If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 | 4 |
Formulae and Variations
|
Introduction to formulae
Subject of a formula - basic cases |
By the end of the
lesson, the learner
should be able to:
Define formulae and identify formula components Recognize formulae in everyday contexts Understand the relationship between variables Appreciate the importance of formulae in mathematics |
Q/A on familiar formulae from daily life
Discussions on cooking recipes as formulae Analyzing distance-time relationships using walking examples Demonstrations using perimeter and area calculations Explaining formula notation using simple examples |
Chalk and blackboard, measuring tape or string, exercise books
Chalk and blackboard, simple balance (stones and stick), exercise books |
KLB Mathematics Book Three Pg 191-193
|
|
1 | 5 |
Formulae and Variations
|
Subject of a formula - intermediate cases
|
By the end of the
lesson, the learner
should be able to:
Make complex variables the subject of formulae Handle formulae with fractions and powers Apply multiple inverse operations systematically Solve intermediate difficulty problems |
Q/A on complex rearrangement using systematic approach
Discussions on fraction handling using common denominators Solving intermediate problems using organized methods Demonstrations using step-by-step blackboard work Explaining systematic approaches using flowcharts |
Chalk and blackboard, fraction strips made from paper, exercise books
|
KLB Mathematics Book Three Pg 191-193
|
|
1 | 6 |
Formulae and Variations
|
Subject of a formula - advanced cases
Applications of formula manipulation |
By the end of the
lesson, the learner
should be able to:
Make variables subject in complex formulae Handle square roots and quadratic expressions Apply advanced algebraic manipulation Solve challenging subject transformation problems |
Q/A on advanced manipulation using careful steps
Discussions on square root handling using examples Solving complex problems using systematic approach Demonstrations using detailed blackboard work Explaining quadratic handling using factoring |
Chalk and blackboard, squared paper patterns, exercise books
Chalk and blackboard, local measurement tools, exercise books |
KLB Mathematics Book Three Pg 191-193
|
|
1 | 7 |
Formulae and Variations
|
Introduction to variation
|
By the end of the
lesson, the learner
should be able to:
Understand the concept of variation Distinguish between variables and constants Recognize variation in everyday situations Identify different types of variation |
Q/A on variable relationships using daily examples
Discussions on changing quantities in nature and commerce Analyzing variation patterns using local market prices Demonstrations using speed-time relationships Explaining variation types using practical examples |
Chalk and blackboard, local price lists from markets, exercise books
|
KLB Mathematics Book Three Pg 194-196
|
|
2 | 1 |
Formulae and Variations
Sequences and Series |
Direct variation - introduction
Introduction to sequences and finding terms |
By the end of the
lesson, the learner
should be able to:
Understand direct proportionality concepts Recognize direct variation patterns Use direct variation notation correctly Calculate constants of proportionality |
Q/A on direct relationships using simple examples
Discussions on proportional changes using market scenarios Solving basic direct variation problems Demonstrations using doubling and tripling examples Explaining proportionality using ratio concepts |
Chalk and blackboard, beans or stones for counting, exercise books
Chalk and blackboard, stones or beans for patterns, exercise books |
KLB Mathematics Book Three Pg 194-196
|
|
2 | 2 |
Sequences and Series
|
General term of sequences and applications
Arithmetic sequences and nth term |
By the end of the
lesson, the learner
should be able to:
Develop general rules for sequences Express the nth term using algebraic notation Find specific terms using general formulas Apply sequence concepts to practical problems |
Q/A on rule formulation using systematic approach
Discussions on algebraic expression development Solving general term and application problems Demonstrations using position-value relationships Explaining practical relevance using community examples |
Chalk and blackboard, numbered cards made from paper, exercise books
Chalk and blackboard, measuring tape or string, exercise books |
KLB Mathematics Book Three Pg 207-208
|
|
2 | 3 |
Sequences and Series
|
Arithmetic sequence applications
|
By the end of the
lesson, the learner
should be able to:
Solve complex arithmetic sequence problems Apply arithmetic sequences to real-world problems Handle word problems involving arithmetic sequences Model practical situations using arithmetic progressions |
Q/A on practical applications using local business examples
