Home






SCHEME OF WORK
Mathematics
Form 3 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 1
Sequences and Series
Introduction to sequences and finding terms
By the end of the lesson, the learner should be able to:
Define sequences and identify sequence patterns
Find next terms using established patterns
Recognize different types of sequence patterns
Apply pattern recognition systematically
Q/A on number patterns from daily life
Discussions on counting patterns using classroom arrangements
Solving pattern completion problems step-by-step
Demonstrations using bead or stone arrangements
Explaining sequence terminology and pattern continuation
Chalk and blackboard, stones or beans for patterns, exercise books
KLB Mathematics Book Three Pg 207-208
2 2
Sequences and Series
General term of sequences and applications
Arithmetic sequences and nth term
By the end of the lesson, the learner should be able to:
Develop general rules for sequences
Express the nth term using algebraic notation
Find specific terms using general formulas
Apply sequence concepts to practical problems
Q/A on rule formulation using systematic approach
Discussions on algebraic expression development
Solving general term and application problems
Demonstrations using position-value relationships
Explaining practical relevance using community examples
Chalk and blackboard, numbered cards made from paper, exercise books
Chalk and blackboard, measuring tape or string, exercise books
KLB Mathematics Book Three Pg 207-208
2 3
Sequences and Series
Arithmetic sequence applications
By the end of the lesson, the learner should be able to:
Solve complex arithmetic sequence problems
Apply arithmetic sequences to real-world problems
Handle word problems involving arithmetic sequences
Model practical situations using arithmetic progressions
Q/A on practical applications using local business examples
Discussions on salary progression and savings plans
Solving real-world problems using sequence methods
Demonstrations using employment and finance scenarios
Explaining practical interpretation using meaningful contexts
Chalk and blackboard, local employment/savings examples, exercise books
KLB Mathematics Book Three Pg 209-210
2 4
Sequences and Series
Geometric sequences and nth term
By the end of the lesson, the learner should be able to:
Define geometric sequences and common ratios
Calculate common ratios correctly
Derive and apply the geometric nth term formula
Understand exponential growth patterns
Q/A on geometric patterns using multiplication examples
Discussions on ratio-based progressions and formula derivation
Solving geometric sequence problems systematically
Demonstrations using doubling and scaling examples
Explaining exponential structure using practical examples
Chalk and blackboard, objects for doubling demonstrations, exercise books
KLB Mathematics Book Three Pg 211-213
2 5
Sequences and Series
Geometric sequence applications
Arithmetic series and sum formula
By the end of the lesson, the learner should be able to:
Solve complex geometric sequence problems
Apply geometric sequences to real-world problems
Handle population growth and depreciation problems
Model exponential patterns using sequences
Q/A on practical applications using population/growth examples
Discussions on exponential growth in nature and economics
Solving real-world problems using geometric methods
Demonstrations using population and business scenarios
Explaining practical interpretation using meaningful contexts
Chalk and blackboard, population/growth data examples, exercise books
Chalk and blackboard, counting materials for summation, exercise books
KLB Mathematics Book Three Pg 211-213
2 6
Sequences and Series
Geometric series and applications
By the end of the lesson, the learner should be able to:
Define geometric series and understand convergence
Derive and apply geometric series formulas
Handle finite and infinite geometric series
Apply geometric series to practical situations
Q/A on geometric series concepts using multiplication examples
Discussions on convergence and formula applications
Solving geometric series problems including infinite cases
Demonstrations using geometric sum patterns
Explaining convergence using practical examples
Chalk and blackboard, convergence demonstration materials, exercise books
KLB Mathematics Book Three Pg 216-219
2 7
Sequences and Series
Mixed problems and advanced applications
By the end of the lesson, the learner should be able to:
Combine arithmetic and geometric concepts
Solve complex mixed sequence and series problems
Apply appropriate methods for different types
Model real-world situations using mathematical sequences
Q/A on problem type identification using systematic analysis
Discussions on method selection and comprehensive applications
Solving mixed problems using appropriate techniques
Demonstrations using interdisciplinary scenarios
