Home






SCHEME OF WORK
Mathematics
Form 3 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1

Opening of school and Revision Of End Term exams

2 1
Vectors (II)
Coordinates in two dimensions
By the end of the lesson, the learner should be able to:
Identify the coordinates of a point in two dimensions
Plot points on coordinate planes accurately
Understand position representation using coordinates
Apply coordinate concepts to practical situations
Q/A on coordinate identification using grid references
Discussions on map reading and location finding
Solving coordinate plotting problems using systematic methods
Demonstrations using classroom grid systems and floor patterns
Explaining coordinate applications using local maps and directions
Chalk and blackboard, squared paper or grid drawn on ground, exercise books
KLB Mathematics Book Three Pg 221-222
2 2
Vectors (II)
Coordinates in three dimensions
Column and position vectors in three dimensions
By the end of the lesson, the learner should be able to:
Identify the coordinates of a point in three dimensions
Understand the three-dimensional coordinate system
Plot points in 3D space systematically
Apply 3D coordinates to spatial problems
Q/A on 3D coordinate understanding using room corner references
Discussions on height, length, and width measurements
Solving 3D coordinate problems using systematic approaches
Demonstrations using classroom corners and building structures
Explaining 3D visualization using physical room examples
Chalk and blackboard, 3D models made from sticks and clay, exercise books
Chalk and blackboard, movement demonstration space, exercise books
KLB Mathematics Book Three Pg 222
2 3
Vectors (II)
Position vectors and applications
Column vectors in terms of unit vectors i, j, k
By the end of the lesson, the learner should be able to:
Calculate the position vector
Apply position vectors to geometric problems
Find distances using position vector methods
Solve positioning problems systematically
Q/A on position vector calculation using origin references
Discussions on position determination using coordinate methods
Solving position vector problems using systematic calculation
Demonstrations using fixed origin and variable endpoints
Explaining position concepts using practical location examples
Chalk and blackboard, origin marking systems, exercise books
Chalk and blackboard, direction indicators, unit vector reference charts, exercise books
KLB Mathematics Book Three Pg 224
2 4
Vectors (II)
Vector operations using unit vectors
Magnitude of a vector in three dimensions
By the end of the lesson, the learner should be able to:
Express vectors in terms of unit vectors
Perform vector addition using unit vector notation
Calculate vector subtraction with i, j, k components
Apply scalar multiplication to unit vectors
Q/A on vector operations using component-wise calculation
Discussions on systematic operation methods
Solving vector operation problems using organized approaches
Demonstrations using component separation and combination
Explaining operation logic using algebraic reasoning
Chalk and blackboard, component calculation aids, exercise books
Chalk and blackboard, 3D measurement aids, exercise books
KLB Mathematics Book Three Pg 226-228
2 5
Vectors (II)
Magnitude applications and unit vectors
Parallel vectors
By the end of the lesson, the learner should be able to:
Calculate the magnitude of a vector in three dimensions
Find unit vectors from given vectors
Apply magnitude concepts to practical problems
Use magnitude in vector normalization
Q/A on magnitude and unit vector relationships
Discussions on normalization and direction finding
Solving magnitude and unit vector problems
Demonstrations using direction and length separation
Explaining practical applications using navigation examples
Chalk and blackboard, direction finding aids, exercise books
Chalk and blackboard, parallel line demonstrations, exercise books
KLB Mathematics Book Three Pg 229-230
2 6
Vectors (II)
Collinearity
Advanced collinearity applications
By the end of the lesson, the learner should be able to:
Show that points are collinear
Apply vector methods to prove collinearity
Test for collinear points using vector techniques
Solve collinearity problems systematically
Q/A on collinearity testing using vector proportion methods
Discussions on point alignment using vector analysis
Solving collinearity problems using systematic verification
Demonstrations using straight-line point examples
Explaining collinearity using geometric alignment concepts
Chalk and blackboard, straight-line demonstrations, exercise books
Chalk and blackboard, complex geometric aids, exercise books
KLB Mathematics Book Three Pg 232-234
2 7
Vectors (II)
Proportional division of a line
External division of a line
By the end of the lesson, the learner should be able to:
Divide a line internally in the given ratio
Apply the internal division formula
Calculate division points using vector methods
Understand proportional division concepts
Q/A on internal division using systematic formula application
Discussions on ratio division using proportional methods
Solving internal division problems using organized approaches
Demonstrations using internal point construction examples
Explaining internal division using geometric visualization
Chalk and blackboard, internal division models, exercise books
