If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 |
REPORTING AND REVISION OF END TERM 2 EXAMS |
|||||||
2 | 1 |
Matrices
|
Introduction and real-life applications
|
By the end of the
lesson, the learner
should be able to:
Define matrices and identify matrix applications Recognize matrices in everyday contexts Understand tabular data representation Appreciate the importance of matrices |
Q/A on tabular data in daily life
Discussions on school exam results tables Analyzing bus timetables and price lists Demonstrations using newspaper sports tables Explaining matrix notation using grid patterns |
Old newspapers with league tables, chalk and blackboard, exercise books
|
KLB Mathematics Book Three Pg 168-169
|
|
2 | 2 |
Matrices
|
Order of a matrix and elements
Square matrices, row and column matrices Addition of matrices Subtraction of matrices |
By the end of the
lesson, the learner
should be able to:
Determine the order of given matrices Identify matrix elements by position Use correct notation for matrix elements Distinguish between different matrix types |
Q/A on matrix structure using grid drawings
Discussions on rows and columns using classroom seating Solving element location using coordinate games Demonstrations using drawn grids on blackboard Explaining position notation using class register |
Chalk and blackboard, ruled exercise books, class register
Paper cutouts, chalk and blackboard, counters or bottle tops Counters or stones, chalk and blackboard, exercise books Chalk and blackboard, exercise books, number cards made from cardboard |
KLB Mathematics Book Three Pg 169-170
|
|
2 | 3 |
Matrices
|
Combined addition and subtraction
Scalar multiplication Introduction to matrix multiplication Matrix multiplication (2×2 matrices) |
By the end of the
lesson, the learner
should be able to:
Perform multiple matrix operations Apply order of operations in matrix calculations Solve complex combined problems Demonstrate systematic problem-solving |
Q/A on operation order using BODMAS rules
Discussions on complex expressions using step-by-step approach Solving multi-step problems using organized methods Demonstrations using systematic blackboard work Explaining operation sequencing using flowcharts |
Chalk and blackboard, exercise books, locally made operation cards
Beans or stones for grouping, chalk and blackboard, exercise books Chalk and blackboard, rulers for tracing, exercise books Chalk and blackboard, exercise books, homemade grid templates |
KLB Mathematics Book Three Pg 171-174
|
|
2 | 4 |
Matrices
|
Matrix multiplication (larger matrices)
Properties of matrix multiplication |
By the end of the
lesson, the learner
should be able to:
Multiply matrices of various orders Apply multiplication to 3×3 and larger matrices Determine when multiplication is possible Calculate products efficiently |
Q/A on larger matrix multiplication using patterns
Discussions on efficiency techniques using shortcuts Solving advanced problems using systematic methods Demonstrations using organized calculation procedures Explaining general principles using examples |
Chalk and blackboard, large sheets of paper for working, exercise books
Chalk and blackboard, exercise books, cardboard for property cards |
KLB Mathematics Book Three Pg 176-179
|
|
2 | 5 |
Matrices
|
Real-world matrix multiplication applications
Identity matrix |
By the end of the
lesson, the learner
should be able to:
Apply matrix multiplication to practical problems Solve business and economic applications Calculate costs, revenues, and quantities Interpret matrix multiplication results |
Q/A on practical applications using local business examples
Discussions on market problems using familiar contexts Solving real-world problems using matrix methods Demonstrations using shop keeper scenarios Explaining result interpretation using meaningful contexts |
Chalk and blackboard, local price lists, exercise books
Chalk and blackboard, exercise books, pattern cards made from paper |
KLB Mathematics Book Three Pg 176-179
|
|
2 | 6 |
Matrices
|
Determinant of 2×2 matrices
|
By the end of the
lesson, the learner
should be able to:
Calculate determinants of 2×2 matrices Apply the determinant formula correctly Understand geometric interpretation of determinants Use determinants to classify matrices |
Q/A on determinant calculation using cross multiplication
Discussions on formula application using memory aids Solving determinant problems using systematic approach Demonstrations using cross pattern method Explaining geometric meaning using area concepts |
Chalk and blackboard, exercise books, crossed sticks for demonstration
|
KLB Mathematics Book Three Pg 183
|
|
2 | 7 |
Matrices
|
Inverse of 2×2 matrices - theory
Inverse of 2×2 matrices - practice |
