If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 |
OPENING AND REPORTING |
|||||||
1 | 2-3 |
Matrices
|
Introduction and real-life applications
Order of a matrix and elements Square matrices, row and column matrices Addition of matrices |
By the end of the
lesson, the learner
should be able to:
Define matrices and identify matrix applications Recognize matrices in everyday contexts Understand tabular data representation Appreciate the importance of matrices Determine the order of given matrices Identify matrix elements by position Use correct notation for matrix elements Distinguish between different matrix types |
Q/A on tabular data in daily life
Discussions on school exam results tables Analyzing bus timetables and price lists Demonstrations using newspaper sports tables Explaining matrix notation using grid patterns Q/A on matrix structure using grid drawings Discussions on rows and columns using classroom seating Solving element location using coordinate games Demonstrations using drawn grids on blackboard Explaining position notation using class register |
Old newspapers with league tables, chalk and blackboard, exercise books
Chalk and blackboard, ruled exercise books, class register Paper cutouts, chalk and blackboard, counters or bottle tops Counters or stones, chalk and blackboard, exercise books |
KLB Mathematics Book Three Pg 168-169
KLB Mathematics Book Three Pg 169-170 |
|
1 | 4 |
Matrices
|
Subtraction of matrices
Combined addition and subtraction Scalar multiplication Introduction to matrix multiplication |
By the end of the
lesson, the learner
should be able to:
Subtract matrices of the same order Apply matrix subtraction rules correctly Understand order requirements for subtraction Solve complex matrix subtraction problems |
Q/A on matrix subtraction using simple numbers
Discussions on element-wise subtraction using examples Solving subtraction problems on blackboard Demonstrations using number line concepts Explaining sign changes using practical examples |
Chalk and blackboard, exercise books, number cards made from cardboard
Chalk and blackboard, exercise books, locally made operation cards Beans or stones for grouping, chalk and blackboard, exercise books Chalk and blackboard, rulers for tracing, exercise books |
KLB Mathematics Book Three Pg 170-171
|
|
1 | 5 |
Matrices
|
Matrix multiplication (2×2 matrices)
Matrix multiplication (larger matrices) |
By the end of the
lesson, the learner
should be able to:
Multiply 2×2 matrices systematically Apply correct multiplication procedures Calculate matrix products accurately Understand result matrix dimensions |
Q/A on 2×2 matrix multiplication using simple numbers
Discussions on systematic calculation methods Solving 2×2 problems using step-by-step approach Demonstrations using organized blackboard layout Explaining product formation using grid method |
Chalk and blackboard, exercise books, homemade grid templates
Chalk and blackboard, large sheets of paper for working, exercise books |
KLB Mathematics Book Three Pg 176-179
|
|
1 | 6 |
Matrices
|
Properties of matrix multiplication
|
By the end of the
lesson, the learner
should be able to:
Understand non-commutativity of matrix multiplication Apply associative and distributive properties Distinguish between pre and post multiplication Solve problems involving multiplication properties |
Q/A on multiplication properties using counterexamples
Discussions on order importance using practical examples Solving property-based problems using verification Demonstrations using concrete examples Explaining distributive law using expansion |
Chalk and blackboard, exercise books, cardboard for property cards
|
KLB Mathematics Book Three Pg 174-179
|
|
1 | 7 |
Matrices
|
Real-world matrix multiplication applications
Identity matrix |
By the end of the
lesson, the learner
should be able to:
Apply matrix multiplication to practical problems Solve business and economic applications Calculate costs, revenues, and quantities Interpret matrix multiplication results |
Q/A on practical applications using local business examples
Discussions on market problems using familiar contexts Solving real-world problems using matrix methods Demonstrations using shop keeper scenarios Explaining result interpretation using meaningful contexts |
Chalk and blackboard, local price lists, exercise books
Chalk and blackboard, exercise books, pattern cards made from paper |
KLB Mathematics Book Three Pg 176-179
|
|
2 | 1 |
Matrices
|
Determinant of 2×2 matrices
Inverse of 2×2 matrices - theory |
By the end of the
lesson, the learner
should be able to:
Calculate determinants of 2×2 matrices Apply the determinant formula correctly Understand geometric interpretation of determinants Use determinants to classify matrices |
Q/A on determinant calculation using cross multiplication
Discussions on formula application using memory aids Solving determinant problems using systematic approach Demonstrations using cross pattern method Explaining geometric meaning using area concepts |