Explaining method choice using logical reasoning
Chalk and blackboard, mixed problem collections, exercise books
KLB Mathematics Book Three Pg 207-219
3 1
Sequences and Series
Vectors (II)
Sequences in nature and technology
Coordinates in two dimensions
By the end of the lesson, the learner should be able to:
Identify mathematical patterns in natural phenomena
Analyze sequences in biological and technological contexts
Apply sequence concepts to environmental problems
Appreciate mathematics in the natural and modern world
Q/A on natural and technological patterns using examples
Discussions on biological sequences and digital applications
Solving nature and technology-based problems
Demonstrations using natural pattern examples
Explaining mathematical beauty using real phenomena
Chalk and blackboard, natural and technology examples, exercise books
Chalk and blackboard, squared paper or grid drawn on ground, exercise books
KLB Mathematics Book Three Pg 207-219
3 2
Vectors (II)
Coordinates in three dimensions
By the end of the lesson, the learner should be able to:
Identify the coordinates of a point in three dimensions
Understand the three-dimensional coordinate system
Plot points in 3D space systematically
Apply 3D coordinates to spatial problems
Q/A on 3D coordinate understanding using room corner references
Discussions on height, length, and width measurements
Solving 3D coordinate problems using systematic approaches
Demonstrations using classroom corners and building structures
Explaining 3D visualization using physical room examples
Chalk and blackboard, 3D models made from sticks and clay, exercise books
KLB Mathematics Book Three Pg 222
3 3
Vectors (II)
Column and position vectors in three dimensions
By the end of the lesson, the learner should be able to:
Find a displacement and represent it in column vector
Calculate the position vector
Express vectors in column form
Apply column vector notation systematically
Q/A on displacement representation using movement examples
Discussions on vector notation using organized column format
Solving column vector problems using systematic methods
Demonstrations using physical movement and direction examples
Explaining vector components using practical displacement
Chalk and blackboard, movement demonstration space, exercise books
KLB Mathematics Book Three Pg 223-224
3 4
Vectors (II)
Position vectors and applications
Column vectors in terms of unit vectors i, j, k
By the end of the lesson, the learner should be able to:
Calculate the position vector
Apply position vectors to geometric problems
Find distances using position vector methods
Solve positioning problems systematically
Q/A on position vector calculation using origin references
Discussions on position determination using coordinate methods
Solving position vector problems using systematic calculation
Demonstrations using fixed origin and variable endpoints
Explaining position concepts using practical location examples
Chalk and blackboard, origin marking systems, exercise books
Chalk and blackboard, direction indicators, unit vector reference charts, exercise books
KLB Mathematics Book Three Pg 224
3 5
Vectors (II)
Vector operations using unit vectors
By the end of the lesson, the learner should be able to:
Express vectors in terms of unit vectors
Perform vector addition using unit vector notation
Calculate vector subtraction with i, j, k components
Apply scalar multiplication to unit vectors
Q/A on vector operations using component-wise calculation
Discussions on systematic operation methods
Solving vector operation problems using organized approaches
Demonstrations using component separation and combination
Explaining operation logic using algebraic reasoning
Chalk and blackboard, component calculation aids, exercise books
KLB Mathematics Book Three Pg 226-228
3 6
Vectors (II)
Magnitude of a vector in three dimensions
By the end of the lesson, the learner should be able to:
Calculate the magnitude of a vector in three dimensions
Apply the 3D magnitude formula systematically
Find vector lengths in spatial contexts
Solve magnitude problems accurately
Q/A on 3D magnitude using extended Pythagorean methods
Discussions on spatial distance calculation using 3D techniques
Solving 3D magnitude problems using systematic calculation
Demonstrations using 3D distance examples
Explaining 3D magnitude using practical spatial examples
Chalk and blackboard, 3D measurement aids, exercise books
KLB Mathematics Book Three Pg 229-230
3 7
Vectors (II)
Magnitude applications and unit vectors
By the end of the lesson, the learner should be able to:
Calculate the magnitude of a vector in three dimensions
Find unit vectors from given vectors
Apply magnitude concepts to practical problems
Use magnitude in vector normalization
Q/A on magnitude and unit vector relationships
Discussions on normalization and direction finding