By the end of the
lesson, the learner
should be able to:
Understand the concept of matrix inverse Identify conditions for matrix invertibility Apply the inverse formula for 2×2 matrices Understand singular matrices |
Q/A on inverse concepts using reciprocal analogy
Discussions on invertibility using determinant conditions Solving basic inverse problems using formula Demonstrations using step-by-step method Explaining singular matrices using zero determinant |
Chalk and blackboard, exercise books, fraction examples
Chalk and blackboard, exercise books, scrap paper for verification |
KLB Mathematics Book Three Pg 183-185
|
|
3 | 1 |
Matrices
|
Introduction to solving simultaneous equations
Solving 2×2 simultaneous equations using matrices |
By the end of the
lesson, the learner
should be able to:
Understand matrix representation of simultaneous equations Identify coefficient and constant matrices Set up matrix equations correctly Recognize the structure of linear systems |
Q/A on equation representation using familiar equations
Discussions on coefficient identification using examples Solving setup problems using systematic approach Demonstrations using equation breakdown method Explaining structure using organized layout |
Chalk and blackboard, exercise books, equation examples from previous topics
Chalk and blackboard, exercise books, previous elimination method examples |
KLB Mathematics Book Three Pg 188-189
|
|
3 | 2 |
Matrices
|
Advanced simultaneous equation problems
Matrix applications in real-world problems |
By the end of the
lesson, the learner
should be able to:
Solve complex simultaneous equation systems Handle systems with no solution or infinite solutions Interpret determinant values in solution context Apply matrix methods to word problems |
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation Solving challenging problems using complete analysis Demonstrations using classification methods Explaining geometric meaning using line concepts |
Chalk and blackboard, exercise books, graph paper if available
Chalk and blackboard, local business examples, exercise books |
KLB Mathematics Book Three Pg 188-190
|
|
3 | 3 |
Matrices
|
Transpose of matrices
Matrix equation solving |
By the end of the
lesson, the learner
should be able to:
Define and calculate matrix transpose Understand transpose properties Apply transpose operations correctly Solve problems involving transpose |
Q/A on transpose concepts using reflection ideas
Discussions on row-column interchange using visual methods Solving transpose problems using systematic approach Demonstrations using flip and rotate concepts Explaining properties using symmetry ideas |
Chalk and blackboard, exercise books, paper cutouts for demonstration
Chalk and blackboard, exercise books, algebra reference examples |
KLB Mathematics Book Three Pg 170-174
|
|
3 | 4 |
Formulae and Variations
|
Introduction to formulae
Subject of a formula - basic cases |
By the end of the
lesson, the learner
should be able to:
Define formulae and identify formula components Recognize formulae in everyday contexts Understand the relationship between variables Appreciate the importance of formulae in mathematics |
Q/A on familiar formulae from daily life
Discussions on cooking recipes as formulae Analyzing distance-time relationships using walking examples Demonstrations using perimeter and area calculations Explaining formula notation using simple examples |
Chalk and blackboard, measuring tape or string, exercise books
Chalk and blackboard, simple balance (stones and stick), exercise books |
KLB Mathematics Book Three Pg 191-193
|
|
3 | 5 |
Formulae and Variations
|
Subject of a formula - intermediate cases
Subject of a formula - advanced cases |
By the end of the
lesson, the learner
should be able to:
Make complex variables the subject of formulae Handle formulae with fractions and powers Apply multiple inverse operations systematically Solve intermediate difficulty problems |
Q/A on complex rearrangement using systematic approach
Discussions on fraction handling using common denominators Solving intermediate problems using organized methods Demonstrations using step-by-step blackboard work Explaining systematic approaches using flowcharts |
Chalk and blackboard, fraction strips made from paper, exercise books
Chalk and blackboard, squared paper patterns, exercise books |
KLB Mathematics Book Three Pg 191-193
|
|
3 | 6 |
Formulae and Variations
|
Applications of formula manipulation
Introduction to variation |
By the end of the
lesson, the learner
should be able to:
Apply formula rearrangement to practical problems Solve real-world problems using formula manipulation Calculate unknown quantities in various contexts Interpret results in meaningful situations |