Chalk and blackboard, external division models, exercise books
KLB Mathematics Book Three Pg 237-238
3 1
Vectors (II)
Combined internal and external division
Ratio theorem
By the end of the lesson, the learner should be able to:
Divide a line internally and externally in the given ratio
Apply both division formulas systematically
Compare internal and external division results
Handle mixed division problems
Q/A on combined division using comparative methods
Discussions on division type selection using problem analysis
Solving combined division problems using systematic approaches
Demonstrations using both division types
Explaining division relationships using geometric reasoning
Chalk and blackboard, combined division models, exercise books
Chalk and blackboard, ratio theorem aids, exercise books
KLB Mathematics Book Three Pg 239
3 2
Vectors (II)
Advanced ratio theorem applications
Mid-point
By the end of the lesson, the learner should be able to:
Find the position vector
Apply ratio theorem to complex scenarios
Solve multi-step ratio problems
Use ratio theorem in geometric proofs
Q/A on advanced ratio applications using complex problems
Discussions on multi-step ratio calculation
Solving challenging ratio problems using systematic methods
Demonstrations using comprehensive ratio examples
Explaining advanced applications using detailed reasoning
Chalk and blackboard, advanced ratio models, exercise books
Chalk and blackboard, midpoint demonstration aids, exercise books
KLB Mathematics Book Three Pg 242
3 3
Vectors (II)
Ratio theorem and midpoint integration
Advanced ratio theorem applications
By the end of the lesson, the learner should be able to:
Use ratio theorem to find the given vectors
Apply midpoint and ratio concepts together
Solve complex ratio and midpoint problems
Integrate division and midpoint methods
Q/A on integrated problem-solving using combined methods
Discussions on complex scenario analysis using systematic approaches
Solving challenging problems using integrated techniques
Demonstrations using comprehensive geometric examples
Explaining integration using logical problem-solving
Chalk and blackboard, complex problem materials, exercise books
Chalk and blackboard, advanced geometric aids, exercise books
KLB Mathematics Book Three Pg 244-245
3 4
Vectors (II)
Applications of vectors in geometry
Rectangle diagonal applications
By the end of the lesson, the learner should be able to:
Use vectors to show the diagonals of a parallelogram
Apply vector methods to geometric proofs
Demonstrate parallelogram properties using vectors
Solve geometric problems using vector techniques
Q/A on geometric proof using vector methods
Discussions on parallelogram properties using vector analysis
Solving geometric problems using systematic vector techniques
Demonstrations using vector-based geometric constructions
Explaining geometric relationships using vector reasoning
Chalk and blackboard, parallelogram models, exercise books
Chalk and blackboard, rectangle models, exercise books
KLB Mathematics Book Three Pg 248-249
3 5
Vectors (II)
Probability
Advanced geometric applications
Introduction
By the end of the lesson, the learner should be able to:
Use vectors to show geometric properties
Apply vectors to complex geometric proofs
Solve challenging geometric problems using vectors
Integrate all vector concepts in geometric contexts
Q/A on comprehensive geometric applications using vector methods
Discussions on advanced proof techniques using vectors
Solving complex geometric problems using integrated approaches
Demonstrations using sophisticated geometric constructions
Explaining advanced applications using comprehensive reasoning
Chalk and blackboard, advanced geometric models, exercise books
Chalk and blackboard, coins, dice made from cardboard, exercise books
KLB Mathematics Book Three Pg 248-250
3 6
Probability
Experimental Probability
Experimental Probability applications
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Conduct probability experiments systematically
Record and analyze experimental data
Compare experimental results with expectations
Q/A on frequency counting using repeated experiments
Discussions on trial repetition and result recording
Solving experimental probability problems using data collection
Demonstrations using coin toss and dice roll experiments
Explaining frequency ratio calculations using practical examples
Chalk and blackboard, coins, cardboard dice, tally charts, exercise books
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books
KLB Mathematics Book Three Pg 262-264
3 7
Probability
Range of Probability Measure
Probability Space
By the end of the lesson, the learner should be able to:
Calculate the range of probability measure
Express probabilities on scale from 0 to 1
Convert between fractions, decimals, and percentages
Interpret probability values correctly
Q/A on probability scale using number line representations
Discussions on probability conversion between forms
Solving probability scale problems using systematic methods
Demonstrations using probability line and scale examples
Explaining scale interpretation using practical scenarios
Chalk and blackboard, number line drawings, probability scale charts, exercise books
Chalk and blackboard, playing cards (locally made), spinners from cardboard, exercise books
KLB Mathematics Book Three Pg 265-266
4