Chalk and blackboard, exercise books, crossed sticks for demonstration
Chalk and blackboard, exercise books, fraction examples |
KLB Mathematics Book Three Pg 183
|
|
2 | 2-3 |
Matrices
|
Inverse of 2×2 matrices - practice
Introduction to solving simultaneous equations Solving 2×2 simultaneous equations using matrices |
By the end of the
lesson, the learner
should be able to:
Calculate inverses of 2×2 matrices systematically Verify inverse calculations through multiplication Apply inverse properties correctly Solve complex inverse problems Understand matrix representation of simultaneous equations Identify coefficient and constant matrices Set up matrix equations correctly Recognize the structure of linear systems |
Q/A on inverse calculation verification methods
Discussions on accuracy checking using multiplication Solving advanced inverse problems using practice Demonstrations using verification procedures Explaining checking methods using examples Q/A on equation representation using familiar equations Discussions on coefficient identification using examples Solving setup problems using systematic approach Demonstrations using equation breakdown method Explaining structure using organized layout |
Chalk and blackboard, exercise books, scrap paper for verification
Chalk and blackboard, exercise books, equation examples from previous topics Chalk and blackboard, exercise books, previous elimination method examples |
KLB Mathematics Book Three Pg 185-187
KLB Mathematics Book Three Pg 188-189 |
|
2 | 4 |
Matrices
|
Advanced simultaneous equation problems
|
By the end of the
lesson, the learner
should be able to:
Solve complex simultaneous equation systems Handle systems with no solution or infinite solutions Interpret determinant values in solution context Apply matrix methods to word problems |
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation Solving challenging problems using complete analysis Demonstrations using classification methods Explaining geometric meaning using line concepts |
Chalk and blackboard, exercise books, graph paper if available
|
KLB Mathematics Book Three Pg 188-190
|
|
2 | 5 |
Matrices
|
Matrix applications in real-world problems
Transpose of matrices |
By the end of the
lesson, the learner
should be able to:
Apply matrix operations to practical scenarios Solve business, engineering, and scientific problems Model real situations using matrices Interpret matrix solutions in context |
Q/A on practical applications using local examples
Discussions on modeling using familiar situations Solving comprehensive problems using matrix tools Demonstrations using community-based scenarios Explaining solution interpretation using meaningful contexts |
Chalk and blackboard, local business examples, exercise books
Chalk and blackboard, exercise books, paper cutouts for demonstration |
KLB Mathematics Book Three Pg 168-190
|
|
2 | 6 |
Matrices
Formulae and Variations |
Matrix equation solving
Introduction to formulae |
By the end of the
lesson, the learner
should be able to:
Solve matrix equations systematically Find unknown matrices in equations Apply inverse operations to solve equations Verify matrix equation solutions |
Q/A on equation solving using algebraic analogy
Discussions on unknown determination using systematic methods Solving matrix equations using step-by-step approach Demonstrations using organized solution procedures Explaining verification using checking methods |
Chalk and blackboard, exercise books, algebra reference examples
Chalk and blackboard, measuring tape or string, exercise books |
KLB Mathematics Book Three Pg 183-190
|
|
2 | 7 |
Formulae and Variations
|
Subject of a formula - basic cases
|
By the end of the
lesson, the learner
should be able to:
Make simple variables the subject of formulae Apply inverse operations to rearrange formulae Understand the concept of subject change Solve basic subject transformation problems |
Q/A on inverse operations using number examples
Discussions on formula rearrangement using balance method Solving basic subject change problems using step-by-step approach Demonstrations using see-saw balance analogy Explaining inverse operations using practical examples |
Chalk and blackboard, simple balance (stones and stick), exercise books
|
KLB Mathematics Book Three Pg 191-193
|
|
3 | 1 |
Formulae and Variations
|
Subject of a formula - intermediate cases
Subject of a formula - advanced cases |
By the end of the
lesson, the learner
should be able to:
Make complex variables the subject of formulae Handle formulae with fractions and powers Apply multiple inverse operations systematically Solve intermediate difficulty problems |
Q/A on complex rearrangement using systematic approach
Discussions on fraction handling using common denominators Solving intermediate problems using organized methods Demonstrations using step-by-step blackboard work Explaining systematic approaches using flowcharts |
Chalk and blackboard, fraction strips made from paper, exercise books
Chalk and blackboard, squared paper patterns, exercise books |
KLB Mathematics Book Three Pg 191-193