Q/A on practical applications using local examples
Discussions on real-world formula use in farming/building Solving application problems using formula rearrangement Demonstrations using construction and farming scenarios Explaining practical interpretation using community examples |
Chalk and blackboard, local measurement tools, exercise books
Chalk and blackboard, local price lists from markets, exercise books |
KLB Mathematics Book Three Pg 191-193
|
|
3 | 7 |
Formulae and Variations
Sequences and Series |
Direct variation - introduction
Introduction to sequences and finding terms |
By the end of the
lesson, the learner
should be able to:
Understand direct proportionality concepts Recognize direct variation patterns Use direct variation notation correctly Calculate constants of proportionality |
Q/A on direct relationships using simple examples
Discussions on proportional changes using market scenarios Solving basic direct variation problems Demonstrations using doubling and tripling examples Explaining proportionality using ratio concepts |
Chalk and blackboard, beans or stones for counting, exercise books
Chalk and blackboard, stones or beans for patterns, exercise books |
KLB Mathematics Book Three Pg 194-196
|
|
4 | 1 |
Sequences and Series
|
General term of sequences and applications
|
By the end of the
lesson, the learner
should be able to:
Develop general rules for sequences Express the nth term using algebraic notation Find specific terms using general formulas Apply sequence concepts to practical problems |
Q/A on rule formulation using systematic approach
Discussions on algebraic expression development Solving general term and application problems Demonstrations using position-value relationships Explaining practical relevance using community examples |
Chalk and blackboard, numbered cards made from paper, exercise books
|
KLB Mathematics Book Three Pg 207-208
|
|
4 | 2 |
Sequences and Series
|
Arithmetic sequences and nth term
Arithmetic sequence applications |
By the end of the
lesson, the learner
should be able to:
Define arithmetic sequences and common differences Calculate common differences correctly Derive and apply the nth term formula Solve problems using arithmetic sequence concepts |
Q/A on arithmetic patterns using step-by-step examples
Discussions on constant difference patterns and formula derivation Solving arithmetic sequence problems systematically Demonstrations using equal-step progressions Explaining formula structure using algebraic reasoning |
Chalk and blackboard, measuring tape or string, exercise books
Chalk and blackboard, local employment/savings examples, exercise books |
KLB Mathematics Book Three Pg 209-210
|
|
4 | 3 |
Sequences and Series
|
Geometric sequences and nth term
Geometric sequence applications |
By the end of the
lesson, the learner
should be able to:
Define geometric sequences and common ratios Calculate common ratios correctly Derive and apply the geometric nth term formula Understand exponential growth patterns |
Q/A on geometric patterns using multiplication examples
Discussions on ratio-based progressions and formula derivation Solving geometric sequence problems systematically Demonstrations using doubling and scaling examples Explaining exponential structure using practical examples |
Chalk and blackboard, objects for doubling demonstrations, exercise books
Chalk and blackboard, population/growth data examples, exercise books |
KLB Mathematics Book Three Pg 211-213
|
|
4 | 4 |
Sequences and Series
|
Arithmetic series and sum formula
Geometric series and applications |
By the end of the
lesson, the learner
should be able to:
Define arithmetic series as sums of sequences Derive the sum formula for arithmetic series Apply the arithmetic series formula systematically Calculate sums efficiently using the formula |
Q/A on series concepts using summation examples
Discussions on sequence-to-series relationships and formula derivation Solving arithmetic series problems using step-by-step approach Demonstrations using cumulative sum examples Explaining derivation logic using algebraic reasoning |
Chalk and blackboard, counting materials for summation, exercise books
Chalk and blackboard, convergence demonstration materials, exercise books |
KLB Mathematics Book Three Pg 214-215
|
|
4 | 5 |
Sequences and Series
|
Mixed problems and advanced applications
Sequences in nature and technology |
By the end of the
lesson, the learner
should be able to:
Combine arithmetic and geometric concepts Solve complex mixed sequence and series problems Apply appropriate methods for different types Model real-world situations using mathematical sequences |
Q/A on problem type identification using systematic analysis
