If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 | 6 |
Matrices and Transformation
|
Matrices of Transformation
Identifying Common Transformation Matrices |
By the end of the
lesson, the learner
should be able to:
-Define transformation and identify types -Recognize that matrices can represent transformations -Apply 2×2 matrices to position vectors -Relate matrix operations to geometric transformations |
-Review transformation concepts from Form 2 -Demonstrate matrix multiplication using position vectors -Plot objects and images on coordinate plane -Practice identifying transformations from images |
Exercise books
-Manila paper -Ruler -Pencils -String |
KLB Secondary Mathematics Form 4, Pages 1-5
|
|
1 | 7 |
Matrices and Transformation
|
Finding the Matrix of a Transformation
Using the Unit Square Method Successive Transformations Matrix Multiplication for Combined Transformations |
By the end of the
lesson, the learner
should be able to:
-Determine the matrix representing a given transformation -Use coordinate geometry to find transformation matrices -Apply algebraic methods to find matrix elements -Verify transformation matrices using test points |
-Work through algebraic method of finding matrices -Use simultaneous equations to solve for matrix elements -Practice with different types of transformations -Verify results by applying matrix to test objects |
Exercise books
-Manila paper -Ruler -Chalk/markers -String -Coloured pencils |
KLB Secondary Mathematics Form 4, Pages 6-16
|
|
2 | 1 |
Matrices and Transformation
|
Single Matrix for Successive Transformations
Inverse of a Transformation Properties of Inverse Transformations Area Scale Factor and Determinant |
By the end of the
lesson, the learner
should be able to:
-Find single matrix equivalent to successive transformations -Apply commutativity properties in matrix multiplication -Determine order of operations in transformations -Solve complex transformation problems efficiently |
-Demonstrate equivalence of successive and single matrices -Practice finding single equivalent matrices -Compare geometric and algebraic approaches -Solve real-world transformation problems |
Exercise books
-Manila paper -Ruler -Chalk/markers det A |
KLB Secondary Mathematics Form 4, Pages 21-24
|
|
2 |
CYCLE ONE EXAMINATION |
|||||||
3 | 1 |
Matrices and Transformation
|
Shear Transformations
Stretch Transformations |
By the end of the
lesson, the learner
should be able to:
-Define shear transformation and its properties -Identify invariant lines in shear transformations -Construct matrices for shear transformations -Apply shear transformations to geometric objects |
-Demonstrate shear using cardboard models -Identify x-axis and y-axis invariant shears -Practice constructing shear matrices -Apply shears to triangles and rectangles |
Exercise books
-Cardboard pieces -Manila paper -Ruler -Rubber bands |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
3 | 2 |
Matrices and Transformation
|
Combined Shear and Stretch Problems
Isometric and Non-isometric Transformations |
By the end of the
lesson, the learner
should be able to:
-Apply shear and stretch transformations in combination -Solve complex transformation problems -Identify transformation types from matrices -Calculate areas under shear and stretch transformations |
-Work through complex transformation sequences -Practice identifying transformation types -Calculate area changes under different transformations -Solve real-world applications |
Exercise books
-Manila paper -Ruler -Chalk/markers -Paper cutouts |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
3 | 3-4 |
Statistics II
|
Introduction to Advanced Statistics
Working Mean Concept Mean Using Working Mean - Simple Data Mean Using Working Mean - Frequency Tables Mean for Grouped Data Using Working Mean |
By the end of the
lesson, the learner
should be able to:
-Review measures of central tendency from Form 2 -Identify limitations of simple mean calculations -Understand need for advanced statistical methods -Recognize patterns in large datasets -Calculate mean using working mean for ungrouped data -Apply the formula: mean = working mean + mean of deviations -Verify results using direct calculation method -Solve problems with whole numbers |
