If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 | 1 |
Further Logarithms
|
Introduction
|
By the end of the
lesson, the learner
should be able to:
Use calculators to find the logarithm of numbers Understand logarithmic notation and concepts Apply basic logarithmic principles |
Q/A on exponential and logarithmic relationships
Discussions on logarithm definition and properties Solving basic logarithm problems Demonstrations of calculator usage Explaining logarithm-exponential connections |
Calculators, logarithm definition charts
|
KLB Mathematics Book Three Pg 89
|
|
1 | 2 |
Further Logarithms
|
Laws of logarithms
|
By the end of the
lesson, the learner
should be able to:
State the laws of logarithms Apply basic logarithmic laws Use logarithm laws for simple calculations |
Q/A on logarithmic law foundations
Discussions on multiplication and division laws Solving problems using basic laws Demonstrations of law applications Explaining law derivations |
Calculators, logarithm law charts
Calculators, advanced law worksheets |
KLB Mathematics Book Three Pg 90-93
|
|
1 | 3 |
Further Logarithms
|
Laws of logarithms
|
By the end of the
lesson, the learner
should be able to:
Use laws of logarithms to solve problems Master all logarithmic laws comprehensively Apply laws to challenging mathematical problems |
Q/A on comprehensive law understanding
Discussions on law selection strategies Solving challenging logarithmic problems Demonstrations of optimal law application Explaining problem-solving approaches |
Calculators, challenging problem sets
|
KLB Mathematics Book Three Pg 90-93
|
|
1 | 4 |
Further Logarithms
|
Logarithmic equations and expressions
|
By the end of the
lesson, the learner
should be able to:
Solve the logarithmic equations and expressions Apply algebraic methods to logarithmic equations Verify solutions of logarithmic equations |
Q/A on equation-solving techniques
Discussions on logarithmic equation types Solving basic logarithmic equations Demonstrations of solution methods Explaining verification techniques |
Calculators, equation-solving guides
|
KLB Mathematics Book Three Pg 93-95
|
|
1 | 5 |
Further Logarithms
|
Logarithmic equations and expressions
Further computation using logarithms |
By the end of the
lesson, the learner
should be able to:
Solve the logarithmic equations and expressions Handle complex logarithmic equations Apply advanced solution techniques |
Q/A on advanced equation methods
Discussions on complex equation structures Solving challenging logarithmic equations Demonstrations of sophisticated techniques Explaining advanced solution strategies |
Calculators, advanced equation worksheets
Calculators, computation worksheets |
KLB Mathematics Book Three Pg 93-95
|
|
1 | 6 |
Further Logarithms
|
Further computation using logarithms
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Apply logarithms to intermediate calculations Handle multi-step logarithmic computations |
Q/A on intermediate computational skills
Discussions on multi-step processes Solving intermediate computation problems Demonstrations of systematic approaches Explaining step-by-step methods |
Calculators, intermediate problem sets
|
KLB Mathematics Book Three Pg 95-96
|
|
1 | 7 |
Further Logarithms
|
Further computation using logarithms
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Master advanced logarithmic computations Apply logarithms to complex mathematical scenarios |
Q/A on advanced computational mastery
Discussions on complex calculation strategies Solving advanced computation problems Demonstrations of sophisticated methods Explaining optimal computational approaches |
Calculators, advanced computation guides
|
KLB Mathematics Book Three Pg 95-96
|
|
2 | 1 |
Further Logarithms
|
Problem solving
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Apply logarithms to computational applications Integrate logarithmic concepts systematically |
Q/A on integrated problem-solving
Discussions on application strategies Solving comprehensive computational problems Demonstrations of integrated approaches Explaining systematic problem-solving |
Calculators, comprehensive problem sets
Calculators, real-world application examples |
KLB Mathematics Book Three Pg 97
|
|
2 | 2 |
Commercial Arithmetic
|
Simple interest
|
By the end of the
lesson, the learner
should be able to:
Calculate simple interest Apply simple interest formula Solve basic interest problems |
