If this scheme pleases you, click here to download.
WK | LSN | STRAND | SUB-STRAND | LESSON LEARNING OUTCOMES | LEARNING EXPERIENCES | KEY INQUIRY QUESTIONS | LEARNING RESOURCES | ASSESSMENT METHODS | REFLECTION |
---|---|---|---|---|---|---|---|---|---|
1 | 1 |
Geometry
|
Coordinates and Graphs - Plotting points on a Cartesian plane
Coordinates and Graphs - Drawing a straight line graph |
By the end of the
lesson, the learner
should be able to:
Plot out points on a Cartesian plane; Work in groups to locate points on a plane; Appreciate the use of Cartesian plane in locating positions. |
Learners are guided to work in groups and locate the point of intersection of the x-coordinate and the y-coordinates on a Cartesian plane.
Learners plot given points such as P(3,4), Q(4,-2), R(-3,-5) and S(-1,5) on a Cartesian plane. |
How do we locate a point on a Cartesian plane?
|
-KLB Mathematics Grade 9 Textbook page 154
-Graph paper -Ruler -Pencils -Charts with Cartesian plane -Colored markers -KLB Mathematics Grade 9 Textbook page 155 -Calculator -Blackboard illustration |
-Oral questions
-Observation
-Written exercise
-Peer assessment
|
|
1 | 2 |
Geometry
|
Coordinates and Graphs - Completing tables for linear equations
Coordinates and Graphs - Drawing parallel lines |
By the end of the
lesson, the learner
should be able to:
Complete tables of values for different linear equations; Plot points from completed tables on a Cartesian plane; Enjoy drawing straight line graphs from tables of values. |
Learners complete tables of values for given linear equations such as y=2x+3.
Learners plot the points on a Cartesian plane and join them using a straight edge to form a straight line graph. Learners work in pairs to generate their own tables of values for different equations. |
How do we use tables of values to draw straight line graphs?
|
-KLB Mathematics Grade 9 Textbook page 156
-Graph paper -Ruler -Pencils -Calculator -Charts with prepared tables -KLB Mathematics Grade 9 Textbook page 157 -Set square -Charts showing parallel lines |
-Oral questions
-Peer assessment
-Written exercise
-Checklist
|
|
1 | 3 |
Geometry
|
Coordinates and Graphs - Relating gradients of parallel lines
Coordinates and Graphs - Drawing perpendicular lines |
By the end of the
lesson, the learner
should be able to:
Determine the gradients of straight lines; Relate the gradients of parallel lines; Value the importance of gradient in determining parallel lines. |
Learners work in groups to generate tables of values for equations y=3x-4 and y=3x-1.
Learners draw the lines on the Cartesian plane and determine their gradients. Learners compare the gradients and discuss the relationship between the gradients of parallel lines. |
What is the relationship between the gradients of parallel lines?
|
-KLB Mathematics Grade 9 Textbook page 158
-Graph paper -Ruler -Calculator -Manila paper -Digital devices (optional) -KLB Mathematics Grade 9 Textbook page 159 -Protractor -Set square -Charts showing perpendicular lines |
-Oral questions
-Group discussion
-Written exercise
-Assessment rubrics
|
|
1 | 4 |
Geometry
|
Coordinates and Graphs - Relating gradients of perpendicular lines
Coordinates and Graphs - Applications of straight line graphs |
By the end of the
lesson, the learner
should be able to:
Determine gradients of perpendicular lines; Find the relationship between gradients of perpendicular lines; Appreciate the application of gradient in determining perpendicular lines. |
Learners work in groups to generate tables of values for equations such as y=3x+2 and y=-1/3x+1.
Learners draw the lines on the Cartesian plane, determine their gradients, and find the product of the gradients. Learners discuss the relationship between the gradients of perpendicular lines. |
What is the product of the gradients of two perpendicular lines?
|
-KLB Mathematics Grade 9 Textbook page 160
-Graph paper -Ruler -Calculator -Set square -Charts with examples of perpendicular lines -KLB Mathematics Grade 9 Textbook page 165 -Charts showing real-life applications -Manila paper for presentations |
-Oral questions
-Group work
-Written exercise
-Assessment rubrics
|
|
1 | 5 |
Geometry
|
Scale Drawing - Compass directions
Scale Drawing - Compass bearings |
By the end of the
lesson, the learner
should be able to:
Identify compass and true bearings in real-life situations; Draw and discuss the compass directions; Appreciate the use of compass in navigation. |
Learners carry out an activity outside the classroom where a member stands with hands spread out.