-Review mean, median, mode from previous work -Discuss challenges with large numbers -Examine real data from Kenya (population, rainfall) -Q&A on statistical applications in daily life -Work through step-by-step examples on chalkboard -Practice with student marks and heights data -Verify answers using traditional method -Individual practice with guided support |
Exercise books
-Manila paper -Real data examples -Chalk/markers -Sample datasets Exercise books -Manila paper -Student data -Chalk/markers -Community data -Real datasets |
KLB Secondary Mathematics Form 4, Pages 39-42
KLB Secondary Mathematics Form 4, Pages 42-48 |
|
3 | 5 |
Statistics II
|
Advanced Working Mean Techniques
Introduction to Quartiles, Deciles, Percentiles |
By the end of the
lesson, the learner
should be able to:
-Apply coding techniques with working mean -Divide by class width to simplify further -Use transformation methods efficiently -Solve complex grouped data problems |
-Demonstrate coding method on chalkboard -Show how dividing by class width helps -Practice reverse calculations to get original mean -Work with economic data from Kenya |
Exercise books
-Manila paper -Economic data -Chalk/markers -Student height data -Measuring tape |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
3 | 6 |
Statistics II
|
Calculating Quartiles for Ungrouped Data
Quartiles for Grouped Data |
By the end of the
lesson, the learner
should be able to:
-Find lower quartile, median, upper quartile for raw data -Apply the position formulas correctly -Arrange data in ascending order systematically -Interpret quartile values in context |
-Practice with test scores from the class -Arrange data systematically on chalkboard -Calculate Q1, Q2, Q3 step by step -Students work with their own datasets |
Exercise books
-Manila paper -Test score data -Chalk/markers -Grade data |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
3 | 7 |
Statistics II
|
Deciles and Percentiles Calculations
Introduction to Cumulative Frequency |
By the end of the
lesson, the learner
should be able to:
-Calculate specific deciles and percentiles -Apply interpolation formulas for deciles/percentiles -Interpret decile and percentile positions -Use these measures for comparative analysis |
-Calculate specific percentiles for class test scores -Find deciles for sports performance data -Compare students' positions using percentiles -Practice with national examination statistics |
Exercise books
-Manila paper -Performance data -Chalk/markers -Ruler -Class data |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
4 | 1 |
Statistics II
|
Drawing Cumulative Frequency Curves (Ogives)
Reading Values from Ogives Applications of Ogives |
By the end of the
lesson, the learner
should be able to:
-Draw accurate ogives using proper scales -Plot cumulative frequency against upper boundaries -Create smooth curves through plotted points -Label axes and scales correctly |
-Practice plotting on large manila paper -Use rulers for accurate scales -Demonstrate smooth curve drawing technique -Students create their own ogives |
Exercise books
-Manila paper -Ruler -Pencils -Completed ogives -Real problem datasets |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
4 | 2 |
Statistics II
|
Introduction to Measures of Dispersion
Range and Interquartile Range |
By the end of the
lesson, the learner
should be able to:
-Define dispersion and its importance -Understand limitations of central tendency alone -Compare datasets with same mean but different spread -Identify different measures of dispersion |
-Compare test scores of two classes with same mean -Show how different spreads affect interpretation -Discuss variability in real-world data -Introduce range as simplest measure |
Exercise books
-Manila paper -Comparative datasets -Chalk/markers -Student data -Measuring tape |
KLB Secondary Mathematics Form 4, Pages 60-65
|
|
4 | 3-4 |
Statistics II
|
Mean Absolute Deviation
Introduction to Variance Variance Using Alternative Formula Standard Deviation Calculations Standard Deviation for Grouped Data |
By the end of the
lesson, the learner
should be able to:
-Calculate mean absolute deviation -Use absolute values correctly in calculations -Understand concept of average distance from mean -Apply MAD to compare variability in datasets -Apply the formula: σ² = (Σx²/n) - x̄² -Use alternative variance formula efficiently -Compare computational methods -Solve variance problems for frequency data |