Solving magnitude and unit vector problems
Demonstrations using direction and length separation
Explaining practical applications using navigation examples
Chalk and blackboard, direction finding aids, exercise books
KLB Mathematics Book Three Pg 229-230
4 1
Vectors (II)
Parallel vectors
Collinearity
By the end of the lesson, the learner should be able to:
Identify parallel vectors
Determine when vectors are parallel
Apply parallel vector properties
Use scalar multiples in parallel relationships
Q/A on parallel identification using scalar multiple methods
Discussions on parallel relationships using geometric examples
Solving parallel vector problems using systematic testing
Demonstrations using parallel line and direction examples
Explaining parallel concepts using geometric reasoning
Chalk and blackboard, parallel line demonstrations, exercise books
Chalk and blackboard, straight-line demonstrations, exercise books
KLB Mathematics Book Three Pg 231-232
4 2
Vectors (II)
Advanced collinearity applications
By the end of the lesson, the learner should be able to:
Show that points are collinear
Apply collinearity to complex geometric problems
Integrate parallel and collinearity concepts
Solve advanced alignment problems
Q/A on advanced collinearity using complex scenarios
Discussions on geometric proof using vector methods
Solving challenging collinearity problems
Demonstrations using complex geometric constructions
Explaining advanced applications using comprehensive examples
Chalk and blackboard, complex geometric aids, exercise books
KLB Mathematics Book Three Pg 232-234
4 3
Vectors (II)
Proportional division of a line
By the end of the lesson, the learner should be able to:
Divide a line internally in the given ratio
Apply the internal division formula
Calculate division points using vector methods
Understand proportional division concepts
Q/A on internal division using systematic formula application
Discussions on ratio division using proportional methods
Solving internal division problems using organized approaches
Demonstrations using internal point construction examples
Explaining internal division using geometric visualization
Chalk and blackboard, internal division models, exercise books
KLB Mathematics Book Three Pg 237-238
4 4
Vectors (II)
External division of a line
Combined internal and external division
By the end of the lesson, the learner should be able to:
Divide a line externally in the given ratio
Apply the external division formula
Distinguish between internal and external division
Solve external division problems accurately
Q/A on external division using systematic formula application
Discussions on external point calculation using vector methods
Solving external division problems using careful approaches
Demonstrations using external point construction examples
Explaining external division using extended line concepts
Chalk and blackboard, external division models, exercise books
Chalk and blackboard, combined division models, exercise books
KLB Mathematics Book Three Pg 238-239
4 5
Vectors (II)
Ratio theorem
By the end of the lesson, the learner should be able to:
Express position vectors
Apply the ratio theorem to geometric problems
Use ratio theorem in complex calculations
Find position vectors using ratio relationships
Q/A on ratio theorem application using systematic methods
Discussions on position vector calculation using ratio methods
Solving ratio theorem problems using organized approaches
Demonstrations using ratio-based position finding
Explaining theorem applications using logical reasoning
Chalk and blackboard, ratio theorem aids, exercise books
KLB Mathematics Book Three Pg 240-242
4 6
Vectors (II)
Advanced ratio theorem applications
By the end of the lesson, the learner should be able to:
Find the position vector
Apply ratio theorem to complex scenarios
Solve multi-step ratio problems
Use ratio theorem in geometric proofs
Q/A on advanced ratio applications using complex problems
Discussions on multi-step ratio calculation
Solving challenging ratio problems using systematic methods
Demonstrations using comprehensive ratio examples
Explaining advanced applications using detailed reasoning
Chalk and blackboard, advanced ratio models, exercise books
KLB Mathematics Book Three Pg 242
4 7
Vectors (II)
Mid-point
Ratio theorem and midpoint integration
By the end of the lesson, the learner should be able to:
Find the mid-points of the given vectors
Apply midpoint formulas in vector contexts
Use midpoint concepts in geometric problems
Calculate midpoints systematically
Q/A on midpoint calculation using vector averaging methods
Discussions on midpoint applications using geometric examples
Solving midpoint problems using systematic approaches
Demonstrations using midpoint construction and calculation
Explaining midpoint concepts using practical examples
