Home






SCHEME OF WORK
Mathematics
Form 3 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 7
Vectors (II)
Coordinates in two dimensions
Coordinates in three dimensions
By the end of the lesson, the learner should be able to:
Identify the coordinates of a point in two dimensions
Plot points on coordinate planes accurately
Understand position representation using coordinates
Apply coordinate concepts to practical situations
Q/A on coordinate identification using grid references
Discussions on map reading and location finding
Solving coordinate plotting problems using systematic methods
Demonstrations using classroom grid systems and floor patterns
Explaining coordinate applications using local maps and directions
Chalk and blackboard, squared paper or grid drawn on ground, exercise books
Chalk and blackboard, 3D models made from sticks and clay, exercise books
KLB Mathematics Book Three Pg 221-222
3 1
Vectors (II)
Column and position vectors in three dimensions
Position vectors and applications
By the end of the lesson, the learner should be able to:
Find a displacement and represent it in column vector
Calculate the position vector
Express vectors in column form
Apply column vector notation systematically
Q/A on displacement representation using movement examples
Discussions on vector notation using organized column format
Solving column vector problems using systematic methods
Demonstrations using physical movement and direction examples
Explaining vector components using practical displacement
Chalk and blackboard, movement demonstration space, exercise books
Chalk and blackboard, origin marking systems, exercise books
KLB Mathematics Book Three Pg 223-224
3 2
Vectors (II)
Column vectors in terms of unit vectors i, j, k
Vector operations using unit vectors
By the end of the lesson, the learner should be able to:
Express vectors in terms of unit vectors
Convert between column and unit vector notation
Understand the standard basis vector system
Apply unit vector representation systematically
Q/A on unit vector concepts using direction examples
Discussions on component representation using organized methods
Solving unit vector problems using systematic conversion
Demonstrations using perpendicular direction examples
Explaining basis vector concepts using coordinate axes
Chalk and blackboard, direction indicators, unit vector reference charts, exercise books
Chalk and blackboard, component calculation aids, exercise books
KLB Mathematics Book Three Pg 226-228
3 3
Vectors (II)
Magnitude of a vector in three dimensions
Magnitude applications and unit vectors
By the end of the lesson, the learner should be able to:
Calculate the magnitude of a vector in three dimensions
Apply the 3D magnitude formula systematically
Find vector lengths in spatial contexts
Solve magnitude problems accurately
Q/A on 3D magnitude using extended Pythagorean methods
Discussions on spatial distance calculation using 3D techniques
Solving 3D magnitude problems using systematic calculation
Demonstrations using 3D distance examples
Explaining 3D magnitude using practical spatial examples
Chalk and blackboard, 3D measurement aids, exercise books
Chalk and blackboard, direction finding aids, exercise books
KLB Mathematics Book Three Pg 229-230
3 4
Vectors (II)
Parallel vectors
By the end of the lesson, the learner should be able to:
Identify parallel vectors
Determine when vectors are parallel
Apply parallel vector properties
Use scalar multiples in parallel relationships
Q/A on parallel identification using scalar multiple methods
Discussions on parallel relationships using geometric examples
Solving parallel vector problems using systematic testing
Demonstrations using parallel line and direction examples
Explaining parallel concepts using geometric reasoning
Chalk and blackboard, parallel line demonstrations, exercise books
KLB Mathematics Book Three Pg 231-232
3 5
Vectors (II)
Collinearity
Advanced collinearity applications
By the end of the lesson, the learner should be able to:
Show that points are collinear
Apply vector methods to prove collinearity
Test for collinear points using vector techniques
Solve collinearity problems systematically
Q/A on collinearity testing using vector proportion methods
Discussions on point alignment using vector analysis
Solving collinearity problems using systematic verification
Demonstrations using straight-line point examples
Explaining collinearity using geometric alignment concepts
Chalk and blackboard, straight-line demonstrations, exercise books
Chalk and blackboard, complex geometric aids, exercise books
KLB Mathematics Book Three Pg 232-234
3 6
Vectors (II)
Proportional division of a line
External division of a line
By the end of the lesson, the learner should be able to:
Divide a line internally in the given ratio
Apply the internal division formula
Calculate division points using vector methods
Understand proportional division concepts
Q/A on internal division using systematic formula application
Discussions on ratio division using proportional methods
Solving internal division problems using organized approaches
Demonstrations using internal point construction examples
Explaining internal division using geometric visualization
Chalk and blackboard, internal division models, exercise books
Chalk and blackboard, external division models, exercise books