-Calculate MAD for class test scores -Practice with absolute value calculations -Compare MAD values for different subjects -Interpret MAD in context of data spread -Demonstrate both variance formulas -Show computational advantages of alternative formula -Practice with frequency tables -Students choose efficient method |
Exercise books
-Manila paper -Test score data -Chalk/markers -Simple datasets Exercise books -Manila paper -Frequency data -Chalk/markers -Exam score data -Agricultural data |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
4 | 5 |
Statistics II
Loci |
Advanced Standard Deviation Techniques
Introduction to Loci |
By the end of the
lesson, the learner
should be able to:
-Apply transformation properties of standard deviation -Use coding with class width division -Solve problems with multiple transformations -Verify results using different methods |
-Demonstrate coding transformations -Show how SD changes with data transformations -Practice reverse calculations -Verify using alternative methods |
Exercise books
-Manila paper -Transformation examples -Chalk/markers -String |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
4 | 6 |
Loci
|
Basic Locus Concepts and Laws
Perpendicular Bisector Locus |
By the end of the
lesson, the learner
should be able to:
-Understand that loci follow specific laws or conditions -Identify the laws governing different types of movement -Distinguish between 2D and 3D loci -Apply locus concepts to simple problems |
-Physical demonstrations with moving objects -Students track movement of classroom door -Identify laws governing pendulum movement -Practice stating locus laws clearly |
Exercise books
-Manila paper -String -Real objects -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 73-75
|
|
4 | 7 |
Loci
|
Properties and Applications of Perpendicular Bisector
Locus of Points at Fixed Distance from a Point |
By the end of the
lesson, the learner
should be able to:
-Understand perpendicular bisector in 3D space -Apply perpendicular bisector to find circumcenters -Solve practical problems using perpendicular bisector -Use perpendicular bisector in triangle constructions |
-Find circumcenter of triangle using perpendicular bisectors -Solve water pipe problems (equidistant from two points) -Apply to real-world location problems -Practice with various triangle types |
Exercise books
-Manila paper -Compass -Ruler -String |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
5 | 1 |
Loci
|
Locus of Points at Fixed Distance from a Line
Angle Bisector Locus Properties and Applications of Angle Bisector |
By the end of the
lesson, the learner
should be able to:
-Define locus of points at fixed distance from straight line -Construct parallel lines at given distances -Understand cylindrical surface in 3D -Apply to practical problems like road margins |
-Construct parallel lines using ruler and set square -Mark points at equal distances from given line -Discuss road design, river banks, field boundaries -Practice with various distances and orientations |
Exercise books
-Manila paper -Ruler -Set square -Compass -Protractor |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
5 | 2 |
Loci
|
Constant Angle Locus
Advanced Constant Angle Constructions |
By the end of the
lesson, the learner
should be able to:
-Understand constant angle locus concept -Construct constant angle loci using arc method -Apply circle theorems to constant angle problems -Solve problems involving angles in semicircles |
-Demonstrate constant angle using protractor -Construct arc passing through two points -Use angles in semicircle property -Practice with different angle measures |
Exercise books
-Manila paper -Compass -Protractor |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
5 | 3-4 |
Loci
|
Introduction to Intersecting Loci
Intersecting Circles and Lines Triangle Centers Using Intersecting Loci Complex Intersecting Loci Problems |
By the end of the
lesson, the learner
should be able to:
-Understand concept of intersecting loci -Identify points satisfying multiple conditions -Find intersection points of two loci -Apply intersecting loci to solve practical problems -Find circumcenter using perpendicular bisector intersections -Locate incenter using angle bisector intersections -Determine centroid and orthocenter -Apply triangle centers to solve problems |