Discussions on salary progression and savings plans Solving real-world problems using sequence methods Demonstrations using employment and finance scenarios Explaining practical interpretation using meaningful contexts |
Chalk and blackboard, local employment/savings examples, exercise books
|
KLB Mathematics Book Three Pg 209-210
|
|
2 | 4 |
Sequences and Series
|
Geometric sequences and nth term
Geometric sequence applications |
By the end of the
lesson, the learner
should be able to:
Define geometric sequences and common ratios Calculate common ratios correctly Derive and apply the geometric nth term formula Understand exponential growth patterns |
Q/A on geometric patterns using multiplication examples
Discussions on ratio-based progressions and formula derivation Solving geometric sequence problems systematically Demonstrations using doubling and scaling examples Explaining exponential structure using practical examples |
Chalk and blackboard, objects for doubling demonstrations, exercise books
Chalk and blackboard, population/growth data examples, exercise books |
KLB Mathematics Book Three Pg 211-213
|
|
2 | 5 |
Sequences and Series
|
Arithmetic series and sum formula
|
By the end of the
lesson, the learner
should be able to:
Define arithmetic series as sums of sequences Derive the sum formula for arithmetic series Apply the arithmetic series formula systematically Calculate sums efficiently using the formula |
Q/A on series concepts using summation examples
Discussions on sequence-to-series relationships and formula derivation Solving arithmetic series problems using step-by-step approach Demonstrations using cumulative sum examples Explaining derivation logic using algebraic reasoning |
Chalk and blackboard, counting materials for summation, exercise books
|
KLB Mathematics Book Three Pg 214-215
|
|
2 | 6 |
Sequences and Series
|
Geometric series and applications
Mixed problems and advanced applications |
By the end of the
lesson, the learner
should be able to:
Define geometric series and understand convergence Derive and apply geometric series formulas Handle finite and infinite geometric series Apply geometric series to practical situations |
Q/A on geometric series concepts using multiplication examples
Discussions on convergence and formula applications Solving geometric series problems including infinite cases Demonstrations using geometric sum patterns Explaining convergence using practical examples |
Chalk and blackboard, convergence demonstration materials, exercise books
Chalk and blackboard, mixed problem collections, exercise books |
KLB Mathematics Book Three Pg 216-219
|
|
2 | 7 |
Sequences and Series
|
Sequences in nature and technology
|
By the end of the
lesson, the learner
should be able to:
Identify mathematical patterns in natural phenomena Analyze sequences in biological and technological contexts Apply sequence concepts to environmental problems Appreciate mathematics in the natural and modern world |
Q/A on natural and technological patterns using examples
Discussions on biological sequences and digital applications Solving nature and technology-based problems Demonstrations using natural pattern examples Explaining mathematical beauty using real phenomena |
Chalk and blackboard, natural and technology examples, exercise books
|
KLB Mathematics Book Three Pg 207-219
|
|
3 | 1 |
Vectors (II)
|
Coordinates in two dimensions
Coordinates in three dimensions |
By the end of the
lesson, the learner
should be able to:
Identify the coordinates of a point in two dimensions Plot points on coordinate planes accurately Understand position representation using coordinates Apply coordinate concepts to practical situations |
Q/A on coordinate identification using grid references
Discussions on map reading and location finding Solving coordinate plotting problems using systematic methods Demonstrations using classroom grid systems and floor patterns Explaining coordinate applications using local maps and directions |
Chalk and blackboard, squared paper or grid drawn on ground, exercise books
Chalk and blackboard, 3D models made from sticks and clay, exercise books |
KLB Mathematics Book Three Pg 221-222
|
|
3 | 2 |
Vectors (II)
|
Column and position vectors in three dimensions
|
By the end of the
lesson, the learner
should be able to:
Find a displacement and represent it in column vector Calculate the position vector Express vectors in column form Apply column vector notation systematically |
Q/A on displacement representation using movement examples
Discussions on vector notation using organized column format Solving column vector problems using systematic methods Demonstrations using physical movement and direction examples Explaining vector components using practical displacement |
Chalk and blackboard, movement demonstration space, exercise books
|
KLB Mathematics Book Three Pg 223-224
|
|
3 | 3 |
Vectors (II)
|
Position vectors and applications