Learners draw a diagram showing the directions of the right hand, left hand, front, and back, labeling them in terms of North, South, East, and West. Learners discuss situations where knowledge of compass direction is used. |
How do we use compass directions to locate positions?
|
-KLB Mathematics Grade 9 Textbook page 168
-Magnetic compass -Plain paper -Colored pencils -Charts showing compass directions -Maps -KLB Mathematics Grade 9 Textbook page 170 -Protractor -Ruler -Charts showing compass bearings -Manila paper |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
2 | 1 |
Geometry
|
Scale Drawing - True bearings
Scale Drawing - Determining compass bearings |
By the end of the
lesson, the learner
should be able to:
Identify true bearings in real-life situations; Draw and measure true bearings; Appreciate the difference between compass and true bearings. |
Learners trace diagrams showing true bearings.
Learners measure angles from North in the clockwise direction. Learners draw accurately true bearings such as 008°, 036°, 126°, etc. |
What is the difference between compass bearings and true bearings?
|
-KLB Mathematics Grade 9 Textbook page 171
-Protractor -Ruler -Plain paper -Charts showing true bearings -Diagrams for tracing -KLB Mathematics Grade 9 Textbook page 173 -Charts with bearing examples -Manila paper for group work |
-Oral questions
-Practical activity
-Written exercise
-Assessment rubrics
|
|
2 | 2 |
Geometry
|
Scale Drawing - Determining true bearings
|
By the end of the
lesson, the learner
should be able to:
Determine true bearings in different situations; Measure angles to find true bearings; Value the use of true bearings in navigation. |
Learners consider a diagram showing points C and D.
Learners identify and determine the bearing of D from C by measurement. Learners measure the bearing of various points in different diagrams. |
How do we determine the true bearing of one point from another?
|
-KLB Mathematics Grade 9 Textbook page 175
-Protractor -Ruler -Plain paper -Worksheets with diagrams -Charts with bearing examples |
-Oral questions
-Practical activity
-Written exercise
-Checklist
|
|
2 | 3 |
Geometry
|
Scale Drawing - Locating points using compass bearing and distance
Scale Drawing - Locating points using true bearing and distance |
By the end of the
lesson, the learner
should be able to:
Locate a point using bearing and distance in real-life situations; Create scale drawings showing relative positions; Appreciate the use of scale drawings in real-life situations. |
Learners consider two markets U and V such that the distance between them is 6 km and U is on a bearing of N56°E from V.
Learners mark point V on paper, draw the bearing of U from V, and use a scale of 1 cm represents 1 km to locate U. Learners display and discuss their constructions. |
How do we use compass bearings and distances to locate positions?
|
-KLB Mathematics Grade 9 Textbook page 178
-Protractor -Ruler -Plain paper -Drawing board -Charts with examples -Worksheets -KLB Mathematics Grade 9 Textbook page 182 -Manila paper for presentations |
-Oral questions
-Practical activity
-Written exercise
-Peer assessment
|
|
2 | 4 |
Geometry
|
Scale Drawing - Angle of elevation
Scale Drawing - Determining angles of elevation |
By the end of the
lesson, the learner
should be able to:
Identify angles of elevation in real-life situations; Make and use a clinometer to measure angles of elevation; Appreciate the application of angles of elevation in real-life situations. |
Learners perform an activity outside the classroom where they stand next to a flag pole and mark points at eye level and above.
Learners observe how the line of sight forms an angle when looking at higher objects. Learners make a clinometer and use it to measure angles of elevation of objects in the school environment. |
What is an angle of elevation and how do we measure it?
|
-KLB Mathematics Grade 9 Textbook page 186
-Protractor -String -Weight (about 25g) -Cardboard -Straight piece of wood -Charts showing angles of elevation -KLB Mathematics Grade 9 Textbook page 187 -Ruler -Plain paper -Drawing board -Calculator -Charts showing examples |
-Oral questions
-Practical activity
-Written exercise
-Project assessment
|
|
2 | 5 |
Geometry
|
Scale Drawing - Angle of depression
Scale Drawing - Determining angles of depression |
By the end of the
lesson, the learner
should be able to:
Identify angles of depression in real-life situations; Measure angles of depression using a clinometer; Appreciate the application of angles of depression in real-life situations. |
Learners perform an activity outside the classroom where they stand next to a flag pole and mark points at eye level and below.