Discussions on method selection and comprehensive applications Solving mixed problems using appropriate techniques Demonstrations using interdisciplinary scenarios Explaining method choice using logical reasoning |
Chalk and blackboard, mixed problem collections, exercise books
Chalk and blackboard, natural and technology examples, exercise books |
KLB Mathematics Book Three Pg 207-219
|
|
4 | 6 |
Vectors (II)
|
Coordinates in two dimensions
Coordinates in three dimensions |
By the end of the
lesson, the learner
should be able to:
Identify the coordinates of a point in two dimensions Plot points on coordinate planes accurately Understand position representation using coordinates Apply coordinate concepts to practical situations |
Q/A on coordinate identification using grid references
Discussions on map reading and location finding Solving coordinate plotting problems using systematic methods Demonstrations using classroom grid systems and floor patterns Explaining coordinate applications using local maps and directions |
Chalk and blackboard, squared paper or grid drawn on ground, exercise books
Chalk and blackboard, 3D models made from sticks and clay, exercise books |
KLB Mathematics Book Three Pg 221-222
|
|
4 | 7 |
Vectors (II)
|
Column and position vectors in three dimensions
Position vectors and applications |
By the end of the
lesson, the learner
should be able to:
Find a displacement and represent it in column vector Calculate the position vector Express vectors in column form Apply column vector notation systematically |
Q/A on displacement representation using movement examples
Discussions on vector notation using organized column format Solving column vector problems using systematic methods Demonstrations using physical movement and direction examples Explaining vector components using practical displacement |
Chalk and blackboard, movement demonstration space, exercise books
Chalk and blackboard, origin marking systems, exercise books |
KLB Mathematics Book Three Pg 223-224
|
|
5 | 1 |
Vectors (II)
|
Column vectors in terms of unit vectors i, j, k
Vector operations using unit vectors |
By the end of the
lesson, the learner
should be able to:
Express vectors in terms of unit vectors Convert between column and unit vector notation Understand the standard basis vector system Apply unit vector representation systematically |
Q/A on unit vector concepts using direction examples
Discussions on component representation using organized methods Solving unit vector problems using systematic conversion Demonstrations using perpendicular direction examples Explaining basis vector concepts using coordinate axes |
Chalk and blackboard, direction indicators, unit vector reference charts, exercise books
Chalk and blackboard, component calculation aids, exercise books |
KLB Mathematics Book Three Pg 226-228
|
|
5 | 2 |
Vectors (II)
|
Magnitude of a vector in three dimensions
Magnitude applications and unit vectors |
By the end of the
lesson, the learner
should be able to:
Calculate the magnitude of a vector in three dimensions Apply the 3D magnitude formula systematically Find vector lengths in spatial contexts Solve magnitude problems accurately |
Q/A on 3D magnitude using extended Pythagorean methods
Discussions on spatial distance calculation using 3D techniques Solving 3D magnitude problems using systematic calculation Demonstrations using 3D distance examples Explaining 3D magnitude using practical spatial examples |
Chalk and blackboard, 3D measurement aids, exercise books
Chalk and blackboard, direction finding aids, exercise books |
KLB Mathematics Book Three Pg 229-230
|
|
5 | 3 |
Vectors (II)
|
Parallel vectors
|
By the end of the
lesson, the learner
should be able to:
Identify parallel vectors Determine when vectors are parallel Apply parallel vector properties Use scalar multiples in parallel relationships |
Q/A on parallel identification using scalar multiple methods
Discussions on parallel relationships using geometric examples Solving parallel vector problems using systematic testing Demonstrations using parallel line and direction examples Explaining parallel concepts using geometric reasoning |
Chalk and blackboard, parallel line demonstrations, exercise books
|
KLB Mathematics Book Three Pg 231-232
|
|
5 | 4 |
Vectors (II)
|
Collinearity
Advanced collinearity applications |
By the end of the
lesson, the learner
should be able to:
Show that points are collinear Apply vector methods to prove collinearity Test for collinear points using vector techniques Solve collinearity problems systematically |
Q/A on collinearity testing using vector proportion methods
Discussions on point alignment using vector analysis Solving collinearity problems using systematic verification Demonstrations using straight-line point examples Explaining collinearity using geometric alignment concepts |