-Demonstrate intersection of two circles -Find points equidistant from two points AND at fixed distance from third point -Solve simple two-condition problems -Practice identifying intersection points -Construct all four triangle centers -Compare properties of different triangle centers -Use triangle centers in geometric proofs -Solve problems involving triangle center properties |
Exercise books
-Manila paper -Compass -Ruler Exercise books -Manila paper -Compass -Ruler -Real-world scenarios |
KLB Secondary Mathematics Form 4, Pages 83-89
|
|
5 | 5 |
Loci
|
Introduction to Loci of Inequalities
Distance Inequality Loci Combined Inequality Loci |
By the end of the
lesson, the learner
should be able to:
-Understand graphical representation of inequalities -Identify regions satisfying inequality conditions -Distinguish between boundary lines and regions -Apply inequality loci to practical constraints |
-Shade regions representing simple inequalities -Use broken and solid lines appropriately -Practice with distance inequalities -Apply to real-world constraint problems |
Exercise books
-Manila paper -Ruler -Colored pencils -Compass |
KLB Secondary Mathematics Form 4, Pages 89-92
|
|
5 | 6 |
Loci
|
Advanced Inequality Applications
Introduction to Loci Involving Chords |
By the end of the
lesson, the learner
should be able to:
-Apply inequality loci to linear programming introduction -Solve real-world optimization problems -Find maximum and minimum values in regions -Use graphical methods for decision making |
-Solve simple linear programming problems -Find optimal points in feasible regions -Apply to business and farming scenarios -Practice identifying corner points |
Exercise books
-Manila paper -Ruler -Real problem data -Compass |
KLB Secondary Mathematics Form 4, Pages 89-92
|
|
5 | 7 |
Loci
|
Chord-Based Constructions
Advanced Chord Problems |
By the end of the
lesson, the learner
should be able to:
-Construct circles through three points using chords -Find loci of chord midpoints -Solve problems with intersecting chords -Apply chord properties to geometric constructions |
-Construct circles using three non-collinear points -Find locus of midpoints of parallel chords -Solve chord intersection problems -Practice with chord-tangent relationships |
Exercise books
-Manila paper -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 92-94
|
|
6 | 1 |
Loci
Trigonometry III |
Integration of All Loci Types
Review of Basic Trigonometric Ratios |
By the end of the
lesson, the learner
should be able to:
-Combine different types of loci in single problems -Solve comprehensive loci challenges -Apply multiple loci concepts simultaneously -Use loci in geometric investigations |
-Solve multi-step loci problems -Combine circle, line, and angle loci -Apply to real-world complex scenarios -Practice systematic problem-solving |
Exercise books
-Manila paper -Compass -Ruler -Rulers -Calculators (if available) |
KLB Secondary Mathematics Form 4, Pages 73-94
|
|
6 | 2 |
Trigonometry III
|
Deriving the Identity sin²θ + cos²θ = 1
Applications of sin²θ + cos²θ = 1 Additional Trigonometric Identities |
By the end of the
lesson, the learner
should be able to:
-Understand the derivation of fundamental identity -Apply Pythagoras theorem to unit circle -Use the identity to solve trigonometric equations -Convert between sin, cos using the identity |
-Demonstrate using right-angled triangle with hypotenuse 1 -Show algebraic derivation step by step -Practice substituting values to verify identity -Solve equations using the fundamental identity |
Exercise books
-Manila paper -Unit circle diagrams -Calculators -Trigonometric tables -Real-world examples -Identity reference sheet |
KLB Secondary Mathematics Form 4, Pages 99-103
|
|
6 | 3-4 |
Trigonometry III
|
Introduction to Waves
Sine and Cosine Waves Transformations of Sine Waves Period Changes in Trigonometric Functions |
By the end of the
lesson, the learner
should be able to:
-Define amplitude and period of waves -Understand wave characteristics and properties -Identify amplitude and period from graphs -Connect waves to trigonometric functions -Understand effect of coefficient on amplitude -Plot graphs of y = k sin x for different values of k -Compare transformed waves with basic sine wave -Apply amplitude changes to real situations |
