators, addition rule charts
Calculators, subtraction worksheets |
KLB Mathematics Book Three Pg 79-80
|
|
3 | 3 |
Surds
|
Multiplication of surds
|
By the end of the
lesson, the learner
should be able to:
Multiply surds of the same order Apply multiplication rules to surds Simplify products of surds |
Q/A on multiplication concepts
Discussions on surd multiplication laws Solving multiplication problems Demonstrations of product simplification Explaining multiplication principles |
Calculators, multiplication rule guides
|
KLB Mathematics Book Three Pg 80-82
|
|
3 | 4 |
Surds
|
Division of surds
|
By the end of the
lesson, the learner
should be able to:
Divide surds of the same order Apply division rules to surds Simplify quotients of surds |
Q/A on division concepts
Discussions on surd division methods Solving division problems systematically Demonstrations of quotient simplification Explaining division techniques |
Calculators, division worksheets
|
KLB Mathematics Book Three Pg 81-82
|
|
3 | 5 |
Surds
|
Rationalizing the denominator
Advanced rationalization techniques |
By the end of the
lesson, the learner
should be able to:
Rationalize the denominator of fractions Apply rationalization techniques Simplify expressions with surd denominators |
Q/A on rationalization concepts
Discussions on denominator clearing Solving rationalization problems Demonstrations of conjugate methods Explaining rationalization importance |
Calculators, rationalization guides
Calculators, advanced technique sheets |
KLB Mathematics Book Three Pg 85-87
|
|
3 | 6 |
Commercial Arithmetic
|
Appreciation
|
By the end of the
lesson, the learner
should be able to:
Calculate the appreciation value of items Apply appreciation concepts Solve appreciation problems |
Q/A on appreciation concepts
Discussions on asset value increases Solving appreciation calculation problems Demonstrations of value growth Explaining appreciation applications |
Calculators, appreciation examples
|
KLB Mathematics Book Three Pg 108
|
|
3 | 7 |
Commercial Arithmetic
|
Depreciation
|
By the end of the
lesson, the learner
should be able to:
Calculate the depreciation value of items Apply depreciation methods Solve depreciation problems |
Q/A on depreciation concepts and methods
Discussions on asset value decreases Solving depreciation calculation problems Demonstrations of depreciation methods Explaining business depreciation |
Calculators, depreciation charts
|
KLB Mathematics Book Three Pg 109
|
|
4 | 1 |
Commercial Arithmetic
|
Hire purchase
|
By the end of the
lesson, the learner
should be able to:
Find the hire purchase Calculate hire purchase terms Understand hire purchase concepts |
Q/A on hire purchase principles
Discussions on installment buying Solving basic hire purchase problems Demonstrations of payment calculations Explaining hire purchase benefits |
Calculators, hire purchase examples
Calculators, complex hire purchase worksheets |
KLB Mathematics Book Three Pg 110-112
|
|
4 | 2 |
Commercial Arithmetic
|
Income tax and P.A.Y.E
|
By the end of the
lesson, the learner
should be able to:
Calculate the income tax Calculate the P.A.Y.E Apply tax calculation methods |
Q/A on tax system concepts
Discussions on income tax and P.A.Y.E systems Solving tax calculation problems Demonstrations of tax computation Explaining taxation principles |
Income tax tables, calculators
|
KLB Mathematics Book Three Pg 112-117
|
|
4 | 3 |
Sequences and Series
|
Arithmetic sequences and nth term
|
By the end of the
lesson, the learner
should be able to:
Define arithmetic sequences and common differences Calculate common differences correctly Derive and apply the nth term formula Solve problems using arithmetic sequence concepts |
Q/A on arithmetic patterns using step-by-step examples
Discussions on constant difference patterns and formula derivation Solving arithmetic sequence problems systematically Demonstrations using equal-step progressions Explaining formula structure using algebraic reasoning |
Chalk and blackboard, measuring tape or string, exercise books
|
KLB Mathematics Book Three Pg 209-210
|
|
4 | 4 |
Sequences and Series
|
Arithmetic sequence applications
Geometric sequences and nth term |
By the end of the
lesson, the learner
should be able to:
Solve complex arithmetic sequence problems Apply arithmetic sequences to real-world problems Handle word problems involving arithmetic sequences Model practical situations using arithmetic progressions |
Q/A on practical applications using local business examples
Discussions on salary progression and savings plans Solving real-world problems using sequence methods Demonstrations using employment and finance scenarios Explaining practical interpretation using meaningful contexts |