Q/A on interest concepts and terminology
Discussions on principal, rate, and time Solving basic simple interest problems Demonstrations of formula application Explaining interest calculations |
Calculators, simple interest charts
|
KLB Mathematics Book Three Pg 98-99
|
|
2 | 3 |
Commercial Arithmetic
|
Simple interest
|
By the end of the
lesson, the learner
should be able to:
Calculate simple interest Solve complex simple interest problems Apply simple interest to real-world situations |
Q/A on advanced simple interest concepts
Discussions on practical applications Solving complex interest problems Demonstrations of real-world scenarios Explaining business applications |
Calculators, real-world problem sets
|
KLB Mathematics Book Three Pg 98-101
|
|
2 | 4 |
Commercial Arithmetic
|
Compound interest
|
By the end of the
lesson, the learner
should be able to:
Calculate the compound interest Apply compound interest formula Understand compounding concepts |
Q/A on compound interest principles
Discussions on compounding frequency Solving basic compound interest problems Demonstrations of compound calculations Explaining compounding effects |
Calculators, compound interest tables
Calculators, comparison worksheets |
KLB Mathematics Book Three Pg 102-106
|
|
2 | 5 |
Commercial Arithmetic
|
Appreciation
|
By the end of the
lesson, the learner
should be able to:
Calculate the appreciation value of items Apply appreciation concepts Solve appreciation problems |
Q/A on appreciation concepts
Discussions on asset value increases Solving appreciation calculation problems Demonstrations of value growth Explaining appreciation applications |
Calculators, appreciation examples
|
KLB Mathematics Book Three Pg 108
|
|
2 | 6 |
Commercial Arithmetic
|
Depreciation
|
By the end of the
lesson, the learner
should be able to:
Calculate the depreciation value of items Apply depreciation methods Solve depreciation problems |
Q/A on depreciation concepts and methods
Discussions on asset value decreases Solving depreciation calculation problems Demonstrations of depreciation methods Explaining business depreciation |
Calculators, depreciation charts
|
KLB Mathematics Book Three Pg 109
|
|
2 | 7 |
Commercial Arithmetic
|
Hire purchase
|
By the end of the
lesson, the learner
should be able to:
Find the hire purchase Calculate hire purchase terms Understand hire purchase concepts |
Q/A on hire purchase principles
Discussions on installment buying Solving basic hire purchase problems Demonstrations of payment calculations Explaining hire purchase benefits |
Calculators, hire purchase examples
Calculators, complex hire purchase worksheets |
KLB Mathematics Book Three Pg 110-112
|
|
3 | 1 |
Commercial Arithmetic
|
Income tax and P.A.Y.E
|
By the end of the
lesson, the learner
should be able to:
Calculate the income tax Calculate the P.A.Y.E Apply tax calculation methods |
Q/A on tax system concepts
Discussions on income tax and P.A.Y.E systems Solving tax calculation problems Demonstrations of tax computation Explaining taxation principles |
Income tax tables, calculators
|
KLB Mathematics Book Three Pg 112-117
|
|
3 | 2 |
Matrices
|
Introduction and real-life applications
Order of a matrix and elements Square matrices, row and column matrices |
By the end of the
lesson, the learner
should be able to:
Define matrices and identify matrix applications Recognize matrices in everyday contexts Understand tabular data representation Appreciate the importance of matrices |
Q/A on tabular data in daily life
Discussions on school exam results tables Analyzing bus timetables and price lists Demonstrations using newspaper sports tables Explaining matrix notation using grid patterns |
Old newspapers with league tables, chalk and blackboard, exercise books
Chalk and blackboard, ruled exercise books, class register Paper cutouts, chalk and blackboard, counters or bottle tops |
KLB Mathematics Book Three Pg 168-169
|
|
3 | 3 |
Matrices
|
Addition of matrices
Subtraction of matrices Combined addition and subtraction |
By the end of the
lesson, the learner
should be able to:
Add matrices of the same order Apply matrix addition rules correctly Understand compatibility for addition Solve matrix addition problems systematically |
Q/A on matrix addition using number examples
Discussions on element-wise addition using counters Solving basic addition using blackboard work Demonstrations using physical counting objects Explaining compatibility using size comparisons |