Column vectors in terms of unit vectors i, j, k |
By the end of the
lesson, the learner
should be able to:
Calculate the position vector Apply position vectors to geometric problems Find distances using position vector methods Solve positioning problems systematically |
Q/A on position vector calculation using origin references
Discussions on position determination using coordinate methods Solving position vector problems using systematic calculation Demonstrations using fixed origin and variable endpoints Explaining position concepts using practical location examples |
Chalk and blackboard, origin marking systems, exercise books
Chalk and blackboard, direction indicators, unit vector reference charts, exercise books |
KLB Mathematics Book Three Pg 224
|
|
3 | 4 |
Vectors (II)
|
Vector operations using unit vectors
|
By the end of the
lesson, the learner
should be able to:
Express vectors in terms of unit vectors Perform vector addition using unit vector notation Calculate vector subtraction with i, j, k components Apply scalar multiplication to unit vectors |
Q/A on vector operations using component-wise calculation
Discussions on systematic operation methods Solving vector operation problems using organized approaches Demonstrations using component separation and combination Explaining operation logic using algebraic reasoning |
Chalk and blackboard, component calculation aids, exercise books
|
KLB Mathematics Book Three Pg 226-228
|
|
3 | 5 |
Vectors (II)
|
Magnitude of a vector in three dimensions
Magnitude applications and unit vectors |
By the end of the
lesson, the learner
should be able to:
Calculate the magnitude of a vector in three dimensions Apply the 3D magnitude formula systematically Find vector lengths in spatial contexts Solve magnitude problems accurately |
Q/A on 3D magnitude using extended Pythagorean methods
Discussions on spatial distance calculation using 3D techniques Solving 3D magnitude problems using systematic calculation Demonstrations using 3D distance examples Explaining 3D magnitude using practical spatial examples |
Chalk and blackboard, 3D measurement aids, exercise books
Chalk and blackboard, direction finding aids, exercise books |
KLB Mathematics Book Three Pg 229-230
|
|
3 | 6 |
Vectors (II)
|
Parallel vectors
Collinearity |
By the end of the
lesson, the learner
should be able to:
Identify parallel vectors Determine when vectors are parallel Apply parallel vector properties Use scalar multiples in parallel relationships |
Q/A on parallel identification using scalar multiple methods
Discussions on parallel relationships using geometric examples Solving parallel vector problems using systematic testing Demonstrations using parallel line and direction examples Explaining parallel concepts using geometric reasoning |
Chalk and blackboard, parallel line demonstrations, exercise books
Chalk and blackboard, straight-line demonstrations, exercise books |
KLB Mathematics Book Three Pg 231-232
|
|
3 | 7 |
Vectors (II)
|
Advanced collinearity applications
|
By the end of the
lesson, the learner
should be able to:
Show that points are collinear Apply collinearity to complex geometric problems Integrate parallel and collinearity concepts Solve advanced alignment problems |
Q/A on advanced collinearity using complex scenarios
Discussions on geometric proof using vector methods Solving challenging collinearity problems Demonstrations using complex geometric constructions Explaining advanced applications using comprehensive examples |
Chalk and blackboard, complex geometric aids, exercise books
|
KLB Mathematics Book Three Pg 232-234
|
|
4 | 1 |
Vectors (II)
|
Proportional division of a line
External division of a line |
By the end of the
lesson, the learner
should be able to:
Divide a line internally in the given ratio Apply the internal division formula Calculate division points using vector methods Understand proportional division concepts |
Q/A on internal division using systematic formula application
Discussions on ratio division using proportional methods Solving internal division problems using organized approaches Demonstrations using internal point construction examples Explaining internal division using geometric visualization |
Chalk and blackboard, internal division models, exercise books
Chalk and blackboard, external division models, exercise books |
KLB Mathematics Book Three Pg 237-238
|
|
4 | 2 |
Vectors (II)
|
Combined internal and external division
|
By the end of the
lesson, the learner
should be able to:
Divide a line internally and externally in the given ratio Apply both division formulas systematically Compare internal and external division results Handle mixed division problems |
Q/A on combined division using comparative methods
Discussions on division type selection using problem analysis Solving combined division problems using systematic approaches Demonstrations using both division types Explaining division relationships using geometric reasoning |