Learners observe how the line of sight forms an angle when looking at lower objects. Learners use a clinometer to measure angles of depression of objects in their environment. |
What is an angle of depression and how is it related to the angle of elevation?
|
-KLB Mathematics Grade 9 Textbook page 190
-Clinometer (made in previous lesson) -String -Weight -Protractor -Charts showing angles of depression -Diagrams -KLB Mathematics Grade 9 Textbook page 192 -Ruler -Plain paper -Drawing board -Calculator -Charts with examples |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
3 | 1 |
Geometry
|
Scale Drawing - Application in simple surveying
Scale Drawing - Survey using bearings and distances |
By the end of the
lesson, the learner
should be able to:
Apply scale drawing in simple surveying; Record measurements in a field book; Value the importance of surveying in mapping. |
Learners study a survey of a small island made using a triangle ABC around it.
Learners trace the diagram and draw perpendicular lines from points along the triangle sides to the edge of the island. Learners measure the lengths of perpendicular lines and record the measurements in a tabular form in a field book. |
How do surveyors use scale drawings to create maps?
|
-KLB Mathematics Grade 9 Textbook page 195
-Drawing paper -Ruler -Set square -Pencil -Field book (notebook) -Charts with survey examples -KLB Mathematics Grade 9 Textbook page 199 -Protractor -Plain paper -Drawing board -Field book -Charts with examples |
-Oral questions
-Practical activity
-Written exercise
-Field book assessment
|
|
3 | 2 |
Geometry
|
Scale Drawing - Complex surveying problems
Scale Drawing - Project work on scale drawing |
By the end of the
lesson, the learner
should be able to:
Solve complex surveying problems involving bearings and distances; Create scale drawings of multiple points and features; Show interest in scale drawing applications in real-life. |
Learners study problems involving multiple points with bearings and distances between them.
Learners create scale drawings to determine unknown distances and bearings. Learners discuss real-life applications of scale drawing in surveying and navigation. |
How do we determine unknown distances and bearings using scale drawing?
|
-KLB Mathematics Grade 9 Textbook page 202
-Protractor -Ruler -Drawing paper -Calculator -Maps -Charts with examples -Measuring tape -Compass -Colored pencils -Manila paper -Drawing instruments |
-Oral questions
-Scale drawing
-Written exercise
-Assessment rubrics
|
|
3 | 3 |
Geometry
|
Similarity and Enlargement - Similar figures and properties
Similarity and Enlargement - Identifying similar objects |
By the end of the
lesson, the learner
should be able to:
Identify similar figures and their properties; Measure corresponding sides and angles of similar figures; Appreciate the concept of similarity in real-life objects. |
Learners study diagrams of similar cross-sections.
Learners measure the corresponding sides of the cross-sections and find the ratio between them. Learners measure all the corresponding angles and discover that they are equal. |
What makes two figures similar?
|
-KLB Mathematics Grade 9 Textbook page 203
-Ruler -Protractor -Cut-out shapes -Charts showing similar figures -Manila paper -KLB Mathematics Grade 9 Textbook page 204 -Various geometric objects -Charts with examples -Worksheets with diagrams |
-Oral questions
-Observation
-Written exercise
-Checklist
|
|
3 | 4 |
Geometry
|
Similarity and Enlargement - Drawing similar figures
|
By the end of the
lesson, the learner
should be able to:
Draw similar figures in different situations; Calculate dimensions of similar figures using scale factors; Enjoy creating similar figures. |
Learners draw triangle ABC with given dimensions (AB=3cm, BC=4cm, and AC=6cm).
Learners are told that triangle PQR is similar to ABC with PQ=4.5cm, and they calculate the other dimensions. Learners construct triangle PQR and compare results with other groups. |
How do we construct a figure similar to a given figure?
|
-KLB Mathematics Grade 9 Textbook page 206
-Ruler -Protractor -Pair of compasses -Drawing paper -Calculator -Charts with examples |
-Oral questions
-Practical activity
-Written exercise
-Assessment rubrics
|
|
3 | 5 |
Geometry
|
Similarity and Enlargement - Properties of enlargement
Similarity and Enlargement - Negative scale factors |
By the end of the
lesson, the learner
should be able to:
Determine properties of enlargement of different figures; Locate the center of enlargement and find scale factors; Value the application of enlargement in real-life situations. |
Learners trace diagrams showing an object and its enlarged image.