KLB Mathematics Book Three Pg 237-238
3 7
Vectors (II)
Combined internal and external division
Ratio theorem
By the end of the lesson, the learner should be able to:
Divide a line internally and externally in the given ratio
Apply both division formulas systematically
Compare internal and external division results
Handle mixed division problems
Q/A on combined division using comparative methods
Discussions on division type selection using problem analysis
Solving combined division problems using systematic approaches
Demonstrations using both division types
Explaining division relationships using geometric reasoning
Chalk and blackboard, combined division models, exercise books
Chalk and blackboard, ratio theorem aids, exercise books
KLB Mathematics Book Three Pg 239
4 1
Vectors (II)
Advanced ratio theorem applications
Mid-point
By the end of the lesson, the learner should be able to:
Find the position vector
Apply ratio theorem to complex scenarios
Solve multi-step ratio problems
Use ratio theorem in geometric proofs
Q/A on advanced ratio applications using complex problems
Discussions on multi-step ratio calculation
Solving challenging ratio problems using systematic methods
Demonstrations using comprehensive ratio examples
Explaining advanced applications using detailed reasoning
Chalk and blackboard, advanced ratio models, exercise books
Chalk and blackboard, midpoint demonstration aids, exercise books
KLB Mathematics Book Three Pg 242
4 2
Vectors (II)
Ratio theorem and midpoint integration
By the end of the lesson, the learner should be able to:
Use ratio theorem to find the given vectors
Apply midpoint and ratio concepts together
Solve complex ratio and midpoint problems
Integrate division and midpoint methods
Q/A on integrated problem-solving using combined methods
Discussions on complex scenario analysis using systematic approaches
Solving challenging problems using integrated techniques
Demonstrations using comprehensive geometric examples
Explaining integration using logical problem-solving
Chalk and blackboard, complex problem materials, exercise books
KLB Mathematics Book Three Pg 244-245
4 3
Vectors (II)
Advanced ratio theorem applications
Applications of vectors in geometry
By the end of the lesson, the learner should be able to:
Use ratio theorem to find the given vectors
Apply ratio theorem to challenging problems
Handle complex geometric applications
Demonstrate comprehensive ratio mastery
Q/A on comprehensive ratio understanding using advanced problems
Discussions on complex ratio relationships
Solving advanced ratio problems using systematic methods
Demonstrations using sophisticated geometric constructions
Explaining mastery using challenging applications
Chalk and blackboard, advanced geometric aids, exercise books
Chalk and blackboard, parallelogram models, exercise books
KLB Mathematics Book Three Pg 246-248
4 4
Vectors (II)
Rectangle diagonal applications
Advanced geometric applications
By the end of the lesson, the learner should be able to:
Use vectors to show the diagonals of a rectangle
Apply vector methods to rectangle properties
Prove rectangle theorems using vectors
Compare parallelogram and rectangle diagonal properties
Q/A on rectangle properties using vector analysis
Discussions on diagonal relationships using vector methods
Solving rectangle problems using systematic approaches
Demonstrations using rectangle constructions and vector proofs
Explaining rectangle properties using vector reasoning
Chalk and blackboard, rectangle models, exercise books
Chalk and blackboard, advanced geometric models, exercise books
KLB Mathematics Book Three Pg 248-250
4 5
Binomial Expansion
Binomial expansions up to power four
Binomial expansions up to power four (continued)
By the end of the lesson, the learner should be able to:
Expand binomial function up to power four
Apply systematic multiplication methods
Recognize coefficient patterns in expansions
Use multiplication to expand binomial expressions
Q/A on algebraic multiplication using familiar expressions
Discussions on systematic expansion using step-by-step methods
Solving basic binomial multiplication problems
Demonstrations using area models and rectangular arrangements
Explaining pattern recognition using organized layouts
Chalk and blackboard, rectangular cutouts from paper, exercise books
Chalk and blackboard, squared paper for geometric models, exercise books
KLB Mathematics Book Three Pg 256
4 6
Binomial Expansion
Pascal's triangle
Pascal's triangle applications
By the end of the lesson, the learner should be able to:
Use Pascal's triangle
Construct Pascal's triangle systematically
Apply triangle coefficients for binomial expansions
Recognize number patterns in the triangle
Q/A on triangle construction using addition patterns
Discussions on coefficient relationships using triangle analysis
Solving triangle construction and application problems
Demonstrations using visual triangle building
Explaining pattern connections using systematic observation
Chalk and blackboard, triangular patterns drawn/cut from paper, exercise books
Chalk and blackboard, Pascal's triangle reference charts, exercise books
KLB Mathematics Book Three Pg 256-257
4 7
Binomial Expansion
Pascal's triangle (continued)
By the end of the lesson, the learner should be able to:
Use Pascal's triangle
