Home






SCHEME OF WORK
Mathematics
Form 3 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1

OPENING AND REPORTING

1 2-3
Matrices
Introduction and real-life applications
Order of a matrix and elements
Square matrices, row and column matrices
Addition of matrices
By the end of the lesson, the learner should be able to:
Define matrices and identify matrix applications
Recognize matrices in everyday contexts
Understand tabular data representation
Appreciate the importance of matrices
Determine the order of given matrices
Identify matrix elements by position
Use correct notation for matrix elements
Distinguish between different matrix types
Q/A on tabular data in daily life
Discussions on school exam results tables
Analyzing bus timetables and price lists
Demonstrations using newspaper sports tables
Explaining matrix notation using grid patterns
Q/A on matrix structure using grid drawings
Discussions on rows and columns using classroom seating
Solving element location using coordinate games
Demonstrations using drawn grids on blackboard
Explaining position notation using class register
Old newspapers with league tables, chalk and blackboard, exercise books
Chalk and blackboard, ruled exercise books, class register
Paper cutouts, chalk and blackboard, counters or bottle tops
Counters or stones, chalk and blackboard, exercise books
KLB Mathematics Book Three Pg 168-169
KLB Mathematics Book Three Pg 169-170
1 4
Matrices
Subtraction of matrices
Combined addition and subtraction
Scalar multiplication
Introduction to matrix multiplication
By the end of the lesson, the learner should be able to:
Subtract matrices of the same order
Apply matrix subtraction rules correctly
Understand order requirements for subtraction
Solve complex matrix subtraction problems
Q/A on matrix subtraction using simple numbers
Discussions on element-wise subtraction using examples
Solving subtraction problems on blackboard
Demonstrations using number line concepts
Explaining sign changes using practical examples
Chalk and blackboard, exercise books, number cards made from cardboard
Chalk and blackboard, exercise books, locally made operation cards
Beans or stones for grouping, chalk and blackboard, exercise books
Chalk and blackboard, rulers for tracing, exercise books
KLB Mathematics Book Three Pg 170-171
1 5
Matrices
Matrix multiplication (2×2 matrices)
Matrix multiplication (larger matrices)
By the end of the lesson, the learner should be able to:
Multiply 2×2 matrices systematically
Apply correct multiplication procedures
Calculate matrix products accurately
Understand result matrix dimensions
Q/A on 2×2 matrix multiplication using simple numbers
Discussions on systematic calculation methods
Solving 2×2 problems using step-by-step approach
Demonstrations using organized blackboard layout
Explaining product formation using grid method
Chalk and blackboard, exercise books, homemade grid templates
Chalk and blackboard, large sheets of paper for working, exercise books
KLB Mathematics Book Three Pg 176-179
1 6
Matrices
Properties of matrix multiplication
By the end of the lesson, the learner should be able to:
Understand non-commutativity of matrix multiplication
Apply associative and distributive properties
Distinguish between pre and post multiplication
Solve problems involving multiplication properties
Q/A on multiplication properties using counterexamples
Discussions on order importance using practical examples
Solving property-based problems using verification
Demonstrations using concrete examples
Explaining distributive law using expansion
Chalk and blackboard, exercise books, cardboard for property cards
KLB Mathematics Book Three Pg 174-179
1 7
Matrices
Real-world matrix multiplication applications
Identity matrix
By the end of the lesson, the learner should be able to:
Apply matrix multiplication to practical problems
Solve business and economic applications
Calculate costs, revenues, and quantities
Interpret matrix multiplication results
Q/A on practical applications using local business examples
Discussions on market problems using familiar contexts
Solving real-world problems using matrix methods
Demonstrations using shop keeper scenarios
Explaining result interpretation using meaningful contexts
Chalk and blackboard, local price lists, exercise books
Chalk and blackboard, exercise books, pattern cards made from paper
KLB Mathematics Book Three Pg 176-179
2 1
Matrices
Determinant of 2×2 matrices
Inverse of 2×2 matrices - theory
By the end of the lesson, the learner should be able to:
Calculate determinants of 2×2 matrices
Apply the determinant formula correctly
Understand geometric interpretation of determinants
Use determinants to classify matrices
Q/A on determinant calculation using cross multiplication
Discussions on formula application using memory aids
Solving determinant problems using systematic approach
Demonstrations using cross pattern method
Explaining geometric meaning using area concepts