Chalk and blackboard, midpoint demonstration aids, exercise books
Chalk and blackboard, complex problem materials, exercise books
KLB Mathematics Book Three Pg 243
5 1
Vectors (II)
Advanced ratio theorem applications
By the end of the lesson, the learner should be able to:
Use ratio theorem to find the given vectors
Apply ratio theorem to challenging problems
Handle complex geometric applications
Demonstrate comprehensive ratio mastery
Q/A on comprehensive ratio understanding using advanced problems
Discussions on complex ratio relationships
Solving advanced ratio problems using systematic methods
Demonstrations using sophisticated geometric constructions
Explaining mastery using challenging applications
Chalk and blackboard, advanced geometric aids, exercise books
KLB Mathematics Book Three Pg 246-248
5 2
Vectors (II)
Applications of vectors in geometry
By the end of the lesson, the learner should be able to:
Use vectors to show the diagonals of a parallelogram
Apply vector methods to geometric proofs
Demonstrate parallelogram properties using vectors
Solve geometric problems using vector techniques
Q/A on geometric proof using vector methods
Discussions on parallelogram properties using vector analysis
Solving geometric problems using systematic vector techniques
Demonstrations using vector-based geometric constructions
Explaining geometric relationships using vector reasoning
Chalk and blackboard, parallelogram models, exercise books
KLB Mathematics Book Three Pg 248-249
5 3
Vectors (II)
Rectangle diagonal applications
Advanced geometric applications
By the end of the lesson, the learner should be able to:
Use vectors to show the diagonals of a rectangle
Apply vector methods to rectangle properties
Prove rectangle theorems using vectors
Compare parallelogram and rectangle diagonal properties
Q/A on rectangle properties using vector analysis
Discussions on diagonal relationships using vector methods
Solving rectangle problems using systematic approaches
Demonstrations using rectangle constructions and vector proofs
Explaining rectangle properties using vector reasoning
Chalk and blackboard, rectangle models, exercise books
Chalk and blackboard, advanced geometric models, exercise books
KLB Mathematics Book Three Pg 248-250
5 4
Binomial Expansion
Binomial expansions up to power four
By the end of the lesson, the learner should be able to:
Expand binomial function up to power four
Apply systematic multiplication methods
Recognize coefficient patterns in expansions
Use multiplication to expand binomial expressions
Q/A on algebraic multiplication using familiar expressions
Discussions on systematic expansion using step-by-step methods
Solving basic binomial multiplication problems
Demonstrations using area models and rectangular arrangements
Explaining pattern recognition using organized layouts
Chalk and blackboard, rectangular cutouts from paper, exercise books
KLB Mathematics Book Three Pg 256
5 5
Binomial Expansion
Binomial expansions up to power four (continued)
By the end of the lesson, the learner should be able to:
Expand binomial function up to power four
Handle increasingly complex coefficient patterns
Apply systematic expansion techniques efficiently
Verify expansions using substitution methods
Q/A on power expansion using multiplication techniques
Discussions on coefficient identification using pattern analysis
Solving expansion problems using systematic approaches
Demonstrations using geometric representations
Explaining verification methods using numerical substitution
Chalk and blackboard, squared paper for geometric models, exercise books
KLB Mathematics Book Three Pg 256
5 6
Binomial Expansion
Pascal's triangle
Pascal's triangle applications
By the end of the lesson, the learner should be able to:
Use Pascal's triangle
Construct Pascal's triangle systematically
Apply triangle coefficients for binomial expansions
Recognize number patterns in the triangle
Q/A on triangle construction using addition patterns
Discussions on coefficient relationships using triangle analysis
Solving triangle construction and application problems
Demonstrations using visual triangle building
Explaining pattern connections using systematic observation
Chalk and blackboard, triangular patterns drawn/cut from paper, exercise books
Chalk and blackboard, Pascal's triangle reference charts, exercise books
KLB Mathematics Book Three Pg 256-257
5 7
Binomial Expansion
Pascal's triangle (continued)
By the end of the lesson, the learner should be able to:
Use Pascal's triangle
Apply triangle to complex expansion problems
Handle higher powers using Pascal's triangle
Integrate triangle concepts with algebraic expansion
Q/A on advanced triangle applications using complex examples
Discussions on higher power expansion using triangle methods
Solving challenging problems using Pascal's triangle
Demonstrations using detailed triangle constructions