Chalk and blackboard, straight-line demonstrations, exercise books
Chalk and blackboard, complex geometric aids, exercise books |
KLB Mathematics Book Three Pg 232-234
|
|
5 | 5 |
Vectors (II)
|
Proportional division of a line
External division of a line |
By the end of the
lesson, the learner
should be able to:
Divide a line internally in the given ratio Apply the internal division formula Calculate division points using vector methods Understand proportional division concepts |
Q/A on internal division using systematic formula application
Discussions on ratio division using proportional methods Solving internal division problems using organized approaches Demonstrations using internal point construction examples Explaining internal division using geometric visualization |
Chalk and blackboard, internal division models, exercise books
Chalk and blackboard, external division models, exercise books |
KLB Mathematics Book Three Pg 237-238
|
|
5 | 6 |
Vectors (II)
|
Combined internal and external division
Ratio theorem |
By the end of the
lesson, the learner
should be able to:
Divide a line internally and externally in the given ratio Apply both division formulas systematically Compare internal and external division results Handle mixed division problems |
Q/A on combined division using comparative methods
Discussions on division type selection using problem analysis Solving combined division problems using systematic approaches Demonstrations using both division types Explaining division relationships using geometric reasoning |
Chalk and blackboard, combined division models, exercise books
Chalk and blackboard, ratio theorem aids, exercise books |
KLB Mathematics Book Three Pg 239
|
|
5 | 7 |
Vectors (II)
|
Advanced ratio theorem applications
Mid-point |
By the end of the
lesson, the learner
should be able to:
Find the position vector Apply ratio theorem to complex scenarios Solve multi-step ratio problems Use ratio theorem in geometric proofs |
Q/A on advanced ratio applications using complex problems
Discussions on multi-step ratio calculation Solving challenging ratio problems using systematic methods Demonstrations using comprehensive ratio examples Explaining advanced applications using detailed reasoning |
Chalk and blackboard, advanced ratio models, exercise books
Chalk and blackboard, midpoint demonstration aids, exercise books |
KLB Mathematics Book Three Pg 242
|
|
6 | 1 |
Vectors (II)
|
Ratio theorem and midpoint integration
Advanced ratio theorem applications |
By the end of the
lesson, the learner
should be able to:
Use ratio theorem to find the given vectors Apply midpoint and ratio concepts together Solve complex ratio and midpoint problems Integrate division and midpoint methods |
Q/A on integrated problem-solving using combined methods
Discussions on complex scenario analysis using systematic approaches Solving challenging problems using integrated techniques Demonstrations using comprehensive geometric examples Explaining integration using logical problem-solving |
Chalk and blackboard, complex problem materials, exercise books
Chalk and blackboard, advanced geometric aids, exercise books |
KLB Mathematics Book Three Pg 244-245
|
|
6 | 2 |
Vectors (II)
|
Applications of vectors in geometry
Rectangle diagonal applications |
By the end of the
lesson, the learner
should be able to:
Use vectors to show the diagonals of a parallelogram Apply vector methods to geometric proofs Demonstrate parallelogram properties using vectors Solve geometric problems using vector techniques |
Q/A on geometric proof using vector methods
Discussions on parallelogram properties using vector analysis Solving geometric problems using systematic vector techniques Demonstrations using vector-based geometric constructions Explaining geometric relationships using vector reasoning |
Chalk and blackboard, parallelogram models, exercise books
Chalk and blackboard, rectangle models, exercise books |
KLB Mathematics Book Three Pg 248-249
|
|
6 | 3 |
Vectors (II)
Binomial Expansion |
Advanced geometric applications
Binomial expansions up to power four |
By the end of the
lesson, the learner
should be able to:
Use vectors to show geometric properties Apply vectors to complex geometric proofs Solve challenging geometric problems using vectors Integrate all vector concepts in geometric contexts |
Q/A on comprehensive geometric applications using vector methods
Discussions on advanced proof techniques using vectors Solving complex geometric problems using integrated approaches Demonstrations using sophisticated geometric constructions Explaining advanced applications using comprehensive reasoning |
Chalk and blackboard, advanced geometric models, exercise books