Apply triangle to complex expansion problems
Handle higher powers using Pascal's triangle
Integrate triangle concepts with algebraic expansion
Q/A on advanced triangle applications using complex examples
Discussions on higher power expansion using triangle methods
Solving challenging problems using Pascal's triangle
Demonstrations using detailed triangle constructions
Explaining integration using comprehensive examples
Chalk and blackboard, advanced triangle patterns, exercise books
KLB Mathematics Book Three Pg 258-259
5 1
Binomial Expansion
Pascal's triangle advanced
Applications to numerical cases
By the end of the lesson, the learner should be able to:
Use Pascal's triangle
Apply general binomial theorem concepts
Understand combination notation in expansions
Use general term formula applications
Q/A on general formula understanding using pattern analysis
Discussions on combination notation using counting principles
Solving general term problems using formula application
Demonstrations using systematic formula usage
Explaining general principles using algebraic reasoning
Chalk and blackboard, combination calculation aids, exercise books
Chalk and blackboard, simple calculation aids, exercise books
KLB Mathematics Book Three Pg 258-259
5 2
Binomial Expansion
Probability
Applications to numerical cases (continued)
Introduction
By the end of the lesson, the learner should be able to:
Use binomial expansion to solve numerical problems
Apply binomial methods to complex calculations
Handle decimal approximations using expansions
Solve practical numerical problems
Q/A on advanced numerical applications using complex scenarios
Discussions on decimal approximation using expansion techniques
Solving challenging numerical problems using systematic methods
Demonstrations using detailed calculation procedures
Explaining practical relevance using real-world examples
Chalk and blackboard, advanced calculation examples, exercise books
Chalk and blackboard, coins, dice made from cardboard, exercise books
KLB Mathematics Book Three Pg 259-260
5 3
Probability
Experimental Probability
Experimental Probability applications
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Conduct probability experiments systematically
Record and analyze experimental data
Compare experimental results with expectations
Q/A on frequency counting using repeated experiments
Discussions on trial repetition and result recording
Solving experimental probability problems using data collection
Demonstrations using coin toss and dice roll experiments
Explaining frequency ratio calculations using practical examples
Chalk and blackboard, coins, cardboard dice, tally charts, exercise books
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books
KLB Mathematics Book Three Pg 262-264
5 4
Probability
Range of Probability Measure
Probability Space
By the end of the lesson, the learner should be able to:
Calculate the range of probability measure
Express probabilities on scale from 0 to 1
Convert between fractions, decimals, and percentages
Interpret probability values correctly
Q/A on probability scale using number line representations
Discussions on probability conversion between forms
Solving probability scale problems using systematic methods
Demonstrations using probability line and scale examples
Explaining scale interpretation using practical scenarios
Chalk and blackboard, number line drawings, probability scale charts, exercise books
Chalk and blackboard, playing cards (locally made), spinners from cardboard, exercise books
KLB Mathematics Book Three Pg 265-266
5 5
Probability
Theoretical Probability
Theoretical Probability advanced
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply mathematical reasoning to find probabilities
Use equally likely outcome assumptions
Calculate theoretical probabilities systematically
Q/A on theoretical calculation using mathematical principles
Discussions on equally likely assumptions and calculations
Solving theoretical problems using systematic approaches
Demonstrations using fair dice and unbiased coin examples
Explaining mathematical probability using logical reasoning
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books
Chalk and blackboard, complex probability materials, advanced calculation aids, exercise books
KLB Mathematics Book Three Pg 266-268
5 6
Probability
Theoretical Probability applications
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply theoretical concepts to real situations
Solve practical probability problems
Interpret results in meaningful contexts
Q/A on practical probability using local examples
Discussions on real-world applications using community scenarios
Solving application problems using theoretical methods
Demonstrations using local games and practical situations
Explaining practical interpretation using meaningful contexts
Chalk and blackboard, local game examples, practical scenario materials, exercise books
KLB Mathematics Book Three Pg 268-270
5 7
Probability
Combined Events
Combined Events OR probability
By the end of the lesson, the learner should be able to:
Find the probability of a combined events
Understand compound events and combinations
Distinguish between different event types
Apply basic combination rules
Q/A on event combination using practical examples
Discussions on exclusive and inclusive event identification