Chalk and blackboard, exercise books, crossed sticks for demonstration
Chalk and blackboard, exercise books, fraction examples
KLB Mathematics Book Three Pg 183
2 2-3
Matrices
Inverse of 2×2 matrices - practice
Introduction to solving simultaneous equations
Solving 2×2 simultaneous equations using matrices
By the end of the lesson, the learner should be able to:
Calculate inverses of 2×2 matrices systematically
Verify inverse calculations through multiplication
Apply inverse properties correctly
Solve complex inverse problems
Understand matrix representation of simultaneous equations
Identify coefficient and constant matrices
Set up matrix equations correctly
Recognize the structure of linear systems
Q/A on inverse calculation verification methods
Discussions on accuracy checking using multiplication
Solving advanced inverse problems using practice
Demonstrations using verification procedures
Explaining checking methods using examples
Q/A on equation representation using familiar equations
Discussions on coefficient identification using examples
Solving setup problems using systematic approach
Demonstrations using equation breakdown method
Explaining structure using organized layout
Chalk and blackboard, exercise books, scrap paper for verification
Chalk and blackboard, exercise books, equation examples from previous topics
Chalk and blackboard, exercise books, previous elimination method examples
KLB Mathematics Book Three Pg 185-187
KLB Mathematics Book Three Pg 188-189
2 4
Matrices
Advanced simultaneous equation problems
By the end of the lesson, the learner should be able to:
Solve complex simultaneous equation systems
Handle systems with no solution or infinite solutions
Interpret determinant values in solution context
Apply matrix methods to word problems
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation
Solving challenging problems using complete analysis
Demonstrations using classification methods
Explaining geometric meaning using line concepts
Chalk and blackboard, exercise books, graph paper if available
KLB Mathematics Book Three Pg 188-190
2 5
Matrices
Matrix applications in real-world problems
Transpose of matrices
By the end of the lesson, the learner should be able to:
Apply matrix operations to practical scenarios
Solve business, engineering, and scientific problems
Model real situations using matrices
Interpret matrix solutions in context
Q/A on practical applications using local examples
Discussions on modeling using familiar situations
Solving comprehensive problems using matrix tools
Demonstrations using community-based scenarios
Explaining solution interpretation using meaningful contexts
Chalk and blackboard, local business examples, exercise books
Chalk and blackboard, exercise books, paper cutouts for demonstration
KLB Mathematics Book Three Pg 168-190
2 6
Matrices
Formulae and Variations
Matrix equation solving
Introduction to formulae
By the end of the lesson, the learner should be able to:
Solve matrix equations systematically
Find unknown matrices in equations
Apply inverse operations to solve equations
Verify matrix equation solutions
Q/A on equation solving using algebraic analogy
Discussions on unknown determination using systematic methods
Solving matrix equations using step-by-step approach
Demonstrations using organized solution procedures
Explaining verification using checking methods
Chalk and blackboard, exercise books, algebra reference examples
Chalk and blackboard, measuring tape or string, exercise books
KLB Mathematics Book Three Pg 183-190
2 7
Formulae and Variations
Subject of a formula - basic cases
By the end of the lesson, the learner should be able to:
Make simple variables the subject of formulae
Apply inverse operations to rearrange formulae
Understand the concept of subject change
Solve basic subject transformation problems
Q/A on inverse operations using number examples
Discussions on formula rearrangement using balance method
Solving basic subject change problems using step-by-step approach
Demonstrations using see-saw balance analogy
Explaining inverse operations using practical examples
Chalk and blackboard, simple balance (stones and stick), exercise books
KLB Mathematics Book Three Pg 191-193
3 1
Formulae and Variations
Subject of a formula - intermediate cases
Subject of a formula - advanced cases
By the end of the lesson, the learner should be able to:
Make complex variables the subject of formulae
Handle formulae with fractions and powers
Apply multiple inverse operations systematically
Solve intermediate difficulty problems
Q/A on complex rearrangement using systematic approach
Discussions on fraction handling using common denominators
Solving intermediate problems using organized methods
Demonstrations using step-by-step blackboard work
Explaining systematic approaches using flowcharts
Chalk and blackboard, fraction strips made from paper, exercise books
Chalk and blackboard, squared paper patterns, exercise books