Counters or stones, chalk and blackboard, exercise books
Chalk and blackboard, exercise books, number cards made from cardboard Chalk and blackboard, exercise books, locally made operation cards |
KLB Mathematics Book Three Pg 170-171
|
|
3 |
Cat 2 exams 2025 |
|||||||
4 | 1 |
Matrices
|
Scalar multiplication
Introduction to matrix multiplication |
By the end of the
lesson, the learner
should be able to:
Multiply matrices by scalar quantities Apply scalar multiplication rules Understand the effect of scalar multiplication Solve scalar multiplication problems |
Q/A on scalar multiplication using times tables
Discussions on scaling using multiplication concepts Solving scalar problems using repeated addition Demonstrations using groups of objects Explaining scalar effects using enlargement concepts |
Beans or stones for grouping, chalk and blackboard, exercise books
Chalk and blackboard, rulers for tracing, exercise books |
KLB Mathematics Book Three Pg 174-175
|
|
4 | 2 |
Matrices
|
Matrix multiplication (2×2 matrices)
Matrix multiplication (larger matrices) |
By the end of the
lesson, the learner
should be able to:
Multiply 2×2 matrices systematically Apply correct multiplication procedures Calculate matrix products accurately Understand result matrix dimensions |
Q/A on 2×2 matrix multiplication using simple numbers
Discussions on systematic calculation methods Solving 2×2 problems using step-by-step approach Demonstrations using organized blackboard layout Explaining product formation using grid method |
Chalk and blackboard, exercise books, homemade grid templates
Chalk and blackboard, large sheets of paper for working, exercise books |
KLB Mathematics Book Three Pg 176-179
|
|
4 | 3 |
Matrices
|
Properties of matrix multiplication
|
By the end of the
lesson, the learner
should be able to:
Understand non-commutativity of matrix multiplication Apply associative and distributive properties Distinguish between pre and post multiplication Solve problems involving multiplication properties |
Q/A on multiplication properties using counterexamples
Discussions on order importance using practical examples Solving property-based problems using verification Demonstrations using concrete examples Explaining distributive law using expansion |
Chalk and blackboard, exercise books, cardboard for property cards
|
KLB Mathematics Book Three Pg 174-179
|
|
4 | 4 |
Matrices
|
Real-world matrix multiplication applications
|
By the end of the
lesson, the learner
should be able to:
Apply matrix multiplication to practical problems Solve business and economic applications Calculate costs, revenues, and quantities Interpret matrix multiplication results |
Q/A on practical applications using local business examples
Discussions on market problems using familiar contexts Solving real-world problems using matrix methods Demonstrations using shop keeper scenarios Explaining result interpretation using meaningful contexts |
Chalk and blackboard, local price lists, exercise books
|
KLB Mathematics Book Three Pg 176-179
|
|
4 | 5 |
Matrices
|
Identity matrix
Determinant of 2×2 matrices |
By the end of the
lesson, the learner
should be able to:
Define and identify identity matrices Understand identity matrix properties Apply identity matrices in multiplication Recognize the multiplicative identity role |
Q/A on identity concepts using number 1 analogy
Discussions on multiplicative identity using examples Solving identity problems using pattern recognition Demonstrations using multiplication by 1 concept Explaining diagonal properties using visual patterns |
Chalk and blackboard, exercise books, pattern cards made from paper
Chalk and blackboard, exercise books, crossed sticks for demonstration |
KLB Mathematics Book Three Pg 182-183
|
|
4 | 6 |
Matrices
|
Inverse of 2×2 matrices - theory
|
By the end of the
lesson, the learner
should be able to:
Understand the concept of matrix inverse Identify conditions for matrix invertibility Apply the inverse formula for 2×2 matrices Understand singular matrices |
Q/A on inverse concepts using reciprocal analogy
Discussions on invertibility using determinant conditions Solving basic inverse problems using formula Demonstrations using step-by-step method Explaining singular matrices using zero determinant |
Chalk and blackboard, exercise books, fraction examples
|
KLB Mathematics Book Three Pg 183-185
|
|
4 | 7 |
Matrices
|
Inverse of 2×2 matrices - practice