|
|
3 | 2-3 |
Formulae and Variations
|
Applications of formula manipulation
Introduction to variation Direct variation - introduction |
By the end of the
lesson, the learner
should be able to:
Apply formula rearrangement to practical problems Solve real-world problems using formula manipulation Calculate unknown quantities in various contexts Interpret results in meaningful situations Understand direct proportionality concepts Recognize direct variation patterns Use direct variation notation correctly Calculate constants of proportionality |
Q/A on practical applications using local examples
Discussions on real-world formula use in farming/building Solving application problems using formula rearrangement Demonstrations using construction and farming scenarios Explaining practical interpretation using community examples Q/A on direct relationships using simple examples Discussions on proportional changes using market scenarios Solving basic direct variation problems Demonstrations using doubling and tripling examples Explaining proportionality using ratio concepts |
Chalk and blackboard, local measurement tools, exercise books
Chalk and blackboard, local price lists from markets, exercise books Chalk and blackboard, beans or stones for counting, exercise books |
KLB Mathematics Book Three Pg 191-193
KLB Mathematics Book Three Pg 194-196 |
|
3 | 4 |
Vectors (II)
|
Coordinates in two dimensions
Coordinates in three dimensions |
By the end of the
lesson, the learner
should be able to:
Identify the coordinates of a point in two dimensions Plot points on coordinate planes accurately Understand position representation using coordinates Apply coordinate concepts to practical situations |
Q/A on coordinate identification using grid references
Discussions on map reading and location finding Solving coordinate plotting problems using systematic methods Demonstrations using classroom grid systems and floor patterns Explaining coordinate applications using local maps and directions |
Chalk and blackboard, squared paper or grid drawn on ground, exercise books
Chalk and blackboard, 3D models made from sticks and clay, exercise books |
KLB Mathematics Book Three Pg 221-222
|
|
3 | 5 |
Vectors (II)
|
Column and position vectors in three dimensions
|
By the end of the
lesson, the learner
should be able to:
Find a displacement and represent it in column vector Calculate the position vector Express vectors in column form Apply column vector notation systematically |
Q/A on displacement representation using movement examples
Discussions on vector notation using organized column format Solving column vector problems using systematic methods Demonstrations using physical movement and direction examples Explaining vector components using practical displacement |
Chalk and blackboard, movement demonstration space, exercise books
|
KLB Mathematics Book Three Pg 223-224
|
|
3 | 6 |
Vectors (II)
|
Position vectors and applications
Column vectors in terms of unit vectors i, j, k |
By the end of the
lesson, the learner
should be able to:
Calculate the position vector Apply position vectors to geometric problems Find distances using position vector methods Solve positioning problems systematically |
Q/A on position vector calculation using origin references
Discussions on position determination using coordinate methods Solving position vector problems using systematic calculation Demonstrations using fixed origin and variable endpoints Explaining position concepts using practical location examples |
Chalk and blackboard, origin marking systems, exercise books
Chalk and blackboard, direction indicators, unit vector reference charts, exercise books |
KLB Mathematics Book Three Pg 224
|
|
3 | 7 |
Vectors (II)
|
Vector operations using unit vectors
Magnitude of a vector in three dimensions |
By the end of the
lesson, the learner
should be able to:
Express vectors in terms of unit vectors Perform vector addition using unit vector notation Calculate vector subtraction with i, j, k components Apply scalar multiplication to unit vectors |
Q/A on vector operations using component-wise calculation
Discussions on systematic operation methods Solving vector operation problems using organized approaches Demonstrations using component separation and combination Explaining operation logic using algebraic reasoning |
Chalk and blackboard, component calculation aids, exercise books
Chalk and blackboard, 3D measurement aids, exercise books |
KLB Mathematics Book Three Pg 226-228
|
|
4 | 1 |
Vectors (II)
|
Magnitude applications and unit vectors
|
By the end of the
lesson, the learner
should be able to:
Calculate the magnitude of a vector in three dimensions Find unit vectors from given vectors Apply magnitude concepts to practical problems Use magnitude in vector normalization |
Q/A on magnitude and unit vector relationships
Discussions on normalization and direction finding Solving magnitude and unit vector problems Demonstrations using direction and length separation Explaining practical applications using navigation examples |