KLB Mathematics Book Three Pg 191-193
3 2-3
Formulae and Variations
Applications of formula manipulation
Introduction to variation
Direct variation - introduction
By the end of the lesson, the learner should be able to:
Apply formula rearrangement to practical problems
Solve real-world problems using formula manipulation
Calculate unknown quantities in various contexts
Interpret results in meaningful situations
Understand direct proportionality concepts
Recognize direct variation patterns
Use direct variation notation correctly
Calculate constants of proportionality
Q/A on practical applications using local examples
Discussions on real-world formula use in farming/building
Solving application problems using formula rearrangement
Demonstrations using construction and farming scenarios
Explaining practical interpretation using community examples
Q/A on direct relationships using simple examples
Discussions on proportional changes using market scenarios
Solving basic direct variation problems
Demonstrations using doubling and tripling examples
Explaining proportionality using ratio concepts
Chalk and blackboard, local measurement tools, exercise books
Chalk and blackboard, local price lists from markets, exercise books
Chalk and blackboard, beans or stones for counting, exercise books
KLB Mathematics Book Three Pg 191-193
KLB Mathematics Book Three Pg 194-196
3 4
Vectors (II)
Coordinates in two dimensions
Coordinates in three dimensions
By the end of the lesson, the learner should be able to:
Identify the coordinates of a point in two dimensions
Plot points on coordinate planes accurately
Understand position representation using coordinates
Apply coordinate concepts to practical situations
Q/A on coordinate identification using grid references
Discussions on map reading and location finding
Solving coordinate plotting problems using systematic methods
Demonstrations using classroom grid systems and floor patterns
Explaining coordinate applications using local maps and directions
Chalk and blackboard, squared paper or grid drawn on ground, exercise books
Chalk and blackboard, 3D models made from sticks and clay, exercise books
KLB Mathematics Book Three Pg 221-222
3 5
Vectors (II)
Column and position vectors in three dimensions
By the end of the lesson, the learner should be able to:
Find a displacement and represent it in column vector
Calculate the position vector
Express vectors in column form
Apply column vector notation systematically
Q/A on displacement representation using movement examples
Discussions on vector notation using organized column format
Solving column vector problems using systematic methods
Demonstrations using physical movement and direction examples
Explaining vector components using practical displacement
Chalk and blackboard, movement demonstration space, exercise books
KLB Mathematics Book Three Pg 223-224
3 6
Vectors (II)
Position vectors and applications
Column vectors in terms of unit vectors i, j, k
By the end of the lesson, the learner should be able to:
Calculate the position vector
Apply position vectors to geometric problems
Find distances using position vector methods
Solve positioning problems systematically
Q/A on position vector calculation using origin references
Discussions on position determination using coordinate methods
Solving position vector problems using systematic calculation
Demonstrations using fixed origin and variable endpoints
Explaining position concepts using practical location examples
Chalk and blackboard, origin marking systems, exercise books
Chalk and blackboard, direction indicators, unit vector reference charts, exercise books
KLB Mathematics Book Three Pg 224
3 7
Vectors (II)
Vector operations using unit vectors
Magnitude of a vector in three dimensions
By the end of the lesson, the learner should be able to:
Express vectors in terms of unit vectors
Perform vector addition using unit vector notation
Calculate vector subtraction with i, j, k components
Apply scalar multiplication to unit vectors
Q/A on vector operations using component-wise calculation
Discussions on systematic operation methods
Solving vector operation problems using organized approaches
Demonstrations using component separation and combination
Explaining operation logic using algebraic reasoning
Chalk and blackboard, component calculation aids, exercise books
Chalk and blackboard, 3D measurement aids, exercise books
KLB Mathematics Book Three Pg 226-228
4 1
Vectors (II)
Magnitude applications and unit vectors
By the end of the lesson, the learner should be able to:
Calculate the magnitude of a vector in three dimensions
Find unit vectors from given vectors
Apply magnitude concepts to practical problems
Use magnitude in vector normalization
Q/A on magnitude and unit vector relationships
Discussions on normalization and direction finding
Solving magnitude and unit vector problems
Demonstrations using direction and length separation