Learners draw lines through corresponding points to find where they intersect (center of enlargement). Learners find the ratios of corresponding lengths to determine the scale factor. |
How do we determine the center and scale factor of an enlargement?
|
-KLB Mathematics Grade 9 Textbook page 209
-Ruler -Tracing paper -Colored pencils -Grid paper -Charts showing enlargements -Diagrams for tracing -KLB Mathematics Grade 9 Textbook page 211 -Charts showing negative scale factor enlargements |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
4 | 1 |
Geometry
|
Similarity and Enlargement - Drawing images of objects
Similarity and Enlargement - Linear scale factor |
By the end of the
lesson, the learner
should be able to:
Apply properties of enlargement to draw similar objects and their images; Use scale factors to determine dimensions of images; Enjoy creating enlarged images of objects. |
Learners trace a given figure and join the center of enlargement to each vertex.
Learners multiply each distance by the scale factor to locate the image points. Learners locate the image points and join them to create the enlarged figure. |
How do we draw the image of an object under an enlargement with a given center and scale factor?
|
-KLB Mathematics Grade 9 Textbook page 214
-Ruler -Grid paper -Colored pencils -Charts showing steps of enlargement -Manila paper -KLB Mathematics Grade 9 Textbook page 216 -Calculator -Similar objects of different sizes -Charts with examples -Worksheets |
-Oral questions
-Practical activity
-Written exercise
-Peer assessment
|
|
4 | 2 |
Geometry
|
Similarity and Enlargement - Using coordinates in enlargement
Similarity and Enlargement - Applications of similarity |
By the end of the
lesson, the learner
should be able to:
Find the coordinates of images under enlargement; Determine the center of enlargement and scale factor from given coordinates; Appreciate the use of coordinates in describing enlargements. |
Learners plot figures and their images on a grid.
Learners find the center of enlargement by drawing lines through corresponding points. Learners calculate the scale factor using the coordinates of corresponding points. |
How do we use coordinate geometry to describe and perform enlargements?
|
-KLB Mathematics Grade 9 Textbook page 218
-Grid paper -Ruler -Colored pencils -Calculator -Charts with coordinate examples -KLB Mathematics Grade 9 Textbook page 219 -Drawing paper -Charts with real-life applications -Manila paper for presentations |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
4 | 3 |
Geometry
|
Trigonometry - Angles and sides of right-angled triangles
Trigonometry - Sine ratio |
By the end of the
lesson, the learner
should be able to:
Identify angles and sides of right-angled triangles in different situations; Distinguish between the hypotenuse, adjacent side, and opposite side; Appreciate the relationship between angles and sides in right-angled triangles. |
Learners draw right-angled triangles with acute angles and identify the longest side (hypotenuse).
Learners identify the side which together with the hypotenuse forms the angle θ (adjacent side). Learners identify the side facing the angle θ (opposite side). |
How do we identify different sides in a right-angled triangle?
|
-KLB Mathematics Grade 9 Textbook page 220
-Ruler -Protractor -Set square -Drawing paper -Charts with labeled triangles -Colored markers -KLB Mathematics Grade 9 Textbook page 222 -Calculator -Charts showing sine ratio -Manila paper |
-Oral questions
-Observation
-Written exercise
-Checklist
|
|
4 | 4 |
Geometry
|
Trigonometry - Cosine ratio
Trigonometry - Tangent ratio |
By the end of the
lesson, the learner
should be able to:
Identify cosine ratio from a right-angled triangle; Calculate cosine of angles in right-angled triangles; Enjoy solving problems involving cosine ratio. |
Learners draw triangles with specific angles and sides.
Learners calculate ratios of adjacent side to hypotenuse for different angles and discover the cosine ratio. Learners find the cosine of marked angles in various right-angled triangles. |
What is the cosine of an angle and how do we calculate it?
|
-KLB Mathematics Grade 9 Textbook page 223
-Ruler -Protractor -Calculator -Drawing paper -Charts showing cosine ratio -Worksheets -KLB Mathematics Grade 9 Textbook page 225 -Charts showing tangent ratio -Manila paper |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
4 | 5 |
Geometry
|
Trigonometry - Reading tables of sines
Trigonometry - Reading tables of cosines and tangents |
By the end of the
lesson, the learner
should be able to:
Read tables of trigonometric ratios of acute angles; Find the sine values of different angles using tables; Value the importance of mathematical tables in finding trigonometric ratios. |
Learners study a part of the table of sines.