Chalk and blackboard, local employment/savings examples, exercise books
Chalk and blackboard, objects for doubling demonstrations, exercise books |
KLB Mathematics Book Three Pg 209-210
|
|
4 | 5 |
Sequences and Series
|
Geometric sequence applications
|
By the end of the
lesson, the learner
should be able to:
Solve complex geometric sequence problems Apply geometric sequences to real-world problems Handle population growth and depreciation problems Model exponential patterns using sequences |
Q/A on practical applications using population/growth examples
Discussions on exponential growth in nature and economics Solving real-world problems using geometric methods Demonstrations using population and business scenarios Explaining practical interpretation using meaningful contexts |
Chalk and blackboard, population/growth data examples, exercise books
|
KLB Mathematics Book Three Pg 211-213
|
|
4 | 6 |
Sequences and Series
|
Arithmetic series and sum formula
|
By the end of the
lesson, the learner
should be able to:
Define arithmetic series as sums of sequences Derive the sum formula for arithmetic series Apply the arithmetic series formula systematically Calculate sums efficiently using the formula |
Q/A on series concepts using summation examples
Discussions on sequence-to-series relationships and formula derivation Solving arithmetic series problems using step-by-step approach Demonstrations using cumulative sum examples Explaining derivation logic using algebraic reasoning |
Chalk and blackboard, counting materials for summation, exercise books
|
KLB Mathematics Book Three Pg 214-215
|
|
4 | 7 |
Sequences and Series
|
Geometric series and applications
Mixed problems and advanced applications |
By the end of the
lesson, the learner
should be able to:
Define geometric series and understand convergence Derive and apply geometric series formulas Handle finite and infinite geometric series Apply geometric series to practical situations |
Q/A on geometric series concepts using multiplication examples
Discussions on convergence and formula applications Solving geometric series problems including infinite cases Demonstrations using geometric sum patterns Explaining convergence using practical examples |
Chalk and blackboard, convergence demonstration materials, exercise books
Chalk and blackboard, mixed problem collections, exercise books |
KLB Mathematics Book Three Pg 216-219
|
|
5 | 1 |
Sequences and Series
|
Sequences in nature and technology
|
By the end of the
lesson, the learner
should be able to:
Identify mathematical patterns in natural phenomena Analyze sequences in biological and technological contexts Apply sequence concepts to environmental problems Appreciate mathematics in the natural and modern world |
Q/A on natural and technological patterns using examples
Discussions on biological sequences and digital applications Solving nature and technology-based problems Demonstrations using natural pattern examples Explaining mathematical beauty using real phenomena |
Chalk and blackboard, natural and technology examples, exercise books
|
KLB Mathematics Book Three Pg 207-219
|
|
5 | 2 |
Probability
|
Introduction
|
By the end of the
lesson, the learner
should be able to:
Calculate the experimental probability Understand probability concepts in daily life Distinguish between certain and uncertain events Recognize probability situations |
Q/A on uncertain events from daily life experiences
Discussions on weather prediction and game outcomes Analyzing chance events using coin tossing and dice rolling Demonstrations using simple probability experiments Explaining probability language using familiar examples |
Chalk and blackboard, coins, dice made from cardboard, exercise books
|
KLB Mathematics Book Three Pg 262-264
|
|
5 | 3 |
Probability
|
Experimental Probability
Experimental Probability applications |
By the end of the
lesson, the learner
should be able to:
Calculate the experimental probability Conduct probability experiments systematically Record and analyze experimental data Compare experimental results with expectations |
Q/A on frequency counting using repeated experiments
Discussions on trial repetition and result recording Solving experimental probability problems using data collection Demonstrations using coin toss and dice roll experiments Explaining frequency ratio calculations using practical examples |
Chalk and blackboard, coins, cardboard dice, tally charts, exercise books
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books |
KLB Mathematics Book Three Pg 262-264
|
|
5 | 4 |
Probability
|
Range of Probability Measure
|
By the end of the
lesson, the learner
should be able to:
Calculate the range of probability measure Express probabilities on scale from 0 to 1 Convert between fractions, decimals, and percentages Interpret probability values correctly |
Q/A on probability scale using number line representations
Discussions on probability conversion between forms Solving probability scale problems using systematic methods Demonstrations using probability line and scale examples Explaining scale interpretation using practical scenarios |
Chalk and blackboard, number line drawings, probability scale charts, exercise books
|
KLB Mathematics Book Three Pg 265-266
|
|
5 | 5 |
Probability
|
Probability Space
|
By the end of the
lesson, the learner
should be able to:
Calculate the probability space for the theoretical probability Define sample space systematically List all possible outcomes Apply sample space concepts |
Q/A on outcome listing using systematic enumeration
Discussions on complete outcome identification Solving sample space problems using organized listing Demonstrations using dice, cards, and spinner examples Explaining probability calculation using outcome counting |
Chalk and blackboard, playing cards (locally made), spinners from cardboard, exercise books
|
KLB Mathematics Book Three Pg 266-267
|
|
5 | 6 |
Probability
|
Theoretical Probability
Theoretical Probability advanced |
By the end of the
lesson, the learner
should be able to:
Calculate the probability space for the theoretical probability Apply mathematical reasoning to find probabilities Use equally likely outcome assumptions Calculate theoretical probabilities systematically |
Q/A on theoretical calculation using mathematical principles
Discussions on equally likely assumptions and calculations Solving theoretical problems using systematic approaches Demonstrations using fair dice and unbiased coin examples Explaining mathematical probability using logical reasoning |
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books
Chalk and blackboard, complex probability materials, advanced calculation aids, exercise books |
KLB Mathematics Book Three Pg 266-268
|
|
5 | 7 |
Probability
|
Theoretical Probability applications
|
By the end of the
lesson, the learner
should be able to:
Calculate the probability space for the theoretical probability Apply theoretical concepts to real situations Solve practical probability problems Interpret results in meaningful contexts |
Q/A on practical probability using local examples
Discussions on real-world applications using community scenarios Solving application problems using theoretical methods Demonstrations using local games and practical situations Explaining practical interpretation using meaningful contexts |
Chalk and blackboard, local game examples, practical scenario materials, exercise books
|
KLB Mathematics Book Three Pg 268-270
|
|
6 | 1 |
Probability
|
Combined Events
|
By the end of the
lesson, the learner
should be able to:
Find the probability of a combined events Understand compound events and combinations Distinguish between different event types Apply basic combination rules |
Q/A on event combination using practical examples
Discussions on exclusive and inclusive event identification Solving basic combined event problems using visual methods Demonstrations using card drawing and dice rolling combinations Explaining combination principles using Venn diagrams |
Chalk and blackboard, playing cards, multiple dice, Venn diagram drawings, exercise books
|
KLB Mathematics Book Three Pg 272-273
|
|
6 | 2 |
Probability
|
Combined Events OR probability
Independent Events |
By the end of the
lesson, the learner
should be able to:
Find the probability of a combined events Apply addition rule for OR events Calculate "A or B" probabilities Handle mutually exclusive events |
Q/A on addition rule application using systematic methods
Discussions on mutually exclusive identification and calculation Solving OR probability problems using organized approaches Demonstrations using card selection and event combination Explaining addition rule logic using Venn diagrams |
Chalk and blackboard, Venn diagram materials, card examples, exercise books
Chalk and blackboard, multiple coins and dice, independence demonstration materials, exercise books |
KLB Mathematics Book Three Pg 272-274
|
|
6 | 3 |
Probability
|
Independent Events advanced
|
By the end of the
lesson, the learner
should be able to:
Find the probability of independent events Distinguish between independent and dependent events Apply conditional probability concepts Handle complex independence scenarios |
Q/A on independence verification using mathematical methods