Chalk and blackboard, combined division models, exercise books
|
KLB Mathematics Book Three Pg 239
|
|
4 | 3 |
Vectors (II)
|
Ratio theorem
Advanced ratio theorem applications |
By the end of the
lesson, the learner
should be able to:
Express position vectors Apply the ratio theorem to geometric problems Use ratio theorem in complex calculations Find position vectors using ratio relationships |
Q/A on ratio theorem application using systematic methods
Discussions on position vector calculation using ratio methods Solving ratio theorem problems using organized approaches Demonstrations using ratio-based position finding Explaining theorem applications using logical reasoning |
Chalk and blackboard, ratio theorem aids, exercise books
Chalk and blackboard, advanced ratio models, exercise books |
KLB Mathematics Book Three Pg 240-242
|
|
4 | 4 |
Vectors (II)
|
Mid-point
|
By the end of the
lesson, the learner
should be able to:
Find the mid-points of the given vectors Apply midpoint formulas in vector contexts Use midpoint concepts in geometric problems Calculate midpoints systematically |
Q/A on midpoint calculation using vector averaging methods
Discussions on midpoint applications using geometric examples Solving midpoint problems using systematic approaches Demonstrations using midpoint construction and calculation Explaining midpoint concepts using practical examples |
Chalk and blackboard, midpoint demonstration aids, exercise books
|
KLB Mathematics Book Three Pg 243
|
|
4 | 5 |
Vectors (II)
|
Ratio theorem and midpoint integration
Advanced ratio theorem applications |
By the end of the
lesson, the learner
should be able to:
Use ratio theorem to find the given vectors Apply midpoint and ratio concepts together Solve complex ratio and midpoint problems Integrate division and midpoint methods |
Q/A on integrated problem-solving using combined methods
Discussions on complex scenario analysis using systematic approaches Solving challenging problems using integrated techniques Demonstrations using comprehensive geometric examples Explaining integration using logical problem-solving |
Chalk and blackboard, complex problem materials, exercise books
Chalk and blackboard, advanced geometric aids, exercise books |
KLB Mathematics Book Three Pg 244-245
|
|
4 | 6 |
Vectors (II)
|
Applications of vectors in geometry
|
By the end of the
lesson, the learner
should be able to:
Use vectors to show the diagonals of a parallelogram Apply vector methods to geometric proofs Demonstrate parallelogram properties using vectors Solve geometric problems using vector techniques |
Q/A on geometric proof using vector methods
Discussions on parallelogram properties using vector analysis Solving geometric problems using systematic vector techniques Demonstrations using vector-based geometric constructions Explaining geometric relationships using vector reasoning |
Chalk and blackboard, parallelogram models, exercise books
|
KLB Mathematics Book Three Pg 248-249
|
|
4 | 7 |
Vectors (II)
|
Rectangle diagonal applications
Advanced geometric applications |
By the end of the
lesson, the learner
should be able to:
Use vectors to show the diagonals of a rectangle Apply vector methods to rectangle properties Prove rectangle theorems using vectors Compare parallelogram and rectangle diagonal properties |
Q/A on rectangle properties using vector analysis
Discussions on diagonal relationships using vector methods Solving rectangle problems using systematic approaches Demonstrations using rectangle constructions and vector proofs Explaining rectangle properties using vector reasoning |
Chalk and blackboard, rectangle models, exercise books
Chalk and blackboard, advanced geometric models, exercise books |
KLB Mathematics Book Three Pg 248-250
|
|
5 | 1 |
Binomial Expansion
|
Binomial expansions up to power four
|
By the end of the
lesson, the learner
should be able to:
Expand binomial function up to power four Apply systematic multiplication methods Recognize coefficient patterns in expansions Use multiplication to expand binomial expressions |
Q/A on algebraic multiplication using familiar expressions
Discussions on systematic expansion using step-by-step methods Solving basic binomial multiplication problems Demonstrations using area models and rectangular arrangements Explaining pattern recognition using organized layouts |
Chalk and blackboard, rectangular cutouts from paper, exercise books
|
KLB Mathematics Book Three Pg 256
|
|
5 | 2 |
Binomial Expansion
|
Binomial expansions up to power four (continued)
Pascal's triangle |
By the end of the
lesson, the learner
should be able to:
Expand binomial function up to power four Handle increasingly complex coefficient patterns Apply systematic expansion techniques efficiently Verify expansions using substitution methods |