Chalk and blackboard, direction finding aids, exercise books
|
KLB Mathematics Book Three Pg 229-230
|
|
4 | 2-3 |
Vectors (II)
|
Parallel vectors
Collinearity Advanced collinearity applications Proportional division of a line |
By the end of the
lesson, the learner
should be able to:
Identify parallel vectors Determine when vectors are parallel Apply parallel vector properties Use scalar multiples in parallel relationships Show that points are collinear Apply collinearity to complex geometric problems Integrate parallel and collinearity concepts Solve advanced alignment problems |
Q/A on parallel identification using scalar multiple methods
Discussions on parallel relationships using geometric examples Solving parallel vector problems using systematic testing Demonstrations using parallel line and direction examples Explaining parallel concepts using geometric reasoning Q/A on advanced collinearity using complex scenarios Discussions on geometric proof using vector methods Solving challenging collinearity problems Demonstrations using complex geometric constructions Explaining advanced applications using comprehensive examples |
Chalk and blackboard, parallel line demonstrations, exercise books
Chalk and blackboard, straight-line demonstrations, exercise books Chalk and blackboard, complex geometric aids, exercise books Chalk and blackboard, internal division models, exercise books |
KLB Mathematics Book Three Pg 231-232
KLB Mathematics Book Three Pg 232-234 |
|
4 | 4 |
Vectors (II)
|
External division of a line
|
By the end of the
lesson, the learner
should be able to:
Divide a line externally in the given ratio Apply the external division formula Distinguish between internal and external division Solve external division problems accurately |
Q/A on external division using systematic formula application
Discussions on external point calculation using vector methods Solving external division problems using careful approaches Demonstrations using external point construction examples Explaining external division using extended line concepts |
Chalk and blackboard, external division models, exercise books
|
KLB Mathematics Book Three Pg 238-239
|
|
4 | 5 |
Vectors (II)
|
Combined internal and external division
Ratio theorem |
By the end of the
lesson, the learner
should be able to:
Divide a line internally and externally in the given ratio Apply both division formulas systematically Compare internal and external division results Handle mixed division problems |
Q/A on combined division using comparative methods
Discussions on division type selection using problem analysis Solving combined division problems using systematic approaches Demonstrations using both division types Explaining division relationships using geometric reasoning |
Chalk and blackboard, combined division models, exercise books
Chalk and blackboard, ratio theorem aids, exercise books |
KLB Mathematics Book Three Pg 239
|
|
4 | 6 |
Vectors (II)
|
Advanced ratio theorem applications
|
By the end of the
lesson, the learner
should be able to:
Find the position vector Apply ratio theorem to complex scenarios Solve multi-step ratio problems Use ratio theorem in geometric proofs |
Q/A on advanced ratio applications using complex problems
Discussions on multi-step ratio calculation Solving challenging ratio problems using systematic methods Demonstrations using comprehensive ratio examples Explaining advanced applications using detailed reasoning |
Chalk and blackboard, advanced ratio models, exercise books
|
KLB Mathematics Book Three Pg 242
|
|
4 | 7 |
Vectors (II)
|
Mid-point
Ratio theorem and midpoint integration |
By the end of the
lesson, the learner
should be able to:
Find the mid-points of the given vectors Apply midpoint formulas in vector contexts Use midpoint concepts in geometric problems Calculate midpoints systematically |
Q/A on midpoint calculation using vector averaging methods
Discussions on midpoint applications using geometric examples Solving midpoint problems using systematic approaches Demonstrations using midpoint construction and calculation Explaining midpoint concepts using practical examples |
Chalk and blackboard, midpoint demonstration aids, exercise books
Chalk and blackboard, complex problem materials, exercise books |
KLB Mathematics Book Three Pg 243
|
|
5 | 1 |
Vectors (II)
|
Advanced ratio theorem applications
Applications of vectors in geometry |
By the end of the
lesson, the learner
should be able to:
Use ratio theorem to find the given vectors Apply ratio theorem to challenging problems Handle complex geometric applications Demonstrate comprehensive ratio mastery |
Q/A on comprehensive ratio understanding using advanced problems
Discussions on complex ratio relationships Solving advanced ratio problems using systematic methods Demonstrations using sophisticated geometric constructions Explaining mastery using challenging applications |
Chalk and blackboard, advanced geometric aids, exercise books
Chalk and blackboard, parallelogram models, exercise books |
KLB Mathematics Book Three Pg 246-248