Chalk and blackboard, rectangular cutouts from paper, exercise books |
KLB Mathematics Book Three Pg 248-250
|
|
6 | 4 |
Binomial Expansion
|
Binomial expansions up to power four (continued)
Pascal's triangle |
By the end of the
lesson, the learner
should be able to:
Expand binomial function up to power four Handle increasingly complex coefficient patterns Apply systematic expansion techniques efficiently Verify expansions using substitution methods |
Q/A on power expansion using multiplication techniques
Discussions on coefficient identification using pattern analysis Solving expansion problems using systematic approaches Demonstrations using geometric representations Explaining verification methods using numerical substitution |
Chalk and blackboard, squared paper for geometric models, exercise books
Chalk and blackboard, triangular patterns drawn/cut from paper, exercise books |
KLB Mathematics Book Three Pg 256
|
|
6 | 5 |
Binomial Expansion
|
Pascal's triangle applications
Pascal's triangle (continued) |
By the end of the
lesson, the learner
should be able to:
Use Pascal's triangle Apply Pascal's triangle to binomial expansions efficiently Use triangle coefficients for various powers Solve expansion problems using triangle methods |
Q/A on triangle application using coefficient identification
Discussions on efficient expansion using triangle methods Solving expansion problems using Pascal's triangle Demonstrations using triangle-guided calculations Explaining efficiency benefits using comparative methods |
Chalk and blackboard, Pascal's triangle reference charts, exercise books
Chalk and blackboard, advanced triangle patterns, exercise books |
KLB Mathematics Book Three Pg 257-258
|
|
6 | 6 |
Binomial Expansion
|
Pascal's triangle advanced
|
By the end of the
lesson, the learner
should be able to:
Use Pascal's triangle Apply general binomial theorem concepts Understand combination notation in expansions Use general term formula applications |
Q/A on general formula understanding using pattern analysis
Discussions on combination notation using counting principles Solving general term problems using formula application Demonstrations using systematic formula usage Explaining general principles using algebraic reasoning |
Chalk and blackboard, combination calculation aids, exercise books
|
KLB Mathematics Book Three Pg 258-259
|
|
6 | 7 |
Binomial Expansion
|
Applications to numerical cases
Applications to numerical cases (continued) |
By the end of the
lesson, the learner
should be able to:
Use binomial expansion to solve numerical problems Apply expansions for numerical approximations Calculate values using binomial methods Understand practical applications of expansions |
Q/A on numerical applications using approximation techniques
Discussions on calculation shortcuts using expansion methods Solving numerical problems using binomial approaches Demonstrations using practical calculation scenarios Explaining approximation benefits using real examples |
Chalk and blackboard, simple calculation aids, exercise books
Chalk and blackboard, advanced calculation examples, exercise books |
KLB Mathematics Book Three Pg 259-260
|
|
7 | 1 |
Probability
|
Introduction
Experimental Probability |
By the end of the
lesson, the learner
should be able to:
Calculate the experimental probability Understand probability concepts in daily life Distinguish between certain and uncertain events Recognize probability situations |
Q/A on uncertain events from daily life experiences
Discussions on weather prediction and game outcomes Analyzing chance events using coin tossing and dice rolling Demonstrations using simple probability experiments Explaining probability language using familiar examples |
Chalk and blackboard, coins, dice made from cardboard, exercise books
Chalk and blackboard, coins, cardboard dice, tally charts, exercise books |
KLB Mathematics Book Three Pg 262-264
|
|
7 | 2 |
Probability
|
Experimental Probability applications
Range of Probability Measure |
By the end of the
lesson, the learner
should be able to:
Calculate the experimental probability Apply experimental methods to various scenarios Handle large sample experiments Analyze experimental probability patterns |
Q/A on advanced experimental techniques using extended trials
Discussions on sample size effects using comparative data Solving complex experimental problems using systematic methods Demonstrations using extended experimental procedures Explaining pattern analysis using accumulated data |
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books
Chalk and blackboard, number line drawings, probability scale charts, exercise books |
KLB Mathematics Book Three Pg 262-264
|
|
7 | 3 |
Probability
|
Probability Space