Explaining practical applications using navigation examples
Chalk and blackboard, direction finding aids, exercise books
KLB Mathematics Book Three Pg 229-230
4 2-3
Vectors (II)
Parallel vectors
Collinearity
Advanced collinearity applications
Proportional division of a line
By the end of the lesson, the learner should be able to:
Identify parallel vectors
Determine when vectors are parallel
Apply parallel vector properties
Use scalar multiples in parallel relationships
Show that points are collinear
Apply collinearity to complex geometric problems
Integrate parallel and collinearity concepts
Solve advanced alignment problems
Q/A on parallel identification using scalar multiple methods
Discussions on parallel relationships using geometric examples
Solving parallel vector problems using systematic testing
Demonstrations using parallel line and direction examples
Explaining parallel concepts using geometric reasoning
Q/A on advanced collinearity using complex scenarios
Discussions on geometric proof using vector methods
Solving challenging collinearity problems
Demonstrations using complex geometric constructions
Explaining advanced applications using comprehensive examples
Chalk and blackboard, parallel line demonstrations, exercise books
Chalk and blackboard, straight-line demonstrations, exercise books
Chalk and blackboard, complex geometric aids, exercise books
Chalk and blackboard, internal division models, exercise books
KLB Mathematics Book Three Pg 231-232
KLB Mathematics Book Three Pg 232-234
4 4
Vectors (II)
External division of a line
By the end of the lesson, the learner should be able to:
Divide a line externally in the given ratio
Apply the external division formula
Distinguish between internal and external division
Solve external division problems accurately
Q/A on external division using systematic formula application
Discussions on external point calculation using vector methods
Solving external division problems using careful approaches
Demonstrations using external point construction examples
Explaining external division using extended line concepts
Chalk and blackboard, external division models, exercise books
KLB Mathematics Book Three Pg 238-239
4 5
Vectors (II)
Combined internal and external division
Ratio theorem
By the end of the lesson, the learner should be able to:
Divide a line internally and externally in the given ratio
Apply both division formulas systematically
Compare internal and external division results
Handle mixed division problems
Q/A on combined division using comparative methods
Discussions on division type selection using problem analysis
Solving combined division problems using systematic approaches
Demonstrations using both division types
Explaining division relationships using geometric reasoning
Chalk and blackboard, combined division models, exercise books
Chalk and blackboard, ratio theorem aids, exercise books
KLB Mathematics Book Three Pg 239
4 6
Vectors (II)
Advanced ratio theorem applications
By the end of the lesson, the learner should be able to:
Find the position vector
Apply ratio theorem to complex scenarios
Solve multi-step ratio problems
Use ratio theorem in geometric proofs
Q/A on advanced ratio applications using complex problems
Discussions on multi-step ratio calculation
Solving challenging ratio problems using systematic methods
Demonstrations using comprehensive ratio examples
Explaining advanced applications using detailed reasoning
Chalk and blackboard, advanced ratio models, exercise books
KLB Mathematics Book Three Pg 242
4 7
Vectors (II)
Mid-point
Ratio theorem and midpoint integration
By the end of the lesson, the learner should be able to:
Find the mid-points of the given vectors
Apply midpoint formulas in vector contexts
Use midpoint concepts in geometric problems
Calculate midpoints systematically
Q/A on midpoint calculation using vector averaging methods
Discussions on midpoint applications using geometric examples
Solving midpoint problems using systematic approaches
Demonstrations using midpoint construction and calculation
Explaining midpoint concepts using practical examples
Chalk and blackboard, midpoint demonstration aids, exercise books
Chalk and blackboard, complex problem materials, exercise books
KLB Mathematics Book Three Pg 243
5 1
Vectors (II)
Advanced ratio theorem applications
Applications of vectors in geometry
By the end of the lesson, the learner should be able to:
Use ratio theorem to find the given vectors
Apply ratio theorem to challenging problems
Handle complex geometric applications
Demonstrate comprehensive ratio mastery
Q/A on comprehensive ratio understanding using advanced problems
Discussions on complex ratio relationships
Solving advanced ratio problems using systematic methods
Demonstrations using sophisticated geometric constructions
Explaining mastery using challenging applications
Chalk and blackboard, advanced geometric aids, exercise books
Chalk and blackboard, parallelogram models, exercise books