Series One

5 1
Probability
Theoretical Probability
Theoretical Probability advanced
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply mathematical reasoning to find probabilities
Use equally likely outcome assumptions
Calculate theoretical probabilities systematically
Q/A on theoretical calculation using mathematical principles
Discussions on equally likely assumptions and calculations
Solving theoretical problems using systematic approaches
Demonstrations using fair dice and unbiased coin examples
Explaining mathematical probability using logical reasoning
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books
Chalk and blackboard, complex probability materials, advanced calculation aids, exercise books
KLB Mathematics Book Three Pg 266-268
5 2
Probability
Theoretical Probability applications
Combined Events
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply theoretical concepts to real situations
Solve practical probability problems
Interpret results in meaningful contexts
Q/A on practical probability using local examples
Discussions on real-world applications using community scenarios
Solving application problems using theoretical methods
Demonstrations using local games and practical situations
Explaining practical interpretation using meaningful contexts
Chalk and blackboard, local game examples, practical scenario materials, exercise books
Chalk and blackboard, playing cards, multiple dice, Venn diagram drawings, exercise books
KLB Mathematics Book Three Pg 268-270
5 3
Probability
Combined Events OR probability
Independent Events
By the end of the lesson, the learner should be able to:
Find the probability of a combined events
Apply addition rule for OR events
Calculate "A or B" probabilities
Handle mutually exclusive events
Q/A on addition rule application using systematic methods
Discussions on mutually exclusive identification and calculation
Solving OR probability problems using organized approaches
Demonstrations using card selection and event combination
Explaining addition rule logic using Venn diagrams
Chalk and blackboard, Venn diagram materials, card examples, exercise books
Chalk and blackboard, multiple coins and dice, independence demonstration materials, exercise books
KLB Mathematics Book Three Pg 272-274
5 4
Probability
Independent Events advanced
Independent Events applications
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Distinguish between independent and dependent events
Apply conditional probability concepts
Handle complex independence scenarios
Q/A on independence verification using mathematical methods
Discussions on dependence concepts using card drawing examples
Solving dependent and independent event problems using systematic approaches
Demonstrations using replacement and non-replacement scenarios
Explaining conditional probability using practical examples
Chalk and blackboard, playing cards for replacement scenarios, multiple experimental setups, exercise books
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books
KLB Mathematics Book Three Pg 276-278
5 5
Probability
Tree Diagrams
Tree Diagrams advanced
By the end of the lesson, the learner should be able to:
Draw tree diagrams to show the probability space
Construct tree diagrams systematically
Represent sequential events using trees
Apply tree diagram methods
Q/A on tree construction using step-by-step methods
Discussions on sequential event representation
Solving basic tree diagram problems using systematic drawing
Demonstrations using branching examples and visual organization
Explaining tree structure using logical branching principles
Chalk and blackboard, tree diagram templates, branching materials, exercise books
Chalk and blackboard, complex tree examples, detailed calculation aids, exercise books
KLB Mathematics Book Three Pg 282
5 6
Compound Proportion and Rates of Work
Compound Proportions
Compound Proportions applications
By the end of the lesson, the learner should be able to:
Find the compound proportions
Understand compound proportion relationships
Apply compound proportion methods systematically
Solve problems involving multiple variables
Q/A on compound relationships using practical examples
Discussions on multiple variable situations using local scenarios
Solving compound proportion problems using systematic methods
Demonstrations using business and trade examples
Explaining compound proportion logic using step-by-step reasoning
Chalk and blackboard, local business examples, calculators if available, exercise books
Chalk and blackboard, construction/farming examples, exercise books
KLB Mathematics Book Three Pg 288-290
5 7
Compound Proportion and Rates of Work
Proportional Parts
Proportional Parts applications
By the end of the lesson, the learner should be able to:
Calculate the proportional parts
Understand proportional division concepts
Apply proportional parts to sharing problems
Solve distribution problems using proportional methods
Q/A on proportional sharing using practical examples
Discussions on fair distribution using ratio concepts
Solving proportional parts problems using systematic division
Demonstrations using sharing scenarios and inheritance examples
Explaining proportional distribution using logical reasoning
Chalk and blackboard, sharing demonstration materials, exercise books