-Use physical demonstrations with string/rope -Draw simple wave patterns on manila paper -Measure amplitude and period from wave diagrams -Discuss real-world wave examples (sound, light) -Plot y = 2 sin x, y = 3 sin x on manila paper -Compare amplitudes with y = sin x -Demonstrate stretching effect of coefficient -Apply to sound volume or signal strength examples |
Exercise books
-Manila paper -String/rope -Wave diagrams -Rulers -Graph paper (if available) Exercise books -Manila paper -Colored pencils -Rulers -Period calculation charts |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
6 | 5 |
Trigonometry III
|
Combined Amplitude and Period Transformations
Phase Angles and Wave Shifts |
By the end of the
lesson, the learner
should be able to:
-Plot graphs of y = a sin(bx) functions -Identify both amplitude and period changes -Solve problems with multiple transformations -Apply to complex wave phenomena |
-Plot y = 2 sin(3x), y = 3 sin(x/2) on manila paper -Calculate both amplitude and period for each function -Compare multiple transformed waves -Apply to radio waves or tidal patterns |
Exercise books
-Manila paper -Rulers -Transformation examples -Colored pencils -Phase shift examples |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
6 | 6 |
Trigonometry III
|
General Trigonometric Functions
Cosine Wave Transformations Introduction to Trigonometric Equations |
By the end of the
lesson, the learner
should be able to:
-Work with y = a sin(bx + c) functions -Identify amplitude, period, and phase angle -Plot complex trigonometric functions -Solve problems involving all transformations |
-Plot y = 2 sin(3x + 60°) step by step -Identify all transformation parameters -Practice reading values from complex waves -Apply to real-world periodic phenomena |
Exercise books
-Manila paper -Rulers -Complex function examples -Temperature data -Unit circle diagrams -Trigonometric tables |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
6 | 7 |
Trigonometry III
|
Solving Basic Trigonometric Equations
Quadratic Trigonometric Equations |
By the end of the
lesson, the learner
should be able to:
-Solve equations of form sin x = k, cos x = k -Find all solutions in specified ranges -Use symmetry properties of trigonometric functions -Apply inverse trigonometric functions |
-Work through sin x = 0.6 step by step -Find all solutions between 0° and 360° -Use calculator to find inverse trigonometric values -Practice with multiple basic equations |
Exercise books
-Manila paper -Calculators -Solution worksheets -Factoring techniques -Substitution examples |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
7 |
PEAK EXAMINATION |
|||||||
8 | 1 |
Trigonometry III
|
Equations Involving Multiple Angles
Using Graphs to Solve Trigonometric Equations |
By the end of the
lesson, the learner
should be able to:
-Solve equations like sin(2x) = 0.5 -Handle double and triple angle cases -Find solutions for compound angle equations -Apply to periodic motion problems |
-Work through sin(2x) = 0.5 systematically -Show relationship between 2x solutions and x solutions -Practice with cos(3x) and tan(x/2) equations -Apply to pendulum and rotation problems |
Exercise books
-Manila paper -Multiple angle examples -Real applications -Rulers -Graphing examples |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
8 | 2 |
Trigonometry III
Three Dimensional Geometry Three Dimensional Geometry |
Trigonometric Equations with Identities
Introduction to 3D Concepts Properties of Common Solids |
By the end of the
lesson, the learner
should be able to:
-Use trigonometric identities to solve equations -Apply sin²θ + cos²θ = 1 in equation solving -Convert between different trigonometric functions -Solve equations using multiple identities |
-Solve equations using fundamental identity -Convert tan equations to sin/cos form -Practice identity-based equation solving -Work through complex multi-step problems |
Exercise books
-Manila paper -Identity reference sheets -Complex examples -Cardboard boxes -Real 3D objects -Cardboard -Scissors -Tape/glue |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
8 | 3-4 |
Three Dimensional Geometry
|
Understanding Planes in 3D Space
Lines in 3D Space Introduction to Projections Angle Between Line and Plane - Concept |
By the end of the
lesson, the learner
should be able to:
-Define planes and their properties in 3D -Identify parallel and intersecting planes -Understand that planes extend infinitely -Recognize planes formed by faces of solids -Understand concept of projection in 3D geometry -Find projections of points onto planes -Identify foot of perpendicular from point to plane -Apply projection concept to shadow problems |
-Use books/boards to represent planes -Demonstrate parallel planes using multiple books -Show intersecting planes using book corners -Identify planes in classroom architecture -Use light source to create shadows (projections) -Drop perpendiculars from corners to floor -Identify projections in architectural drawings -Practice finding feet of perpendiculars |
Exercise books
-Manila paper -Books/boards -Classroom examples -Rulers/sticks -3D models Exercise books -Manila paper -Light source -3D models -Protractor -Rulers/sticks |
KLB Secondary Mathematics Form 4, Pages 113-115
KLB Secondary Mathematics Form 4, Pages 115-123 |
|
8 | 5 |
Three Dimensional Geometry
|
Calculating Angles Between Lines and Planes
Advanced Line-Plane Angle Problems |
By the end of the
lesson, the learner
should be able to:
-Calculate angles using right-angled triangles -Apply trigonometry to 3D angle problems -Use Pythagoras theorem in 3D contexts -Solve problems involving cuboids and pyramids |
-Work through step-by-step calculations -Use trigonometric ratios in 3D problems -Practice with cuboid diagonal problems -Apply to pyramid and cone angle calculations |
Exercise books
-Manila paper -Calculators -3D problem diagrams -Real scenarios -Problem sets |
KLB Secondary Mathematics Form 4, Pages 115-123
|
|
8 | 6 |
Three Dimensional Geometry
|
Introduction to Plane-Plane Angles
Finding Angles Between Planes Complex Plane-Plane Angle Problems |
By the end of the
lesson, the learner
should be able to:
-Define angle between two planes -Understand concept of dihedral angles -Identify line of intersection of two planes -Find perpendiculars to intersection line |
-Use two books to demonstrate intersecting planes -Show how planes meet along an edge -Identify dihedral angles in classroom -Demonstrate using folded paper |
Exercise books
-Manila paper -Books -Folded paper -Protractor -Building examples -Complex 3D models -Architecture examples |
KLB Secondary Mathematics Form 4, Pages 123-128
|
|
8 | 7 |
Three Dimensional Geometry
|
Practical Applications of Plane Angles
Understanding Skew Lines |
By the end of the
lesson, the learner
should be able to:
-Apply plane angles to real-world problems -Solve engineering and construction problems -Calculate angles in roof structures -Use in navigation and surveying contexts |
-Calculate roof pitch angles -Solve bridge construction angle problems -Apply to mining and tunnel excavation -Use in aerial navigation problems |
Exercise books
-Manila paper -Real engineering data -Construction examples -Rulers -Building frameworks |
KLB Secondary Mathematics Form 4, Pages 123-128
|
|
9 | 1 |
Three Dimensional Geometry
|
Angle Between Skew Lines
Advanced Skew Line Problems |
By the end of the
lesson, the learner
should be able to:
-Understand how to find angle between skew lines -Apply translation method for skew line angles -Use parallel line properties in 3D -Calculate angles by creating intersecting lines |
-Demonstrate translation method using rulers -Translate one line to intersect the other -Practice with cuboid edge problems -Apply to framework and structure problems |
Exercise books
-Manila paper -Rulers -Translation examples -Engineering examples -Structure diagrams |
KLB Secondary Mathematics Form 4, Pages 128-135
|
|
9 | 2 |
Three Dimensional Geometry
|
Distance Calculations in 3D
Volume and Surface Area Applications Coordinate Geometry in 3D Integration with Trigonometry |
By the end of the
lesson, the learner
should be able to:
-Calculate distances between points in 3D -Find shortest distances between lines and planes -Apply 3D Pythagoras theorem -Use distance formula in coordinate geometry |
-Calculate space diagonals in cuboids -Find distances from points to planes -Apply 3D distance formula systematically -Solve minimum distance problems |
Exercise books
-Manila paper -Distance calculation charts -3D coordinate examples -Volume formulas -Real containers -3D coordinate grid -Room corner reference -Trigonometric tables -Astronomy examples |
KLB Secondary Mathematics Form 4, Pages 115-135
|
Your Name Comes Here