Discussions on dependence concepts using card drawing examples Solving dependent and independent event problems using systematic approaches Demonstrations using replacement and non-replacement scenarios Explaining conditional probability using practical examples |
Chalk and blackboard, playing cards for replacement scenarios, multiple experimental setups, exercise books
|
KLB Mathematics Book Three Pg 276-278
|
|
6 | 4 |
Probability
|
Independent Events applications
|
By the end of the
lesson, the learner
should be able to:
Find the probability of independent events Apply independence to practical problems Solve complex multi-event scenarios Integrate independence with other concepts |
Q/A on complex event analysis using systematic problem-solving
Discussions on rule selection and application strategies Solving advanced combined problems using integrated approaches Demonstrations using complex experimental scenarios Explaining strategic problem-solving using logical analysis |
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books
|
KLB Mathematics Book Three Pg 278-280
|
|
6 | 5 |
Probability
|
Tree Diagrams
Tree Diagrams advanced |
By the end of the
lesson, the learner
should be able to:
Draw tree diagrams to show the probability space Construct tree diagrams systematically Represent sequential events using trees Apply tree diagram methods |
Q/A on tree construction using step-by-step methods
Discussions on sequential event representation Solving basic tree diagram problems using systematic drawing Demonstrations using branching examples and visual organization Explaining tree structure using logical branching principles |
Chalk and blackboard, tree diagram templates, branching materials, exercise books
Chalk and blackboard, complex tree examples, detailed calculation aids, exercise books |
KLB Mathematics Book Three Pg 282
|
|
6 | 6 |
Compound Proportion and Rates of Work
|
Compound Proportions
|
By the end of the
lesson, the learner
should be able to:
Find the compound proportions Understand compound proportion relationships Apply compound proportion methods systematically Solve problems involving multiple variables |
Q/A on compound relationships using practical examples
Discussions on multiple variable situations using local scenarios Solving compound proportion problems using systematic methods Demonstrations using business and trade examples Explaining compound proportion logic using step-by-step reasoning |
Chalk and blackboard, local business examples, calculators if available, exercise books
|
KLB Mathematics Book Three Pg 288-290
|
|
6 | 7 |
Compound Proportion and Rates of Work
|
Compound Proportions applications
|
By the end of the
lesson, the learner
should be able to:
Find the compound proportions Apply compound proportions to complex problems Handle multi-step compound proportion scenarios Solve real-world compound proportion problems |
Q/A on advanced compound proportion using complex scenarios
Discussions on multi-variable relationships using practical contexts Solving challenging compound problems using systematic approaches Demonstrations using construction and farming examples Explaining practical applications using community-based scenarios |
Chalk and blackboard, construction/farming examples, exercise books
|
KLB Mathematics Book Three Pg 290-291
|
|
7 | 1 |
Compound Proportion and Rates of Work
|
Proportional Parts
Proportional Parts applications |
By the end of the
lesson, the learner
should be able to:
Calculate the proportional parts Understand proportional division concepts Apply proportional parts to sharing problems Solve distribution problems using proportional methods |
Q/A on proportional sharing using practical examples
Discussions on fair distribution using ratio concepts Solving proportional parts problems using systematic division Demonstrations using sharing scenarios and inheritance examples Explaining proportional distribution using logical reasoning |
Chalk and blackboard, sharing demonstration materials, exercise books
Chalk and blackboard, business partnership examples, exercise books |
KLB Mathematics Book Three Pg 291-293
|
|
7 | 2 |
Compound Proportion and Rates of Work
|
Rates of Work
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of work Understand work rate relationships Apply time-work-efficiency concepts Solve basic rate of work problems |
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios Solving basic rate of work problems using systematic methods Demonstrations using construction and labor examples Explaining work rate concepts using practical work situations |
Chalk and blackboard, work scenario examples, exercise books
|
KLB Mathematics Book Three Pg 294-295
|
|
8 |
END OF YEAR EXAMINATION |
|||||||
9 |
MARKING, REPORT MAKING AND SCHOOL CLOSING |
Your Name Comes Here