KLB Mathematics Book Three Pg 246-248
5 2-3
Vectors (II)
Vectors (II)
Binomial Expansion
Rectangle diagonal applications
Advanced geometric applications
Binomial expansions up to power four
By the end of the lesson, the learner should be able to:
Use vectors to show the diagonals of a rectangle
Apply vector methods to rectangle properties
Prove rectangle theorems using vectors
Compare parallelogram and rectangle diagonal properties
Use vectors to show geometric properties
Apply vectors to complex geometric proofs
Solve challenging geometric problems using vectors
Integrate all vector concepts in geometric contexts
Q/A on rectangle properties using vector analysis
Discussions on diagonal relationships using vector methods
Solving rectangle problems using systematic approaches
Demonstrations using rectangle constructions and vector proofs
Explaining rectangle properties using vector reasoning
Q/A on comprehensive geometric applications using vector methods
Discussions on advanced proof techniques using vectors
Solving complex geometric problems using integrated approaches
Demonstrations using sophisticated geometric constructions
Explaining advanced applications using comprehensive reasoning
Chalk and blackboard, rectangle models, exercise books
Chalk and blackboard, advanced geometric models, exercise books
Chalk and blackboard, rectangular cutouts from paper, exercise books
KLB Mathematics Book Three Pg 248-250
5 4
Binomial Expansion
Binomial expansions up to power four (continued)
Pascal's triangle
By the end of the lesson, the learner should be able to:
Expand binomial function up to power four
Handle increasingly complex coefficient patterns
Apply systematic expansion techniques efficiently
Verify expansions using substitution methods
Q/A on power expansion using multiplication techniques
Discussions on coefficient identification using pattern analysis
Solving expansion problems using systematic approaches
Demonstrations using geometric representations
Explaining verification methods using numerical substitution
Chalk and blackboard, squared paper for geometric models, exercise books
Chalk and blackboard, triangular patterns drawn/cut from paper, exercise books
KLB Mathematics Book Three Pg 256
5 5
Binomial Expansion
Pascal's triangle applications
By the end of the lesson, the learner should be able to:
Use Pascal's triangle
Apply Pascal's triangle to binomial expansions efficiently
Use triangle coefficients for various powers
Solve expansion problems using triangle methods
Q/A on triangle application using coefficient identification
Discussions on efficient expansion using triangle methods
Solving expansion problems using Pascal's triangle
Demonstrations using triangle-guided calculations
Explaining efficiency benefits using comparative methods
Chalk and blackboard, Pascal's triangle reference charts, exercise books
KLB Mathematics Book Three Pg 257-258
5 6
Binomial Expansion
Pascal's triangle (continued)
Pascal's triangle advanced
By the end of the lesson, the learner should be able to:
Use Pascal's triangle
Apply triangle to complex expansion problems
Handle higher powers using Pascal's triangle
Integrate triangle concepts with algebraic expansion
Q/A on advanced triangle applications using complex examples
Discussions on higher power expansion using triangle methods
Solving challenging problems using Pascal's triangle
Demonstrations using detailed triangle constructions
Explaining integration using comprehensive examples
Chalk and blackboard, advanced triangle patterns, exercise books
Chalk and blackboard, combination calculation aids, exercise books
KLB Mathematics Book Three Pg 258-259
5 7
Binomial Expansion
Applications to numerical cases
Applications to numerical cases (continued)
By the end of the lesson, the learner should be able to:
Use binomial expansion to solve numerical problems
Apply expansions for numerical approximations
Calculate values using binomial methods
Understand practical applications of expansions
Q/A on numerical applications using approximation techniques
Discussions on calculation shortcuts using expansion methods
Solving numerical problems using binomial approaches
Demonstrations using practical calculation scenarios
Explaining approximation benefits using real examples
Chalk and blackboard, simple calculation aids, exercise books
Chalk and blackboard, advanced calculation examples, exercise books
KLB Mathematics Book Three Pg 259-260
6 1
Probability
Introduction
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Understand probability concepts in daily life
Distinguish between certain and uncertain events
Recognize probability situations
Q/A on uncertain events from daily life experiences
Discussions on weather prediction and game outcomes
Analyzing chance events using coin tossing and dice rolling
Demonstrations using simple probability experiments
Explaining probability language using familiar examples