Q/A on power expansion using multiplication techniques
Discussions on coefficient identification using pattern analysis Solving expansion problems using systematic approaches Demonstrations using geometric representations Explaining verification methods using numerical substitution |
Chalk and blackboard, squared paper for geometric models, exercise books
Chalk and blackboard, triangular patterns drawn/cut from paper, exercise books |
KLB Mathematics Book Three Pg 256
|
|
5 | 3 |
Binomial Expansion
|
Pascal's triangle applications
Pascal's triangle (continued) |
By the end of the
lesson, the learner
should be able to:
Use Pascal's triangle Apply Pascal's triangle to binomial expansions efficiently Use triangle coefficients for various powers Solve expansion problems using triangle methods |
Q/A on triangle application using coefficient identification
Discussions on efficient expansion using triangle methods Solving expansion problems using Pascal's triangle Demonstrations using triangle-guided calculations Explaining efficiency benefits using comparative methods |
Chalk and blackboard, Pascal's triangle reference charts, exercise books
Chalk and blackboard, advanced triangle patterns, exercise books |
KLB Mathematics Book Three Pg 257-258
|
|
5 | 4 |
Binomial Expansion
|
Pascal's triangle advanced
|
By the end of the
lesson, the learner
should be able to:
Use Pascal's triangle Apply general binomial theorem concepts Understand combination notation in expansions Use general term formula applications |
Q/A on general formula understanding using pattern analysis
Discussions on combination notation using counting principles Solving general term problems using formula application Demonstrations using systematic formula usage Explaining general principles using algebraic reasoning |
Chalk and blackboard, combination calculation aids, exercise books
|
KLB Mathematics Book Three Pg 258-259
|
|
5 | 5 |
Binomial Expansion
|
Applications to numerical cases
Applications to numerical cases (continued) |
By the end of the
lesson, the learner
should be able to:
Use binomial expansion to solve numerical problems Apply expansions for numerical approximations Calculate values using binomial methods Understand practical applications of expansions |
Q/A on numerical applications using approximation techniques
Discussions on calculation shortcuts using expansion methods Solving numerical problems using binomial approaches Demonstrations using practical calculation scenarios Explaining approximation benefits using real examples |
Chalk and blackboard, simple calculation aids, exercise books
Chalk and blackboard, advanced calculation examples, exercise books |
KLB Mathematics Book Three Pg 259-260
|
|
5 | 6 |
Probability
|
Introduction
|
By the end of the
lesson, the learner
should be able to:
Calculate the experimental probability Understand probability concepts in daily life Distinguish between certain and uncertain events Recognize probability situations |
Q/A on uncertain events from daily life experiences
Discussions on weather prediction and game outcomes Analyzing chance events using coin tossing and dice rolling Demonstrations using simple probability experiments Explaining probability language using familiar examples |
Chalk and blackboard, coins, dice made from cardboard, exercise books
|
KLB Mathematics Book Three Pg 262-264
|
|
5 | 7 |
Probability
|
Experimental Probability
Experimental Probability applications |
By the end of the
lesson, the learner
should be able to:
Calculate the experimental probability Conduct probability experiments systematically Record and analyze experimental data Compare experimental results with expectations |
Q/A on frequency counting using repeated experiments
Discussions on trial repetition and result recording Solving experimental probability problems using data collection Demonstrations using coin toss and dice roll experiments Explaining frequency ratio calculations using practical examples |
Chalk and blackboard, coins, cardboard dice, tally charts, exercise books
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books |
KLB Mathematics Book Three Pg 262-264
|
|
6 | 1 |
Probability
|
Range of Probability Measure
|
By the end of the
lesson, the learner
should be able to:
Calculate the range of probability measure Express probabilities on scale from 0 to 1 Convert between fractions, decimals, and percentages Interpret probability values correctly |
Q/A on probability scale using number line representations
Discussions on probability conversion between forms Solving probability scale problems using systematic methods Demonstrations using probability line and scale examples Explaining scale interpretation using practical scenarios |
Chalk and blackboard, number line drawings, probability scale charts, exercise books
|
KLB Mathematics Book Three Pg 265-266
|
|
6 | 2 |
Probability
|
Probability Space
Theoretical Probability |