|
|
5 | 2-3 |
Vectors (II)
Vectors (II) Binomial Expansion |
Rectangle diagonal applications
Advanced geometric applications Binomial expansions up to power four |
By the end of the
lesson, the learner
should be able to:
Use vectors to show the diagonals of a rectangle Apply vector methods to rectangle properties Prove rectangle theorems using vectors Compare parallelogram and rectangle diagonal properties Use vectors to show geometric properties Apply vectors to complex geometric proofs Solve challenging geometric problems using vectors Integrate all vector concepts in geometric contexts |
Q/A on rectangle properties using vector analysis
Discussions on diagonal relationships using vector methods Solving rectangle problems using systematic approaches Demonstrations using rectangle constructions and vector proofs Explaining rectangle properties using vector reasoning Q/A on comprehensive geometric applications using vector methods Discussions on advanced proof techniques using vectors Solving complex geometric problems using integrated approaches Demonstrations using sophisticated geometric constructions Explaining advanced applications using comprehensive reasoning |
Chalk and blackboard, rectangle models, exercise books
Chalk and blackboard, advanced geometric models, exercise books Chalk and blackboard, rectangular cutouts from paper, exercise books |
KLB Mathematics Book Three Pg 248-250
|
|
5 | 4 |
Binomial Expansion
|
Binomial expansions up to power four (continued)
Pascal's triangle |
By the end of the
lesson, the learner
should be able to:
Expand binomial function up to power four Handle increasingly complex coefficient patterns Apply systematic expansion techniques efficiently Verify expansions using substitution methods |
Q/A on power expansion using multiplication techniques
Discussions on coefficient identification using pattern analysis Solving expansion problems using systematic approaches Demonstrations using geometric representations Explaining verification methods using numerical substitution |
Chalk and blackboard, squared paper for geometric models, exercise books
Chalk and blackboard, triangular patterns drawn/cut from paper, exercise books |
KLB Mathematics Book Three Pg 256
|
|
5 | 5 |
Binomial Expansion
|
Pascal's triangle applications
|
By the end of the
lesson, the learner
should be able to:
Use Pascal's triangle Apply Pascal's triangle to binomial expansions efficiently Use triangle coefficients for various powers Solve expansion problems using triangle methods |
Q/A on triangle application using coefficient identification
Discussions on efficient expansion using triangle methods Solving expansion problems using Pascal's triangle Demonstrations using triangle-guided calculations Explaining efficiency benefits using comparative methods |
Chalk and blackboard, Pascal's triangle reference charts, exercise books
|
KLB Mathematics Book Three Pg 257-258
|
|
5 | 6 |
Binomial Expansion
|
Pascal's triangle (continued)
Pascal's triangle advanced |
By the end of the
lesson, the learner
should be able to:
Use Pascal's triangle Apply triangle to complex expansion problems Handle higher powers using Pascal's triangle Integrate triangle concepts with algebraic expansion |
Q/A on advanced triangle applications using complex examples
Discussions on higher power expansion using triangle methods Solving challenging problems using Pascal's triangle Demonstrations using detailed triangle constructions Explaining integration using comprehensive examples |
Chalk and blackboard, advanced triangle patterns, exercise books
Chalk and blackboard, combination calculation aids, exercise books |
KLB Mathematics Book Three Pg 258-259
|
|
5 | 7 |
Binomial Expansion
|
Applications to numerical cases
Applications to numerical cases (continued) |
By the end of the
lesson, the learner
should be able to:
Use binomial expansion to solve numerical problems Apply expansions for numerical approximations Calculate values using binomial methods Understand practical applications of expansions |
Q/A on numerical applications using approximation techniques
Discussions on calculation shortcuts using expansion methods Solving numerical problems using binomial approaches Demonstrations using practical calculation scenarios Explaining approximation benefits using real examples |
Chalk and blackboard, simple calculation aids, exercise books
Chalk and blackboard, advanced calculation examples, exercise books |
KLB Mathematics Book Three Pg 259-260
|
|
6 | 1 |
Probability
|
Introduction
|
By the end of the
lesson, the learner
should be able to:
Calculate the experimental probability Understand probability concepts in daily life Distinguish between certain and uncertain events Recognize probability situations |
Q/A on uncertain events from daily life experiences
Discussions on weather prediction and game outcomes Analyzing chance events using coin tossing and dice rolling Demonstrations using simple probability experiments Explaining probability language using familiar examples |
Chalk and blackboard, coins, dice made from cardboard, exercise books