Chalk and blackboard, coins, dice made from cardboard, exercise books
KLB Mathematics Book Three Pg 262-264
6 2-3
Probability
Experimental Probability
Experimental Probability applications
Range of Probability Measure
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Conduct probability experiments systematically
Record and analyze experimental data
Compare experimental results with expectations
Calculate the range of probability measure
Express probabilities on scale from 0 to 1
Convert between fractions, decimals, and percentages
Interpret probability values correctly
Q/A on frequency counting using repeated experiments
Discussions on trial repetition and result recording
Solving experimental probability problems using data collection
Demonstrations using coin toss and dice roll experiments
Explaining frequency ratio calculations using practical examples
Q/A on probability scale using number line representations
Discussions on probability conversion between forms
Solving probability scale problems using systematic methods
Demonstrations using probability line and scale examples
Explaining scale interpretation using practical scenarios
Chalk and blackboard, coins, cardboard dice, tally charts, exercise books
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books
Chalk and blackboard, number line drawings, probability scale charts, exercise books
KLB Mathematics Book Three Pg 262-264
KLB Mathematics Book Three Pg 265-266
6 4
Probability
Probability Space
Theoretical Probability
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Define sample space systematically
List all possible outcomes
Apply sample space concepts
Q/A on outcome listing using systematic enumeration
Discussions on complete outcome identification
Solving sample space problems using organized listing
Demonstrations using dice, cards, and spinner examples
Explaining probability calculation using outcome counting
Chalk and blackboard, playing cards (locally made), spinners from cardboard, exercise books
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books
KLB Mathematics Book Three Pg 266-267
6 5
Probability
Theoretical Probability advanced
Theoretical Probability applications
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply theoretical probability to complex problems
Handle multiple outcome scenarios
Solve advanced theoretical problems
Q/A on advanced theoretical applications using complex scenarios
Discussions on multiple outcome analysis using systematic methods
Solving challenging theoretical problems using organized approaches
Demonstrations using complex probability setups
Explaining advanced theoretical concepts using detailed reasoning
Chalk and blackboard, complex probability materials, advanced calculation aids, exercise books
Chalk and blackboard, local game examples, practical scenario materials, exercise books
KLB Mathematics Book Three Pg 268-270
6 6
Probability
Combined Events
By the end of the lesson, the learner should be able to:
Find the probability of a combined events
Understand compound events and combinations
Distinguish between different event types
Apply basic combination rules
Q/A on event combination using practical examples
Discussions on exclusive and inclusive event identification
Solving basic combined event problems using visual methods
Demonstrations using card drawing and dice rolling combinations
Explaining combination principles using Venn diagrams
Chalk and blackboard, playing cards, multiple dice, Venn diagram drawings, exercise books
KLB Mathematics Book Three Pg 272-273
6 7
Probability
Combined Events OR probability
Independent Events
By the end of the lesson, the learner should be able to:
Find the probability of a combined events
Apply addition rule for OR events
Calculate "A or B" probabilities
Handle mutually exclusive events
Q/A on addition rule application using systematic methods
Discussions on mutually exclusive identification and calculation
Solving OR probability problems using organized approaches
Demonstrations using card selection and event combination
Explaining addition rule logic using Venn diagrams
Chalk and blackboard, Venn diagram materials, card examples, exercise books
Chalk and blackboard, multiple coins and dice, independence demonstration materials, exercise books
KLB Mathematics Book Three Pg 272-274
7 1
Probability
Independent Events advanced
Independent Events applications
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Distinguish between independent and dependent events
Apply conditional probability concepts
Handle complex independence scenarios
Q/A on independence verification using mathematical methods
Discussions on dependence concepts using card drawing examples
Solving dependent and independent event problems using systematic approaches
Demonstrations using replacement and non-replacement scenarios
Explaining conditional probability using practical examples
Chalk and blackboard, playing cards for replacement scenarios, multiple experimental setups, exercise books