|
By the end of the
lesson, the learner
should be able to:
Calculate inverses of 2×2 matrices systematically Verify inverse calculations through multiplication Apply inverse properties correctly Solve complex inverse problems |
Q/A on inverse calculation verification methods
Discussions on accuracy checking using multiplication Solving advanced inverse problems using practice Demonstrations using verification procedures Explaining checking methods using examples |
Chalk and blackboard, exercise books, scrap paper for verification
|
KLB Mathematics Book Three Pg 185-187
|
|
5 | 1 |
Matrices
|
Introduction to solving simultaneous equations
Solving 2×2 simultaneous equations using matrices |
By the end of the
lesson, the learner
should be able to:
Understand matrix representation of simultaneous equations Identify coefficient and constant matrices Set up matrix equations correctly Recognize the structure of linear systems |
Q/A on equation representation using familiar equations
Discussions on coefficient identification using examples Solving setup problems using systematic approach Demonstrations using equation breakdown method Explaining structure using organized layout |
Chalk and blackboard, exercise books, equation examples from previous topics
Chalk and blackboard, exercise books, previous elimination method examples |
KLB Mathematics Book Three Pg 188-189
|
|
5 | 2 |
Matrices
|
Advanced simultaneous equation problems
|
By the end of the
lesson, the learner
should be able to:
Solve complex simultaneous equation systems Handle systems with no solution or infinite solutions Interpret determinant values in solution context Apply matrix methods to word problems |
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation Solving challenging problems using complete analysis Demonstrations using classification methods Explaining geometric meaning using line concepts |
Chalk and blackboard, exercise books, graph paper if available
|
KLB Mathematics Book Three Pg 188-190
|
|
5 | 3 |
Matrices
|
Matrix applications in real-world problems
|
By the end of the
lesson, the learner
should be able to:
Apply matrix operations to practical scenarios Solve business, engineering, and scientific problems Model real situations using matrices Interpret matrix solutions in context |
Q/A on practical applications using local examples
Discussions on modeling using familiar situations Solving comprehensive problems using matrix tools Demonstrations using community-based scenarios Explaining solution interpretation using meaningful contexts |
Chalk and blackboard, local business examples, exercise books
|
KLB Mathematics Book Three Pg 168-190
|
|
5 | 4 |
Matrices
|
Transpose of matrices
Matrix equation solving |
By the end of the
lesson, the learner
should be able to:
Define and calculate matrix transpose Understand transpose properties Apply transpose operations correctly Solve problems involving transpose |
Q/A on transpose concepts using reflection ideas
Discussions on row-column interchange using visual methods Solving transpose problems using systematic approach Demonstrations using flip and rotate concepts Explaining properties using symmetry ideas |
Chalk and blackboard, exercise books, paper cutouts for demonstration
Chalk and blackboard, exercise books, algebra reference examples |
KLB Mathematics Book Three Pg 170-174
|
|
5 | 5 |
Formulae and Variations
|
Introduction to formulae
|
By the end of the
lesson, the learner
should be able to:
Define formulae and identify formula components Recognize formulae in everyday contexts Understand the relationship between variables Appreciate the importance of formulae in mathematics |
Q/A on familiar formulae from daily life
Discussions on cooking recipes as formulae Analyzing distance-time relationships using walking examples Demonstrations using perimeter and area calculations Explaining formula notation using simple examples |
Chalk and blackboard, measuring tape or string, exercise books
|
KLB Mathematics Book Three Pg 191-193
|
|
5 | 6 |
Formulae and Variations
|
Subject of a formula - basic cases
|
By the end of the
lesson, the learner
should be able to:
Make simple variables the subject of formulae Apply inverse operations to rearrange formulae Understand the concept of subject change Solve basic subject transformation problems |
Q/A on inverse operations using number examples