|
KLB Mathematics Book Three Pg 262-264
|
|
6 | 2-3 |
Probability
|
Experimental Probability
Experimental Probability applications Range of Probability Measure |
By the end of the
lesson, the learner
should be able to:
Calculate the experimental probability Conduct probability experiments systematically Record and analyze experimental data Compare experimental results with expectations Calculate the range of probability measure Express probabilities on scale from 0 to 1 Convert between fractions, decimals, and percentages Interpret probability values correctly |
Q/A on frequency counting using repeated experiments
Discussions on trial repetition and result recording Solving experimental probability problems using data collection Demonstrations using coin toss and dice roll experiments Explaining frequency ratio calculations using practical examples Q/A on probability scale using number line representations Discussions on probability conversion between forms Solving probability scale problems using systematic methods Demonstrations using probability line and scale examples Explaining scale interpretation using practical scenarios |
Chalk and blackboard, coins, cardboard dice, tally charts, exercise books
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books Chalk and blackboard, number line drawings, probability scale charts, exercise books |
KLB Mathematics Book Three Pg 262-264
KLB Mathematics Book Three Pg 265-266 |
|
6 | 4 |
Probability
|
Probability Space
Theoretical Probability |
By the end of the
lesson, the learner
should be able to:
Calculate the probability space for the theoretical probability Define sample space systematically List all possible outcomes Apply sample space concepts |
Q/A on outcome listing using systematic enumeration
Discussions on complete outcome identification Solving sample space problems using organized listing Demonstrations using dice, cards, and spinner examples Explaining probability calculation using outcome counting |
Chalk and blackboard, playing cards (locally made), spinners from cardboard, exercise books
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books |
KLB Mathematics Book Three Pg 266-267
|
|
6 | 5 |
Probability
|
Theoretical Probability advanced
Theoretical Probability applications |
By the end of the
lesson, the learner
should be able to:
Calculate the probability space for the theoretical probability Apply theoretical probability to complex problems Handle multiple outcome scenarios Solve advanced theoretical problems |
Q/A on advanced theoretical applications using complex scenarios
Discussions on multiple outcome analysis using systematic methods Solving challenging theoretical problems using organized approaches Demonstrations using complex probability setups Explaining advanced theoretical concepts using detailed reasoning |
Chalk and blackboard, complex probability materials, advanced calculation aids, exercise books
Chalk and blackboard, local game examples, practical scenario materials, exercise books |
KLB Mathematics Book Three Pg 268-270
|
|
6 | 6 |
Probability
|
Combined Events
|
By the end of the
lesson, the learner
should be able to:
Find the probability of a combined events Understand compound events and combinations Distinguish between different event types Apply basic combination rules |
Q/A on event combination using practical examples
Discussions on exclusive and inclusive event identification Solving basic combined event problems using visual methods Demonstrations using card drawing and dice rolling combinations Explaining combination principles using Venn diagrams |
Chalk and blackboard, playing cards, multiple dice, Venn diagram drawings, exercise books
|
KLB Mathematics Book Three Pg 272-273
|
|
6 | 7 |
Probability
|
Combined Events OR probability
Independent Events |
By the end of the
lesson, the learner
should be able to:
Find the probability of a combined events Apply addition rule for OR events Calculate "A or B" probabilities Handle mutually exclusive events |
Q/A on addition rule application using systematic methods
Discussions on mutually exclusive identification and calculation Solving OR probability problems using organized approaches Demonstrations using card selection and event combination Explaining addition rule logic using Venn diagrams |
Chalk and blackboard, Venn diagram materials, card examples, exercise books
Chalk and blackboard, multiple coins and dice, independence demonstration materials, exercise books |
KLB Mathematics Book Three Pg 272-274
|
|
7 | 1 |
Probability
|
Independent Events advanced
Independent Events applications |
By the end of the
lesson, the learner
should be able to:
Find the probability of independent events Distinguish between independent and dependent events Apply conditional probability concepts Handle complex independence scenarios |
Q/A on independence verification using mathematical methods
Discussions on dependence concepts using card drawing examples Solving dependent and independent event problems using systematic approaches Demonstrations using replacement and non-replacement scenarios Explaining conditional probability using practical examples |