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books
KLB Mathematics Book Three Pg 276-278
7 2-3
Probability
Probability
Compound Proportion and Rates of Work
Tree Diagrams
Tree Diagrams advanced
Compound Proportions
By the end of the lesson, the learner should be able to:
Draw tree diagrams to show the probability space
Construct tree diagrams systematically
Represent sequential events using trees
Apply tree diagram methods
Use tree diagrams to find probability
Apply trees to multi-stage problems
Handle complex sequential events
Calculate final probabilities using trees
Q/A on tree construction using step-by-step methods
Discussions on sequential event representation
Solving basic tree diagram problems using systematic drawing
Demonstrations using branching examples and visual organization
Explaining tree structure using logical branching principles
Q/A on complex tree application using multi-stage examples
Discussions on replacement scenario handling
Solving complex tree problems using systematic calculation
Demonstrations using detailed tree constructions
Explaining systematic probability calculation using tree methods
Chalk and blackboard, tree diagram templates, branching materials, exercise books
Chalk and blackboard, complex tree examples, detailed calculation aids, exercise books
Chalk and blackboard, local business examples, calculators if available, exercise books
KLB Mathematics Book Three Pg 282
KLB Mathematics Book Three Pg 283-285
7 4
Compound Proportion and Rates of Work
Compound Proportions applications
By the end of the lesson, the learner should be able to:
Find the compound proportions
Apply compound proportions to complex problems
Handle multi-step compound proportion scenarios
Solve real-world compound proportion problems
Q/A on advanced compound proportion using complex scenarios
Discussions on multi-variable relationships using practical contexts
Solving challenging compound problems using systematic approaches
Demonstrations using construction and farming examples
Explaining practical applications using community-based scenarios
Chalk and blackboard, construction/farming examples, exercise books
KLB Mathematics Book Three Pg 290-291
7 5
Compound Proportion and Rates of Work
Proportional Parts
Proportional Parts applications
By the end of the lesson, the learner should be able to:
Calculate the proportional parts
Understand proportional division concepts
Apply proportional parts to sharing problems
Solve distribution problems using proportional methods
Q/A on proportional sharing using practical examples
Discussions on fair distribution using ratio concepts
Solving proportional parts problems using systematic division
Demonstrations using sharing scenarios and inheritance examples
Explaining proportional distribution using logical reasoning
Chalk and blackboard, sharing demonstration materials, exercise books
Chalk and blackboard, business partnership examples, exercise books
KLB Mathematics Book Three Pg 291-293
7 6
Compound Proportion and Rates of Work
Rates of Work
Rates of Work and Mixtures
By the end of the lesson, the learner should be able to:
Calculate the rate of work
Understand work rate relationships
Apply time-work-efficiency concepts
Solve basic rate of work problems
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios
Solving basic rate of work problems using systematic methods
Demonstrations using construction and labor examples
Explaining work rate concepts using practical work situations
Chalk and blackboard, work scenario examples, exercise books
Chalk and blackboard, mixture demonstration materials, exercise books
KLB Mathematics Book Three Pg 294-295
7 7
Graphical Methods
Tables of given relations
By the end of the lesson, the learner should be able to:
Draw tables of given relations
Construct organized data tables systematically
Prepare data for graphical representation
Understand relationship between variables
Q/A on table construction using systematic data organization
Discussions on variable relationships using practical examples
Solving table preparation problems using organized methods
Demonstrations using data collection and tabulation
Explaining systematic data arrangement using logical procedures
Chalk and blackboard, ruled paper for tables, exercise books
KLB Mathematics Book Three Pg 299
8 1
Graphical Methods
Graphs of given relations
Tables and graphs integration
By the end of the lesson, the learner should be able to:
Draw graphs of given relations
Plot points accurately on coordinate systems
Connect points to show relationships
Interpret graphs from given data
Q/A on graph plotting using coordinate methods
Discussions on point plotting and curve drawing
Solving graph construction problems using systematic plotting
Demonstrations using coordinate systems and curve sketching
Explaining graph interpretation using visual analysis
Chalk and blackboard, graph paper or grids, rulers, exercise books