Explaining integration using comprehensive examples
Chalk and blackboard, advanced triangle patterns, exercise books
KLB Mathematics Book Three Pg 258-259
6 1
Binomial Expansion
Pascal's triangle advanced
By the end of the lesson, the learner should be able to:
Use Pascal's triangle
Apply general binomial theorem concepts
Understand combination notation in expansions
Use general term formula applications
Q/A on general formula understanding using pattern analysis
Discussions on combination notation using counting principles
Solving general term problems using formula application
Demonstrations using systematic formula usage
Explaining general principles using algebraic reasoning
Chalk and blackboard, combination calculation aids, exercise books
KLB Mathematics Book Three Pg 258-259
6 2
Binomial Expansion
Applications to numerical cases
By the end of the lesson, the learner should be able to:
Use binomial expansion to solve numerical problems
Apply expansions for numerical approximations
Calculate values using binomial methods
Understand practical applications of expansions
Q/A on numerical applications using approximation techniques
Discussions on calculation shortcuts using expansion methods
Solving numerical problems using binomial approaches
Demonstrations using practical calculation scenarios
Explaining approximation benefits using real examples
Chalk and blackboard, simple calculation aids, exercise books
KLB Mathematics Book Three Pg 259-260
6 3
Binomial Expansion
Probability
Applications to numerical cases (continued)
Introduction
By the end of the lesson, the learner should be able to:
Use binomial expansion to solve numerical problems
Apply binomial methods to complex calculations
Handle decimal approximations using expansions
Solve practical numerical problems
Q/A on advanced numerical applications using complex scenarios
Discussions on decimal approximation using expansion techniques
Solving challenging numerical problems using systematic methods
Demonstrations using detailed calculation procedures
Explaining practical relevance using real-world examples
Chalk and blackboard, advanced calculation examples, exercise books
Chalk and blackboard, coins, dice made from cardboard, exercise books
KLB Mathematics Book Three Pg 259-260
6 4
Probability
Experimental Probability
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Conduct probability experiments systematically
Record and analyze experimental data
Compare experimental results with expectations
Q/A on frequency counting using repeated experiments
Discussions on trial repetition and result recording
Solving experimental probability problems using data collection
Demonstrations using coin toss and dice roll experiments
Explaining frequency ratio calculations using practical examples
Chalk and blackboard, coins, cardboard dice, tally charts, exercise books
KLB Mathematics Book Three Pg 262-264
6 5
Probability
Experimental Probability applications
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Apply experimental methods to various scenarios
Handle large sample experiments
Analyze experimental probability patterns
Q/A on advanced experimental techniques using extended trials
Discussions on sample size effects using comparative data
Solving complex experimental problems using systematic methods
Demonstrations using extended experimental procedures
Explaining pattern analysis using accumulated data
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books
KLB Mathematics Book Three Pg 262-264
6 6
Probability
Range of Probability Measure
Probability Space
By the end of the lesson, the learner should be able to:
Calculate the range of probability measure
Express probabilities on scale from 0 to 1
Convert between fractions, decimals, and percentages
Interpret probability values correctly
Q/A on probability scale using number line representations
Discussions on probability conversion between forms
Solving probability scale problems using systematic methods
Demonstrations using probability line and scale examples
Explaining scale interpretation using practical scenarios
Chalk and blackboard, number line drawings, probability scale charts, exercise books
Chalk and blackboard, playing cards (locally made), spinners from cardboard, exercise books
KLB Mathematics Book Three Pg 265-266
6 7
Probability
Theoretical Probability
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply mathematical reasoning to find probabilities
Use equally likely outcome assumptions
Calculate theoretical probabilities systematically
Q/A on theoretical calculation using mathematical principles
Discussions on equally likely assumptions and calculations
Solving theoretical problems using systematic approaches
Demonstrations using fair dice and unbiased coin examples
Explaining mathematical probability using logical reasoning
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books