Solving basic combined event problems using visual methods
Demonstrations using card drawing and dice rolling combinations
Explaining combination principles using Venn diagrams
Chalk and blackboard, playing cards, multiple dice, Venn diagram drawings, exercise books
Chalk and blackboard, Venn diagram materials, card examples, exercise books
KLB Mathematics Book Three Pg 272-273
6 1
Probability
Independent Events
Independent Events advanced
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Apply multiplication rule for independent events
Calculate "A and B" probabilities
Understand independence concepts
Q/A on multiplication rule using independent event examples
Discussions on independence identification and verification
Solving AND probability problems using systematic calculation
Demonstrations using multiple coin tosses and dice combinations
Explaining multiplication rule using logical reasoning
Chalk and blackboard, multiple coins and dice, independence demonstration materials, exercise books
Chalk and blackboard, playing cards for replacement scenarios, multiple experimental setups, exercise books
KLB Mathematics Book Three Pg 274-275
6 2
Probability
Independent Events applications
Tree Diagrams
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Apply independence to practical problems
Solve complex multi-event scenarios
Integrate independence with other concepts
Q/A on complex event analysis using systematic problem-solving
Discussions on rule selection and application strategies
Solving advanced combined problems using integrated approaches
Demonstrations using complex experimental scenarios
Explaining strategic problem-solving using logical analysis
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books
Chalk and blackboard, tree diagram templates, branching materials, exercise books
KLB Mathematics Book Three Pg 278-280
6 3
Probability
Compound Proportion and Rates of Work
Tree Diagrams advanced
Compound Proportions
By the end of the lesson, the learner should be able to:
Use tree diagrams to find probability
Apply trees to multi-stage problems
Handle complex sequential events
Calculate final probabilities using trees
Q/A on complex tree application using multi-stage examples
Discussions on replacement scenario handling
Solving complex tree problems using systematic calculation
Demonstrations using detailed tree constructions
Explaining systematic probability calculation using tree methods
Chalk and blackboard, complex tree examples, detailed calculation aids, exercise books
Chalk and blackboard, local business examples, calculators if available, exercise books
KLB Mathematics Book Three Pg 283-285
6 4
Compound Proportion and Rates of Work
Compound Proportions applications
By the end of the lesson, the learner should be able to:
Find the compound proportions
Apply compound proportions to complex problems
Handle multi-step compound proportion scenarios
Solve real-world compound proportion problems
Q/A on advanced compound proportion using complex scenarios
Discussions on multi-variable relationships using practical contexts
Solving challenging compound problems using systematic approaches
Demonstrations using construction and farming examples
Explaining practical applications using community-based scenarios
Chalk and blackboard, construction/farming examples, exercise books
KLB Mathematics Book Three Pg 290-291
6 5
Compound Proportion and Rates of Work
Proportional Parts
Proportional Parts applications
By the end of the lesson, the learner should be able to:
Calculate the proportional parts
Understand proportional division concepts
Apply proportional parts to sharing problems
Solve distribution problems using proportional methods
Q/A on proportional sharing using practical examples
Discussions on fair distribution using ratio concepts
Solving proportional parts problems using systematic division
Demonstrations using sharing scenarios and inheritance examples
Explaining proportional distribution using logical reasoning
Chalk and blackboard, sharing demonstration materials, exercise books
Chalk and blackboard, business partnership examples, exercise books
KLB Mathematics Book Three Pg 291-293
6 6
Compound Proportion and Rates of Work
Rates of Work
Rates of Work and Mixtures
By the end of the lesson, the learner should be able to:
Calculate the rate of work
Understand work rate relationships
Apply time-work-efficiency concepts
Solve basic rate of work problems
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios
Solving basic rate of work problems using systematic methods
Demonstrations using construction and labor examples
Explaining work rate concepts using practical work situations
Chalk and blackboard, work scenario examples, exercise books
Chalk and blackboard, mixture demonstration materials, exercise books
KLB Mathematics Book Three Pg 294-295
6 7
Graphical Methods
Tables of given relations
Graphs of given relations
By the end of the lesson, the learner should be able to:
Draw tables of given relations
Construct organized data tables systematically
Prepare data for graphical representation
Understand relationship between variables
Q/A on table construction using systematic data organization
Discussions on variable relationships using practical examples
Solving table preparation problems using organized methods
Demonstrations using data collection and tabulation