By the end of the
lesson, the learner
should be able to:
Calculate the probability space for the theoretical probability Define sample space systematically List all possible outcomes Apply sample space concepts |
Q/A on outcome listing using systematic enumeration
Discussions on complete outcome identification Solving sample space problems using organized listing Demonstrations using dice, cards, and spinner examples Explaining probability calculation using outcome counting |
Chalk and blackboard, playing cards (locally made), spinners from cardboard, exercise books
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books |
KLB Mathematics Book Three Pg 266-267
|
|
6 | 3 |
Probability
|
Theoretical Probability advanced
|
By the end of the
lesson, the learner
should be able to:
Calculate the probability space for the theoretical probability Apply theoretical probability to complex problems Handle multiple outcome scenarios Solve advanced theoretical problems |
Q/A on advanced theoretical applications using complex scenarios
Discussions on multiple outcome analysis using systematic methods Solving challenging theoretical problems using organized approaches Demonstrations using complex probability setups Explaining advanced theoretical concepts using detailed reasoning |
Chalk and blackboard, complex probability materials, advanced calculation aids, exercise books
|
KLB Mathematics Book Three Pg 268-270
|
|
6 | 4 |
Probability
|
Theoretical Probability applications
Combined Events |
By the end of the
lesson, the learner
should be able to:
Calculate the probability space for the theoretical probability Apply theoretical concepts to real situations Solve practical probability problems Interpret results in meaningful contexts |
Q/A on practical probability using local examples
Discussions on real-world applications using community scenarios Solving application problems using theoretical methods Demonstrations using local games and practical situations Explaining practical interpretation using meaningful contexts |
Chalk and blackboard, local game examples, practical scenario materials, exercise books
Chalk and blackboard, playing cards, multiple dice, Venn diagram drawings, exercise books |
KLB Mathematics Book Three Pg 268-270
|
|
6 | 5 |
Probability
|
Combined Events OR probability
Independent Events |
By the end of the
lesson, the learner
should be able to:
Find the probability of a combined events Apply addition rule for OR events Calculate "A or B" probabilities Handle mutually exclusive events |
Q/A on addition rule application using systematic methods
Discussions on mutually exclusive identification and calculation Solving OR probability problems using organized approaches Demonstrations using card selection and event combination Explaining addition rule logic using Venn diagrams |
Chalk and blackboard, Venn diagram materials, card examples, exercise books
Chalk and blackboard, multiple coins and dice, independence demonstration materials, exercise books |
KLB Mathematics Book Three Pg 272-274
|
|
6 | 6 |
Probability
|
Independent Events advanced
|
By the end of the
lesson, the learner
should be able to:
Find the probability of independent events Distinguish between independent and dependent events Apply conditional probability concepts Handle complex independence scenarios |
Q/A on independence verification using mathematical methods
Discussions on dependence concepts using card drawing examples Solving dependent and independent event problems using systematic approaches Demonstrations using replacement and non-replacement scenarios Explaining conditional probability using practical examples |
Chalk and blackboard, playing cards for replacement scenarios, multiple experimental setups, exercise books
|
KLB Mathematics Book Three Pg 276-278
|
|
6 | 7 |
Probability
|
Independent Events applications
Tree Diagrams |
By the end of the
lesson, the learner
should be able to:
Find the probability of independent events Apply independence to practical problems Solve complex multi-event scenarios Integrate independence with other concepts |
Q/A on complex event analysis using systematic problem-solving
Discussions on rule selection and application strategies Solving advanced combined problems using integrated approaches Demonstrations using complex experimental scenarios Explaining strategic problem-solving using logical analysis |
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books
Chalk and blackboard, tree diagram templates, branching materials, exercise books |
KLB Mathematics Book Three Pg 278-280
|
|
7 | 1 |
Probability
|
Tree Diagrams advanced
|
By the end of the
lesson, the learner
should be able to:
Use tree diagrams to find probability Apply trees to multi-stage problems Handle complex sequential events Calculate final probabilities using trees |
Q/A on complex tree application using multi-stage examples