KLB Mathematics Book Three Pg 266-268
7 1
Probability
Theoretical Probability advanced
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply theoretical probability to complex problems
Handle multiple outcome scenarios
Solve advanced theoretical problems
Q/A on advanced theoretical applications using complex scenarios
Discussions on multiple outcome analysis using systematic methods
Solving challenging theoretical problems using organized approaches
Demonstrations using complex probability setups
Explaining advanced theoretical concepts using detailed reasoning
Chalk and blackboard, complex probability materials, advanced calculation aids, exercise books
KLB Mathematics Book Three Pg 268-270
7 2
Probability
Theoretical Probability applications
Combined Events
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply theoretical concepts to real situations
Solve practical probability problems
Interpret results in meaningful contexts
Q/A on practical probability using local examples
Discussions on real-world applications using community scenarios
Solving application problems using theoretical methods
Demonstrations using local games and practical situations
Explaining practical interpretation using meaningful contexts
Chalk and blackboard, local game examples, practical scenario materials, exercise books
Chalk and blackboard, playing cards, multiple dice, Venn diagram drawings, exercise books
KLB Mathematics Book Three Pg 268-270
7 3
Probability
Combined Events OR probability
By the end of the lesson, the learner should be able to:
Find the probability of a combined events
Apply addition rule for OR events
Calculate "A or B" probabilities
Handle mutually exclusive events
Q/A on addition rule application using systematic methods
Discussions on mutually exclusive identification and calculation
Solving OR probability problems using organized approaches
Demonstrations using card selection and event combination
Explaining addition rule logic using Venn diagrams
Chalk and blackboard, Venn diagram materials, card examples, exercise books
KLB Mathematics Book Three Pg 272-274
7 4
Probability
Independent Events
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Apply multiplication rule for independent events
Calculate "A and B" probabilities
Understand independence concepts
Q/A on multiplication rule using independent event examples
Discussions on independence identification and verification
Solving AND probability problems using systematic calculation
Demonstrations using multiple coin tosses and dice combinations
Explaining multiplication rule using logical reasoning
Chalk and blackboard, multiple coins and dice, independence demonstration materials, exercise books
KLB Mathematics Book Three Pg 274-275
7 5
Probability
Independent Events advanced
Independent Events applications
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Distinguish between independent and dependent events
Apply conditional probability concepts
Handle complex independence scenarios
Q/A on independence verification using mathematical methods
Discussions on dependence concepts using card drawing examples
Solving dependent and independent event problems using systematic approaches
Demonstrations using replacement and non-replacement scenarios
Explaining conditional probability using practical examples
Chalk and blackboard, playing cards for replacement scenarios, multiple experimental setups, exercise books
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books
KLB Mathematics Book Three Pg 276-278
7 6
Probability
Tree Diagrams
By the end of the lesson, the learner should be able to:
Draw tree diagrams to show the probability space
Construct tree diagrams systematically
Represent sequential events using trees
Apply tree diagram methods
Q/A on tree construction using step-by-step methods
Discussions on sequential event representation
Solving basic tree diagram problems using systematic drawing
Demonstrations using branching examples and visual organization
Explaining tree structure using logical branching principles
Chalk and blackboard, tree diagram templates, branching materials, exercise books
KLB Mathematics Book Three Pg 282
7 7
Probability
Tree Diagrams advanced
By the end of the lesson, the learner should be able to:
Use tree diagrams to find probability
Apply trees to multi-stage problems
Handle complex sequential events
Calculate final probabilities using trees
Q/A on complex tree application using multi-stage examples
Discussions on replacement scenario handling
Solving complex tree problems using systematic calculation
Demonstrations using detailed tree constructions
Explaining systematic probability calculation using tree methods
Chalk and blackboard, complex tree examples, detailed calculation aids, exercise books
KLB Mathematics Book Three Pg 283-285
8

END OF THE TERM EXAMS

9

CLOSING


Your Name Comes Here


Download

Feedback