Discussions on formula rearrangement using balance method Solving basic subject change problems using step-by-step approach Demonstrations using see-saw balance analogy Explaining inverse operations using practical examples |
Chalk and blackboard, simple balance (stones and stick), exercise books
|
KLB Mathematics Book Three Pg 191-193
|
|
5 | 7 |
Formulae and Variations
|
Subject of a formula - intermediate cases
|
By the end of the
lesson, the learner
should be able to:
Make complex variables the subject of formulae Handle formulae with fractions and powers Apply multiple inverse operations systematically Solve intermediate difficulty problems |
Q/A on complex rearrangement using systematic approach
Discussions on fraction handling using common denominators Solving intermediate problems using organized methods Demonstrations using step-by-step blackboard work Explaining systematic approaches using flowcharts |
Chalk and blackboard, fraction strips made from paper, exercise books
|
KLB Mathematics Book Three Pg 191-193
|
|
6 | 1 |
Formulae and Variations
|
Subject of a formula - advanced cases
Applications of formula manipulation |
By the end of the
lesson, the learner
should be able to:
Make variables subject in complex formulae Handle square roots and quadratic expressions Apply advanced algebraic manipulation Solve challenging subject transformation problems |
Q/A on advanced manipulation using careful steps
Discussions on square root handling using examples Solving complex problems using systematic approach Demonstrations using detailed blackboard work Explaining quadratic handling using factoring |
Chalk and blackboard, squared paper patterns, exercise books
Chalk and blackboard, local measurement tools, exercise books |
KLB Mathematics Book Three Pg 191-193
|
|
6 |
End term 3 examination |
|||||||
7 | 1 |
Formulae and Variations
|
Introduction to variation
|
By the end of the
lesson, the learner
should be able to:
Understand the concept of variation Distinguish between variables and constants Recognize variation in everyday situations Identify different types of variation |
Q/A on variable relationships using daily examples
Discussions on changing quantities in nature and commerce Analyzing variation patterns using local market prices Demonstrations using speed-time relationships Explaining variation types using practical examples |
Chalk and blackboard, local price lists from markets, exercise books
|
KLB Mathematics Book Three Pg 194-196
|
|
7 | 2 |
Formulae and Variations
|
Direct variation - introduction
|
By the end of the
lesson, the learner
should be able to:
Understand direct proportionality concepts Recognize direct variation patterns Use direct variation notation correctly Calculate constants of proportionality |
Q/A on direct relationships using simple examples
Discussions on proportional changes using market scenarios Solving basic direct variation problems Demonstrations using doubling and tripling examples Explaining proportionality using ratio concepts |
Chalk and blackboard, beans or stones for counting, exercise books
|
KLB Mathematics Book Three Pg 194-196
|
|
7 | 3 |
Compound Proportion and Rates of Work
|
Compound Proportions
Compound Proportions applications |
By the end of the
lesson, the learner
should be able to:
Find the compound proportions Understand compound proportion relationships Apply compound proportion methods systematically Solve problems involving multiple variables |
Q/A on compound relationships using practical examples
Discussions on multiple variable situations using local scenarios Solving compound proportion problems using systematic methods Demonstrations using business and trade examples Explaining compound proportion logic using step-by-step reasoning |
Chalk and blackboard, local business examples, calculators if available, exercise books
Chalk and blackboard, construction/farming examples, exercise books |
KLB Mathematics Book Three Pg 288-290
|
|
7 | 4 |
Compound Proportion and Rates of Work
|
Proportional Parts
|
By the end of the
lesson, the learner
should be able to:
Calculate the proportional parts Understand proportional division concepts Apply proportional parts to sharing problems Solve distribution problems using proportional methods |
Q/A on proportional sharing using practical examples
Discussions on fair distribution using ratio concepts Solving proportional parts problems using systematic division Demonstrations using sharing scenarios and inheritance examples Explaining proportional distribution using logical reasoning |