Explaining systematic data arrangement using logical procedures
Chalk and blackboard, ruled paper for tables, exercise books
Chalk and blackboard, graph paper or grids, rulers, exercise books
KLB Mathematics Book Three Pg 299
7 1
Graphical Methods
Tables and graphs integration
Introduction to cubic equations
By the end of the lesson, the learner should be able to:
Draw tables and graphs of given relations
Integrate table construction with graph plotting
Analyze relationships using both methods
Compare tabular and graphical representations
Q/A on integrated table-graph construction using comprehensive methods
Discussions on data flow from tables to graphs
Solving integrated problems using systematic approaches
Demonstrations using complete data analysis procedures
Explaining relationship analysis using combined methods
Chalk and blackboard, graph paper, data examples, exercise books
Chalk and blackboard, cubic function examples, exercise books
KLB Mathematics Book Three Pg 299-300
7 2
Graphical Methods
Graphical solution of cubic equations
By the end of the lesson, the learner should be able to:
Draw graphs of cubic equations
Plot cubic curves accurately
Use graphs to solve cubic equations
Find roots using graphical methods
Q/A on cubic curve plotting using systematic point plotting
Discussions on curve characteristics and root finding
Solving cubic graphing problems using careful plotting
Demonstrations using cubic curve construction
Explaining root identification using graph analysis
Chalk and blackboard, graph paper, cubic equation examples, exercise books
KLB Mathematics Book Three Pg 302-304
7 3
Graphical Methods
Advanced cubic solutions
Introduction to rates of change
By the end of the lesson, the learner should be able to:
Draw graphs of cubic equations
Apply graphical methods to complex cubic problems
Handle multiple root scenarios
Verify solutions using graphical analysis
Q/A on advanced cubic graphing using complex examples
Discussions on multiple root identification using graph analysis
Solving challenging cubic problems using systematic methods
Demonstrations using detailed cubic constructions
Explaining verification methods using graphical checking
Chalk and blackboard, advanced graph examples, exercise books
Chalk and blackboard, rate calculation examples, exercise books
KLB Mathematics Book Three Pg 302-304
7 4
Graphical Methods
Average rates of change
Advanced average rates
By the end of the lesson, the learner should be able to:
Calculate the average rates of change
Apply average rate methods to various functions
Use graphical methods for rate calculation
Solve practical rate problems
Q/A on average rate calculation using graphical methods
Discussions on rate applications using real-world scenarios
Solving average rate problems using systematic approaches
Demonstrations using graph-based rate calculation
Explaining practical applications using meaningful contexts
Chalk and blackboard, graph paper, rate examples, exercise books
Chalk and blackboard, advanced rate scenarios, exercise books
KLB Mathematics Book Three Pg 304-306
7 5
Graphical Methods
Introduction to instantaneous rates
Rate of change at an instant
By the end of the lesson, the learner should be able to:
Calculate the rate of change at an instant
Understand instantaneous rate concepts
Distinguish between average and instantaneous rates
Apply instant rate methods
Q/A on instantaneous rate concepts using limiting methods
Discussions on instant vs average rate differences
Solving basic instantaneous rate problems
Demonstrations using tangent line concepts
Explaining instantaneous rate using practical examples
Chalk and blackboard, tangent line examples, exercise books
Chalk and blackboard, detailed graph examples, exercise books
KLB Mathematics Book Three Pg 310-311
7 6
Graphical Methods
Advanced instantaneous rates
Empirical graphs
By the end of the lesson, the learner should be able to:
Calculate the rate of change at an instant
Handle complex instantaneous rate scenarios
Apply instant rates to advanced problems
Integrate instantaneous concepts with applications
Q/A on advanced instantaneous applications using complex examples
Discussions on sophisticated rate problems using detailed analysis
Solving challenging instantaneous problems using systematic methods
Demonstrations using comprehensive rate constructions
Explaining advanced applications using detailed reasoning
Chalk and blackboard, advanced rate examples, exercise books
Chalk and blackboard, experimental data examples, exercise books
KLB Mathematics Book Three Pg 310-315
7 7
Graphical Methods
Advanced empirical methods
By the end of the lesson, the learner should be able to:
Draw the empirical graphs
Apply empirical methods to complex data
Handle large datasets and trends
Interpret empirical results meaningfully
Q/A on advanced empirical techniques using complex datasets
Discussions on trend analysis using systematic methods
Solving challenging empirical problems using organized approaches
Demonstrations using comprehensive data analysis
Explaining advanced interpretations using detailed reasoning
Chalk and blackboard, complex data examples, exercise books
KLB Mathematics Book Three Pg 315-321
8

End year exams 2025

9

Administrating exams,prepare report cards and clossing school


Your Name Comes Here


Download

Feedback