Chalk and blackboard, graph paper, data examples, exercise books
KLB Mathematics Book Three Pg 300
8 2-3
Graphical Methods
Introduction to cubic equations
Graphical solution of cubic equations
Advanced cubic solutions
By the end of the lesson, the learner should be able to:
Draw tables of cubic functions
Understand cubic equation characteristics
Prepare cubic function data systematically
Recognize cubic curve patterns
Draw graphs of cubic equations
Apply graphical methods to complex cubic problems
Handle multiple root scenarios
Verify solutions using graphical analysis
Q/A on cubic function evaluation using systematic calculation
Discussions on cubic equation properties using mathematical analysis
Solving cubic table preparation using organized methods
Demonstrations using cubic function examples
Explaining cubic characteristics using pattern recognition
Q/A on advanced cubic graphing using complex examples
Discussions on multiple root identification using graph analysis
Solving challenging cubic problems using systematic methods
Demonstrations using detailed cubic constructions
Explaining verification methods using graphical checking
Chalk and blackboard, cubic function examples, exercise books
Chalk and blackboard, graph paper, cubic equation examples, exercise books
Chalk and blackboard, advanced graph examples, exercise books
KLB Mathematics Book Three Pg 301
KLB Mathematics Book Three Pg 302-304
8 4
Graphical Methods
Introduction to rates of change
Average rates of change
By the end of the lesson, the learner should be able to:
Calculate the average rates of change
Understand rate of change concepts
Apply rate calculations to practical problems
Interpret rate meanings in context
Q/A on rate calculation using slope methods
Discussions on rate interpretation using practical examples
Solving basic rate problems using systematic calculation
Demonstrations using speed-time and distance examples
Explaining rate concepts using practical analogies
Chalk and blackboard, rate calculation examples, exercise books
Chalk and blackboard, graph paper, rate examples, exercise books
KLB Mathematics Book Three Pg 304-306
8 5
Graphical Methods
Advanced average rates
By the end of the lesson, the learner should be able to:
Calculate the average rates of change
Handle complex rate scenarios
Apply rates to business and scientific problems
Integrate rate concepts with other topics
Q/A on complex rate applications using advanced scenarios
Discussions on business and scientific rate applications
Solving challenging rate problems using integrated methods
Demonstrations using comprehensive rate examples
Explaining advanced applications using detailed analysis
Chalk and blackboard, advanced rate scenarios, exercise books
KLB Mathematics Book Three Pg 304-310
8 6
Graphical Methods
Introduction to instantaneous rates
Rate of change at an instant
By the end of the lesson, the learner should be able to:
Calculate the rate of change at an instant
Understand instantaneous rate concepts
Distinguish between average and instantaneous rates
Apply instant rate methods
Q/A on instantaneous rate concepts using limiting methods
Discussions on instant vs average rate differences
Solving basic instantaneous rate problems
Demonstrations using tangent line concepts
Explaining instantaneous rate using practical examples
Chalk and blackboard, tangent line examples, exercise books
Chalk and blackboard, detailed graph examples, exercise books
KLB Mathematics Book Three Pg 310-311
8 7
Graphical Methods
Advanced instantaneous rates
Empirical graphs
By the end of the lesson, the learner should be able to:
Calculate the rate of change at an instant
Handle complex instantaneous rate scenarios
Apply instant rates to advanced problems
Integrate instantaneous concepts with applications
Q/A on advanced instantaneous applications using complex examples
Discussions on sophisticated rate problems using detailed analysis
Solving challenging instantaneous problems using systematic methods
Demonstrations using comprehensive rate constructions
Explaining advanced applications using detailed reasoning
Chalk and blackboard, advanced rate examples, exercise books
Chalk and blackboard, experimental data examples, exercise books
KLB Mathematics Book Three Pg 310-315
9

END TERM EXAMS

10 1
Graphical Methods
Advanced empirical methods
By the end of the lesson, the learner should be able to:
Draw the empirical graphs
Apply empirical methods to complex data
Handle large datasets and trends
Interpret empirical results meaningfully
Q/A on advanced empirical techniques using complex datasets
Discussions on trend analysis using systematic methods
Solving challenging empirical problems using organized approaches
Demonstrations using comprehensive data analysis
Explaining advanced interpretations using detailed reasoning
Chalk and blackboard, complex data examples, exercise books
KLB Mathematics Book Three Pg 315-321

Your Name Comes Here


Download

Feedback