Chalk and blackboard, sharing demonstration materials, exercise books
|
KLB Mathematics Book Three Pg 291-293
|
|
7 | 5 |
Compound Proportion and Rates of Work
|
Proportional Parts applications
|
By the end of the
lesson, the learner
should be able to:
Calculate the proportional parts Apply proportional parts to complex sharing scenarios Handle business partnership profit sharing Solve advanced proportional distribution problems |
Q/A on complex proportional sharing using business examples
Discussions on partnership profit distribution using practical scenarios Solving advanced proportional problems using systematic methods Demonstrations using business partnership and investment examples Explaining practical applications using meaningful contexts |
Chalk and blackboard, business partnership examples, exercise books
|
KLB Mathematics Book Three Pg 291-293
|
|
7 | 6 |
Compound Proportion and Rates of Work
|
Rates of Work
Rates of Work and Mixtures |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of work Understand work rate relationships Apply time-work-efficiency concepts Solve basic rate of work problems |
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios Solving basic rate of work problems using systematic methods Demonstrations using construction and labor examples Explaining work rate concepts using practical work situations |
Chalk and blackboard, work scenario examples, exercise books
Chalk and blackboard, mixture demonstration materials, exercise books |
KLB Mathematics Book Three Pg 294-295
|
|
7 | 7 |
Graphical Methods
|
Tables of given relations
|
By the end of the
lesson, the learner
should be able to:
Draw tables of given relations Construct organized data tables systematically Prepare data for graphical representation Understand relationship between variables |
Q/A on table construction using systematic data organization
Discussions on variable relationships using practical examples Solving table preparation problems using organized methods Demonstrations using data collection and tabulation Explaining systematic data arrangement using logical procedures |
Chalk and blackboard, ruled paper for tables, exercise books
|
KLB Mathematics Book Three Pg 299
|
|
8 | 1 |
Graphical Methods
|
Graphs of given relations
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of given relations Plot points accurately on coordinate systems Connect points to show relationships Interpret graphs from given data |
Q/A on graph plotting using coordinate methods
Discussions on point plotting and curve drawing Solving graph construction problems using systematic plotting Demonstrations using coordinate systems and curve sketching Explaining graph interpretation using visual analysis |
Chalk and blackboard, graph paper or grids, rulers, exercise books
|
KLB Mathematics Book Three Pg 300
|
|
8 | 2 |
Graphical Methods
|
Tables and graphs integration
Introduction to cubic equations |
By the end of the
lesson, the learner
should be able to:
Draw tables and graphs of given relations Integrate table construction with graph plotting Analyze relationships using both methods Compare tabular and graphical representations |
Q/A on integrated table-graph construction using comprehensive methods
Discussions on data flow from tables to graphs Solving integrated problems using systematic approaches Demonstrations using complete data analysis procedures Explaining relationship analysis using combined methods |
Chalk and blackboard, graph paper, data examples, exercise books
Chalk and blackboard, cubic function examples, exercise books |
KLB Mathematics Book Three Pg 299-300
|
|
8 | 3 |
Graphical Methods
|
Graphical solution of cubic equations
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of cubic equations Plot cubic curves accurately Use graphs to solve cubic equations Find roots using graphical methods |
Q/A on cubic curve plotting using systematic point plotting
Discussions on curve characteristics and root finding Solving cubic graphing problems using careful plotting Demonstrations using cubic curve construction Explaining root identification using graph analysis |
Chalk and blackboard, graph paper, cubic equation examples, exercise books
|
KLB Mathematics Book Three Pg 302-304
|
|
8 | 4 |
Graphical Methods
|
Advanced cubic solutions
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of cubic equations Apply graphical methods to complex cubic problems Handle multiple root scenarios Verify solutions using graphical analysis |