Chalk and blackboard, business partnership examples, exercise books
KLB Mathematics Book Three Pg 291-293
6 1
Compound Proportion and Rates of Work
Rates of Work
Rates of Work and Mixtures
By the end of the lesson, the learner should be able to:
Calculate the rate of work
Understand work rate relationships
Apply time-work-efficiency concepts
Solve basic rate of work problems
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios
Solving basic rate of work problems using systematic methods
Demonstrations using construction and labor examples
Explaining work rate concepts using practical work situations
Chalk and blackboard, work scenario examples, exercise books
Chalk and blackboard, mixture demonstration materials, exercise books
KLB Mathematics Book Three Pg 294-295
6 2
Graphical Methods
Tables of given relations
Graphs of given relations
By the end of the lesson, the learner should be able to:
Draw tables of given relations
Construct organized data tables systematically
Prepare data for graphical representation
Understand relationship between variables
Q/A on table construction using systematic data organization
Discussions on variable relationships using practical examples
Solving table preparation problems using organized methods
Demonstrations using data collection and tabulation
Explaining systematic data arrangement using logical procedures
Chalk and blackboard, ruled paper for tables, exercise books
Chalk and blackboard, graph paper or grids, rulers, exercise books
KLB Mathematics Book Three Pg 299
6 3
Graphical Methods
Tables and graphs integration
Introduction to cubic equations
By the end of the lesson, the learner should be able to:
Draw tables and graphs of given relations
Integrate table construction with graph plotting
Analyze relationships using both methods
Compare tabular and graphical representations
Q/A on integrated table-graph construction using comprehensive methods
Discussions on data flow from tables to graphs
Solving integrated problems using systematic approaches
Demonstrations using complete data analysis procedures
Explaining relationship analysis using combined methods
Chalk and blackboard, graph paper, data examples, exercise books
Chalk and blackboard, cubic function examples, exercise books
KLB Mathematics Book Three Pg 299-300
6 4
Graphical Methods
Graphical solution of cubic equations
Advanced cubic solutions
By the end of the lesson, the learner should be able to:
Draw graphs of cubic equations
Plot cubic curves accurately
Use graphs to solve cubic equations
Find roots using graphical methods
Q/A on cubic curve plotting using systematic point plotting
Discussions on curve characteristics and root finding
Solving cubic graphing problems using careful plotting
Demonstrations using cubic curve construction
Explaining root identification using graph analysis
Chalk and blackboard, graph paper, cubic equation examples, exercise books
Chalk and blackboard, advanced graph examples, exercise books
KLB Mathematics Book Three Pg 302-304
6 5
Graphical Methods
Introduction to rates of change
Average rates of change
By the end of the lesson, the learner should be able to:
Calculate the average rates of change
Understand rate of change concepts
Apply rate calculations to practical problems
Interpret rate meanings in context
Q/A on rate calculation using slope methods
Discussions on rate interpretation using practical examples
Solving basic rate problems using systematic calculation
Demonstrations using speed-time and distance examples
Explaining rate concepts using practical analogies
Chalk and blackboard, rate calculation examples, exercise books
Chalk and blackboard, graph paper, rate examples, exercise books
KLB Mathematics Book Three Pg 304-306
6 6
Graphical Methods
Advanced average rates
Introduction to instantaneous rates
By the end of the lesson, the learner should be able to:
Calculate the average rates of change
Handle complex rate scenarios
Apply rates to business and scientific problems
Integrate rate concepts with other topics
Q/A on complex rate applications using advanced scenarios
Discussions on business and scientific rate applications
Solving challenging rate problems using integrated methods
Demonstrations using comprehensive rate examples
Explaining advanced applications using detailed analysis
Chalk and blackboard, advanced rate scenarios, exercise books
Chalk and blackboard, tangent line examples, exercise books
KLB Mathematics Book Three Pg 304-310
6 7
Graphical Methods
Rate of change at an instant
Advanced instantaneous rates
By the end of the lesson, the learner should be able to:
Calculate the rate of change at an instant
Apply instantaneous rate methods systematically
Use graphical techniques for instant rates
Solve practical instantaneous rate problems
Q/A on instantaneous rate calculation using graphical methods
Discussions on tangent line slope interpretation
Solving instantaneous rate problems using systematic approaches
Demonstrations using detailed tangent constructions
Explaining practical applications using real scenarios
Chalk and blackboard, detailed graph examples, exercise books
Chalk and blackboard, advanced rate examples, exercise books
KLB Mathematics Book Three Pg 310-311
7-8

Form Four Entry Exams

9

Closing Of School

10 1







Your Name Comes Here


Download

Feedback