Discussions on replacement scenario handling Solving complex tree problems using systematic calculation Demonstrations using detailed tree constructions Explaining systematic probability calculation using tree methods |
Chalk and blackboard, complex tree examples, detailed calculation aids, exercise books
|
KLB Mathematics Book Three Pg 283-285
|
|
7 | 2 |
Compound Proportion and Rates of Work
|
Compound Proportions
Compound Proportions applications |
By the end of the
lesson, the learner
should be able to:
Find the compound proportions Understand compound proportion relationships Apply compound proportion methods systematically Solve problems involving multiple variables |
Q/A on compound relationships using practical examples
Discussions on multiple variable situations using local scenarios Solving compound proportion problems using systematic methods Demonstrations using business and trade examples Explaining compound proportion logic using step-by-step reasoning |
Chalk and blackboard, local business examples, calculators if available, exercise books
Chalk and blackboard, construction/farming examples, exercise books |
KLB Mathematics Book Three Pg 288-290
|
|
7 | 3 |
Compound Proportion and Rates of Work
|
Proportional Parts
|
By the end of the
lesson, the learner
should be able to:
Calculate the proportional parts Understand proportional division concepts Apply proportional parts to sharing problems Solve distribution problems using proportional methods |
Q/A on proportional sharing using practical examples
Discussions on fair distribution using ratio concepts Solving proportional parts problems using systematic division Demonstrations using sharing scenarios and inheritance examples Explaining proportional distribution using logical reasoning |
Chalk and blackboard, sharing demonstration materials, exercise books
|
KLB Mathematics Book Three Pg 291-293
|
|
7 | 4 |
Compound Proportion and Rates of Work
|
Proportional Parts applications
Rates of Work |
By the end of the
lesson, the learner
should be able to:
Calculate the proportional parts Apply proportional parts to complex sharing scenarios Handle business partnership profit sharing Solve advanced proportional distribution problems |
Q/A on complex proportional sharing using business examples
Discussions on partnership profit distribution using practical scenarios Solving advanced proportional problems using systematic methods Demonstrations using business partnership and investment examples Explaining practical applications using meaningful contexts |
Chalk and blackboard, business partnership examples, exercise books
Chalk and blackboard, work scenario examples, exercise books |
KLB Mathematics Book Three Pg 291-293
|
|
7 | 5 |
Compound Proportion and Rates of Work
|
Rates of Work and Mixtures
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of work Apply work rates to complex scenarios Handle mixture problems and combinations Solve advanced rate and mixture problems |
Q/A on advanced work rates using complex scenarios
Discussions on mixture problems using practical examples Solving challenging rate and mixture problems using systematic approaches Demonstrations using cooking, construction, and manufacturing examples Explaining mixture concepts using practical applications |
Chalk and blackboard, mixture demonstration materials, exercise books
|
KLB Mathematics Book Three Pg 295-296
|
|
7 | 6 |
Graphical Methods
|
Tables of given relations
Graphs of given relations |
By the end of the
lesson, the learner
should be able to:
Draw tables of given relations Construct organized data tables systematically Prepare data for graphical representation Understand relationship between variables |
Q/A on table construction using systematic data organization
Discussions on variable relationships using practical examples Solving table preparation problems using organized methods Demonstrations using data collection and tabulation Explaining systematic data arrangement using logical procedures |
Chalk and blackboard, ruled paper for tables, exercise books
Chalk and blackboard, graph paper or grids, rulers, exercise books |
KLB Mathematics Book Three Pg 299
|
|
7 | 7 |
Graphical Methods
|
Tables and graphs integration
|
By the end of the
lesson, the learner
should be able to:
Draw tables and graphs of given relations Integrate table construction with graph plotting Analyze relationships using both methods Compare tabular and graphical representations |
Q/A on integrated table-graph construction using comprehensive methods
Discussions on data flow from tables to graphs Solving integrated problems using systematic approaches Demonstrations using complete data analysis procedures Explaining relationship analysis using combined methods |
Chalk and blackboard, graph paper, data examples, exercise books
|
KLB Mathematics Book Three Pg 299-300
|
|
8 | 1 |
Graphical Methods
|
Introduction to cubic equations