Theoretical Probability |
By the end of the
lesson, the learner
should be able to:
Calculate the probability space for the theoretical probability Define sample space systematically List all possible outcomes Apply sample space concepts |
Q/A on outcome listing using systematic enumeration
Discussions on complete outcome identification Solving sample space problems using organized listing Demonstrations using dice, cards, and spinner examples Explaining probability calculation using outcome counting |
Chalk and blackboard, playing cards (locally made), spinners from cardboard, exercise books
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books |
KLB Mathematics Book Three Pg 266-267
|
|
7 | 4 |
Probability
|
Theoretical Probability advanced
Theoretical Probability applications |
By the end of the
lesson, the learner
should be able to:
Calculate the probability space for the theoretical probability Apply theoretical probability to complex problems Handle multiple outcome scenarios Solve advanced theoretical problems |
Q/A on advanced theoretical applications using complex scenarios
Discussions on multiple outcome analysis using systematic methods Solving challenging theoretical problems using organized approaches Demonstrations using complex probability setups Explaining advanced theoretical concepts using detailed reasoning |
Chalk and blackboard, complex probability materials, advanced calculation aids, exercise books
Chalk and blackboard, local game examples, practical scenario materials, exercise books |
KLB Mathematics Book Three Pg 268-270
|
|
7 | 5 |
Probability
|
Combined Events
Combined Events OR probability |
By the end of the
lesson, the learner
should be able to:
Find the probability of a combined events Understand compound events and combinations Distinguish between different event types Apply basic combination rules |
Q/A on event combination using practical examples
Discussions on exclusive and inclusive event identification Solving basic combined event problems using visual methods Demonstrations using card drawing and dice rolling combinations Explaining combination principles using Venn diagrams |
Chalk and blackboard, playing cards, multiple dice, Venn diagram drawings, exercise books
Chalk and blackboard, Venn diagram materials, card examples, exercise books |
KLB Mathematics Book Three Pg 272-273
|
|
7 | 6 |
Probability
|
Independent Events
Independent Events advanced |
By the end of the
lesson, the learner
should be able to:
Find the probability of independent events Apply multiplication rule for independent events Calculate "A and B" probabilities Understand independence concepts |
Q/A on multiplication rule using independent event examples
Discussions on independence identification and verification Solving AND probability problems using systematic calculation Demonstrations using multiple coin tosses and dice combinations Explaining multiplication rule using logical reasoning |
Chalk and blackboard, multiple coins and dice, independence demonstration materials, exercise books
Chalk and blackboard, playing cards for replacement scenarios, multiple experimental setups, exercise books |
KLB Mathematics Book Three Pg 274-275
|
|
7 | 7 |
Probability
|
Independent Events applications
Tree Diagrams |
By the end of the
lesson, the learner
should be able to:
Find the probability of independent events Apply independence to practical problems Solve complex multi-event scenarios Integrate independence with other concepts |
Q/A on complex event analysis using systematic problem-solving
Discussions on rule selection and application strategies Solving advanced combined problems using integrated approaches Demonstrations using complex experimental scenarios Explaining strategic problem-solving using logical analysis |
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books
Chalk and blackboard, tree diagram templates, branching materials, exercise books |
KLB Mathematics Book Three Pg 278-280
|
|
8 |
END OF YEAR EXAMS AND CLOSING OF THE SCHOOL |
|||||||
9 |
END OF YEAR EXAMS AND CLOSING OF THE SCHOOL |
|||||||
10 | 1 |
Probability
|
Tree Diagrams advanced
|
By the end of the
lesson, the learner
should be able to:
Use tree diagrams to find probability Apply trees to multi-stage problems Handle complex sequential events Calculate final probabilities using trees |
Q/A on complex tree application using multi-stage examples
Discussions on replacement scenario handling Solving complex tree problems using systematic calculation Demonstrations using detailed tree constructions Explaining systematic probability calculation using tree methods |
Chalk and blackboard, complex tree examples, detailed calculation aids, exercise books
|
KLB Mathematics Book Three Pg 283-285
|
Your Name Comes Here