Chalk and blackboard, playing cards for replacement scenarios, multiple experimental setups, exercise books
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books |
KLB Mathematics Book Three Pg 276-278
|
|
7 | 2-3 |
Probability
Probability Compound Proportion and Rates of Work |
Tree Diagrams
Tree Diagrams advanced Compound Proportions |
By the end of the
lesson, the learner
should be able to:
Draw tree diagrams to show the probability space Construct tree diagrams systematically Represent sequential events using trees Apply tree diagram methods Use tree diagrams to find probability Apply trees to multi-stage problems Handle complex sequential events Calculate final probabilities using trees |
Q/A on tree construction using step-by-step methods
Discussions on sequential event representation Solving basic tree diagram problems using systematic drawing Demonstrations using branching examples and visual organization Explaining tree structure using logical branching principles Q/A on complex tree application using multi-stage examples Discussions on replacement scenario handling Solving complex tree problems using systematic calculation Demonstrations using detailed tree constructions Explaining systematic probability calculation using tree methods |
Chalk and blackboard, tree diagram templates, branching materials, exercise books
Chalk and blackboard, complex tree examples, detailed calculation aids, exercise books Chalk and blackboard, local business examples, calculators if available, exercise books |
KLB Mathematics Book Three Pg 282
KLB Mathematics Book Three Pg 283-285 |
|
7 | 4 |
Compound Proportion and Rates of Work
|
Compound Proportions applications
|
By the end of the
lesson, the learner
should be able to:
Find the compound proportions Apply compound proportions to complex problems Handle multi-step compound proportion scenarios Solve real-world compound proportion problems |
Q/A on advanced compound proportion using complex scenarios
Discussions on multi-variable relationships using practical contexts Solving challenging compound problems using systematic approaches Demonstrations using construction and farming examples Explaining practical applications using community-based scenarios |
Chalk and blackboard, construction/farming examples, exercise books
|
KLB Mathematics Book Three Pg 290-291
|
|
7 | 5 |
Compound Proportion and Rates of Work
|
Proportional Parts
Proportional Parts applications |
By the end of the
lesson, the learner
should be able to:
Calculate the proportional parts Understand proportional division concepts Apply proportional parts to sharing problems Solve distribution problems using proportional methods |
Q/A on proportional sharing using practical examples
Discussions on fair distribution using ratio concepts Solving proportional parts problems using systematic division Demonstrations using sharing scenarios and inheritance examples Explaining proportional distribution using logical reasoning |
Chalk and blackboard, sharing demonstration materials, exercise books
Chalk and blackboard, business partnership examples, exercise books |
KLB Mathematics Book Three Pg 291-293
|
|
7 | 6 |
Compound Proportion and Rates of Work
|
Rates of Work
Rates of Work and Mixtures |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of work Understand work rate relationships Apply time-work-efficiency concepts Solve basic rate of work problems |
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios Solving basic rate of work problems using systematic methods Demonstrations using construction and labor examples Explaining work rate concepts using practical work situations |
Chalk and blackboard, work scenario examples, exercise books
Chalk and blackboard, mixture demonstration materials, exercise books |
KLB Mathematics Book Three Pg 294-295
|
|
7 | 7 |
Graphical Methods
|
Tables of given relations
|
By the end of the
lesson, the learner
should be able to:
Draw tables of given relations Construct organized data tables systematically Prepare data for graphical representation Understand relationship between variables |
Q/A on table construction using systematic data organization
Discussions on variable relationships using practical examples Solving table preparation problems using organized methods Demonstrations using data collection and tabulation Explaining systematic data arrangement using logical procedures |
Chalk and blackboard, ruled paper for tables, exercise books
|
KLB Mathematics Book Three Pg 299
|
|
8 | 1 |
Graphical Methods
|
Graphs of given relations
Tables and graphs integration |
By the end of the
lesson, the learner
should be able to:
Draw graphs of given relations Plot points accurately on coordinate systems Connect points to show relationships Interpret graphs from given data |
Q/A on graph plotting using coordinate methods