Q/A on advanced cubic graphing using complex examples
Discussions on multiple root identification using graph analysis Solving challenging cubic problems using systematic methods Demonstrations using detailed cubic constructions Explaining verification methods using graphical checking |
Chalk and blackboard, advanced graph examples, exercise books
|
KLB Mathematics Book Three Pg 302-304
|
|
8 | 5 |
Graphical Methods
|
Introduction to rates of change
Average rates of change |
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Understand rate of change concepts Apply rate calculations to practical problems Interpret rate meanings in context |
Q/A on rate calculation using slope methods
Discussions on rate interpretation using practical examples Solving basic rate problems using systematic calculation Demonstrations using speed-time and distance examples Explaining rate concepts using practical analogies |
Chalk and blackboard, rate calculation examples, exercise books
Chalk and blackboard, graph paper, rate examples, exercise books |
KLB Mathematics Book Three Pg 304-306
|
|
8 | 6 |
Graphical Methods
|
Advanced average rates
|
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Handle complex rate scenarios Apply rates to business and scientific problems Integrate rate concepts with other topics |
Q/A on complex rate applications using advanced scenarios
Discussions on business and scientific rate applications Solving challenging rate problems using integrated methods Demonstrations using comprehensive rate examples Explaining advanced applications using detailed analysis |
Chalk and blackboard, advanced rate scenarios, exercise books
|
KLB Mathematics Book Three Pg 304-310
|
|
8 | 7 |
Graphical Methods
|
Introduction to instantaneous rates
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Understand instantaneous rate concepts Distinguish between average and instantaneous rates Apply instant rate methods |
Q/A on instantaneous rate concepts using limiting methods
Discussions on instant vs average rate differences Solving basic instantaneous rate problems Demonstrations using tangent line concepts Explaining instantaneous rate using practical examples |
Chalk and blackboard, tangent line examples, exercise books
|
KLB Mathematics Book Three Pg 310-311
|
|
9 | 1 |
Graphical Methods
|
Rate of change at an instant
Advanced instantaneous rates |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Apply instantaneous rate methods systematically Use graphical techniques for instant rates Solve practical instantaneous rate problems |
Q/A on instantaneous rate calculation using graphical methods
Discussions on tangent line slope interpretation Solving instantaneous rate problems using systematic approaches Demonstrations using detailed tangent constructions Explaining practical applications using real scenarios |
Chalk and blackboard, detailed graph examples, exercise books
Chalk and blackboard, advanced rate examples, exercise books |
KLB Mathematics Book Three Pg 310-311
|
|
9 | 2 |
Graphical Methods
|
Empirical graphs
|
By the end of the
lesson, the learner
should be able to:
Draw the empirical graphs Understand empirical data representation Plot experimental data systematically Analyze empirical relationships |
Q/A on empirical data plotting using experimental examples
Discussions on real data representation using practical scenarios Solving empirical graphing problems using systematic methods Demonstrations using experimental data examples Explaining empirical analysis using practical interpretations |
Chalk and blackboard, experimental data examples, exercise books
|
KLB Mathematics Book Three Pg 315-316
|
|
9 | 3 |
Graphical Methods
|
Advanced empirical methods
|
By the end of the
lesson, the learner
should be able to:
Draw the empirical graphs Apply empirical methods to complex data Handle large datasets and trends Interpret empirical results meaningfully |
Q/A on advanced empirical techniques using complex datasets
Discussions on trend analysis using systematic methods Solving challenging empirical problems using organized approaches Demonstrations using comprehensive data analysis Explaining advanced interpretations using detailed reasoning |
Chalk and blackboard, complex data examples, exercise books
|
KLB Mathematics Book Three Pg 315-321
|
|
9 |
Cat 1 exams 2026 term 1 |
Your Name Comes Here