Graphical solution of cubic equations |
By the end of the
lesson, the learner
should be able to:
Draw tables of cubic functions Understand cubic equation characteristics Prepare cubic function data systematically Recognize cubic curve patterns |
Q/A on cubic function evaluation using systematic calculation
Discussions on cubic equation properties using mathematical analysis Solving cubic table preparation using organized methods Demonstrations using cubic function examples Explaining cubic characteristics using pattern recognition |
Chalk and blackboard, cubic function examples, exercise books
Chalk and blackboard, graph paper, cubic equation examples, exercise books |
KLB Mathematics Book Three Pg 301
|
|
8 | 2 |
Graphical Methods
|
Advanced cubic solutions
Introduction to rates of change |
By the end of the
lesson, the learner
should be able to:
Draw graphs of cubic equations Apply graphical methods to complex cubic problems Handle multiple root scenarios Verify solutions using graphical analysis |
Q/A on advanced cubic graphing using complex examples
Discussions on multiple root identification using graph analysis Solving challenging cubic problems using systematic methods Demonstrations using detailed cubic constructions Explaining verification methods using graphical checking |
Chalk and blackboard, advanced graph examples, exercise books
Chalk and blackboard, rate calculation examples, exercise books |
KLB Mathematics Book Three Pg 302-304
|
|
8 | 3 |
Graphical Methods
|
Average rates of change
|
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Apply average rate methods to various functions Use graphical methods for rate calculation Solve practical rate problems |
Q/A on average rate calculation using graphical methods
Discussions on rate applications using real-world scenarios Solving average rate problems using systematic approaches Demonstrations using graph-based rate calculation Explaining practical applications using meaningful contexts |
Chalk and blackboard, graph paper, rate examples, exercise books
|
KLB Mathematics Book Three Pg 304-306
|
|
8 | 4 |
Graphical Methods
|
Advanced average rates
Introduction to instantaneous rates |
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Handle complex rate scenarios Apply rates to business and scientific problems Integrate rate concepts with other topics |
Q/A on complex rate applications using advanced scenarios
Discussions on business and scientific rate applications Solving challenging rate problems using integrated methods Demonstrations using comprehensive rate examples Explaining advanced applications using detailed analysis |
Chalk and blackboard, advanced rate scenarios, exercise books
Chalk and blackboard, tangent line examples, exercise books |
KLB Mathematics Book Three Pg 304-310
|
|
8 | 5 |
Graphical Methods
|
Rate of change at an instant
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Apply instantaneous rate methods systematically Use graphical techniques for instant rates Solve practical instantaneous rate problems |
Q/A on instantaneous rate calculation using graphical methods
Discussions on tangent line slope interpretation Solving instantaneous rate problems using systematic approaches Demonstrations using detailed tangent constructions Explaining practical applications using real scenarios |
Chalk and blackboard, detailed graph examples, exercise books
|
KLB Mathematics Book Three Pg 310-311
|
|
8 | 6 |
Graphical Methods
|
Advanced instantaneous rates
Empirical graphs |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Handle complex instantaneous rate scenarios Apply instant rates to advanced problems Integrate instantaneous concepts with applications |
Q/A on advanced instantaneous applications using complex examples
Discussions on sophisticated rate problems using detailed analysis Solving challenging instantaneous problems using systematic methods Demonstrations using comprehensive rate constructions Explaining advanced applications using detailed reasoning |
Chalk and blackboard, advanced rate examples, exercise books
Chalk and blackboard, experimental data examples, exercise books |
KLB Mathematics Book Three Pg 310-315
|
|
8 | 7 |
Graphical Methods
|
Advanced empirical methods
|
By the end of the
lesson, the learner
should be able to:
Draw the empirical graphs Apply empirical methods to complex data Handle large datasets and trends Interpret empirical results meaningfully |
Q/A on advanced empirical techniques using complex datasets
Discussions on trend analysis using systematic methods Solving challenging empirical problems using organized approaches Demonstrations using comprehensive data analysis Explaining advanced interpretations using detailed reasoning |
Chalk and blackboard, complex data examples, exercise books
|
KLB Mathematics Book Three Pg 315-321
|
|
9 |
END TERM EXAMINATION AND CLOSING |
Your Name Comes Here