Discussions on point plotting and curve drawing Solving graph construction problems using systematic plotting Demonstrations using coordinate systems and curve sketching Explaining graph interpretation using visual analysis |
Chalk and blackboard, graph paper or grids, rulers, exercise books
Chalk and blackboard, graph paper, data examples, exercise books |
KLB Mathematics Book Three Pg 300
|
|
8 | 2-3 |
Graphical Methods
|
Introduction to cubic equations
Graphical solution of cubic equations Advanced cubic solutions |
By the end of the
lesson, the learner
should be able to:
Draw tables of cubic functions Understand cubic equation characteristics Prepare cubic function data systematically Recognize cubic curve patterns Draw graphs of cubic equations Apply graphical methods to complex cubic problems Handle multiple root scenarios Verify solutions using graphical analysis |
Q/A on cubic function evaluation using systematic calculation
Discussions on cubic equation properties using mathematical analysis Solving cubic table preparation using organized methods Demonstrations using cubic function examples Explaining cubic characteristics using pattern recognition Q/A on advanced cubic graphing using complex examples Discussions on multiple root identification using graph analysis Solving challenging cubic problems using systematic methods Demonstrations using detailed cubic constructions Explaining verification methods using graphical checking |
Chalk and blackboard, cubic function examples, exercise books
Chalk and blackboard, graph paper, cubic equation examples, exercise books Chalk and blackboard, advanced graph examples, exercise books |
KLB Mathematics Book Three Pg 301
KLB Mathematics Book Three Pg 302-304 |
|
8 | 4 |
Graphical Methods
|
Introduction to rates of change
Average rates of change |
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Understand rate of change concepts Apply rate calculations to practical problems Interpret rate meanings in context |
Q/A on rate calculation using slope methods
Discussions on rate interpretation using practical examples Solving basic rate problems using systematic calculation Demonstrations using speed-time and distance examples Explaining rate concepts using practical analogies |
Chalk and blackboard, rate calculation examples, exercise books
Chalk and blackboard, graph paper, rate examples, exercise books |
KLB Mathematics Book Three Pg 304-306
|
|
8 | 5 |
Graphical Methods
|
Advanced average rates
|
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Handle complex rate scenarios Apply rates to business and scientific problems Integrate rate concepts with other topics |
Q/A on complex rate applications using advanced scenarios
Discussions on business and scientific rate applications Solving challenging rate problems using integrated methods Demonstrations using comprehensive rate examples Explaining advanced applications using detailed analysis |
Chalk and blackboard, advanced rate scenarios, exercise books
|
KLB Mathematics Book Three Pg 304-310
|
|
8 | 6 |
Graphical Methods
|
Introduction to instantaneous rates
Rate of change at an instant |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Understand instantaneous rate concepts Distinguish between average and instantaneous rates Apply instant rate methods |
Q/A on instantaneous rate concepts using limiting methods
Discussions on instant vs average rate differences Solving basic instantaneous rate problems Demonstrations using tangent line concepts Explaining instantaneous rate using practical examples |
Chalk and blackboard, tangent line examples, exercise books
Chalk and blackboard, detailed graph examples, exercise books |
KLB Mathematics Book Three Pg 310-311
|
|
8 | 7 |
Graphical Methods
|
Advanced instantaneous rates
Empirical graphs |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Handle complex instantaneous rate scenarios Apply instant rates to advanced problems Integrate instantaneous concepts with applications |
Q/A on advanced instantaneous applications using complex examples
Discussions on sophisticated rate problems using detailed analysis Solving challenging instantaneous problems using systematic methods Demonstrations using comprehensive rate constructions Explaining advanced applications using detailed reasoning |
Chalk and blackboard, advanced rate examples, exercise books
Chalk and blackboard, experimental data examples, exercise books |
KLB Mathematics Book Three Pg 310-315
|
|
9 |
END TERM EXAMS |
|||||||
10 | 1 |
Graphical Methods
|
Advanced empirical methods
|
By the end of the
lesson, the learner
should be able to:
Draw the empirical graphs Apply empirical methods to complex data Handle large datasets and trends Interpret empirical results meaningfully |
Q/A on advanced empirical techniques using complex datasets
Discussions on trend analysis using systematic methods Solving challenging empirical problems using organized approaches Demonstrations using comprehensive data analysis Explaining advanced interpretations using detailed reasoning |
Chalk and blackboard, complex data examples, exercise books
|
KLB Mathematics Book Three Pg 315-321
|
Your Name Comes Here