Learners use the table to look for specific angles and find their sine values. Learners find sine values of angles with decimal parts using the 'ADD' column in the tables. |
How do we use mathematical tables to find the sine of an angle?
|
-KLB Mathematics Grade 9 Textbook page 227
-Mathematical tables -Calculator -Worksheets -Chart showing how to read tables -Sample exercises -KLB Mathematics Grade 9 Textbook page 229-231 |
-Oral questions
-Practical activity
-Written exercise
-Assessment rubrics
|
|
5 | 1 |
Geometry
|
Trigonometry - Using calculators for trigonometric ratios
|
By the end of the
lesson, the learner
should be able to:
Determine trigonometric ratios of acute angles using calculators; Compare values obtained from tables and calculators; Value the use of calculators in finding trigonometric ratios. |
Learners use calculators to find trigonometric ratios of specific angles.
Learners compare values obtained from calculators with those from mathematical tables. Learners use calculators to find sine, cosine, and tangent of various angles. |
How do we use calculators to find trigonometric ratios?
|
-KLB Mathematics Grade 9 Textbook page 233
-Scientific calculators -Mathematical tables -Worksheets -Chart showing calculator keys -Sample exercises |
-Oral questions
-Practical activity
-Written exercise
-Checklist
|
|
5 | 2 |
Geometry
|
Trigonometry - Calculating lengths using trigonometric ratios
Trigonometry - Calculating angles using trigonometric ratios |
By the end of the
lesson, the learner
should be able to:
Apply trigonometric ratios to calculate lengths of right-angled triangles; Use sine, cosine, and tangent ratios to find unknown sides; Appreciate the application of trigonometry in solving real-life problems. |
Learners consider a right-angled triangle and find the trigonometric ratio appropriate for finding an unknown side.
Learners find the value of the ratio from tables or calculators and relate it to the expression to find the unknown side. Learners solve problems involving finding sides of right-angled triangles. |
How do we use trigonometric ratios to find unknown sides in right-angled triangles?
|
-KLB Mathematics Grade 9 Textbook page 234
-Scientific calculators -Mathematical tables -Ruler -Drawing paper -Charts with examples -Worksheets -KLB Mathematics Grade 9 Textbook page 235 |
-Oral questions
-Group work
-Written exercise
-Assessment rubrics
|
|
5 | 3 |
Geometry
|
Trigonometry - Application in heights and distances
Trigonometry - Application in navigation |
By the end of the
lesson, the learner
should be able to:
Apply trigonometric ratios to solve problems involving heights and distances; Calculate heights of objects using angles of elevation; Value the use of trigonometry in real-life situations. |
Learners solve problems involving finding heights of objects like flag poles, towers, and buildings using angles of elevation.
Learners apply sine, cosine, and tangent ratios as appropriate to calculate unknown heights and distances. Learners discuss real-life applications of trigonometry in architecture, navigation, and engineering. |
How do we use trigonometry to find heights and distances in real-life situations?
|
-KLB Mathematics Grade 9 Textbook page 237
-Scientific calculators -Mathematical tables -Ruler -Drawing paper -Charts with real-life examples -Manila paper -KLB Mathematics Grade 9 Textbook page 238 -Protractor -Maps -Charts with navigation examples |
-Oral questions
-Problem-solving
-Written exercise
-Group presentation
|
|
5 | 4 |
Geometry
Data Handling and Probability |
Trigonometry - Review and mixed applications
Data Interpretation - Appropriate class width |
By the end of the
lesson, the learner
should be able to:
Apply trigonometric concepts in mixed application problems; Solve problems involving both scale drawing and trigonometry; Value the integration of different geometric concepts in problem-solving. |
Learners solve a variety of problems that integrate different geometric concepts learned.
Learners apply scale drawing, bearings, similar figures, and trigonometric ratios to solve complex problems. Learners discuss how different geometric concepts interconnect in solving real-world problems. |
How can we integrate different geometric concepts to solve complex problems?
|
-KLB Mathematics Grade 9 Textbook page 240
-Scientific calculators -Mathematical tables -Ruler -Protractor -Drawing paper -Past examination questions -KLB Mathematics Grade 9 Textbook page 244 -Calculator -Graph paper -Manila paper -Rulers -Colored markers |
-Oral questions
-Problem-solving
-Written exercise
-Assessment test
|
|
5 | 5 |
Data Handling and Probability
|
Data Interpretation - Finding range and creating groups
Data Interpretation - Frequency distribution tables |
By the end of the
lesson, the learner
should be able to:
Calculate the range of a set of data; Divide data into suitable class intervals; Show interest in grouping data for better representation. |
Learners are presented with marks scored by 40 students in a mathematics test.
Learners find the range of the data. Learners complete a table using a class width of 10 and determine the number of classes formed. |
How does the range of data help us determine appropriate class intervals?
|
-KLB Mathematics Grade 9 Textbook page 245
-Calculator -Manila paper -Data sets -Chart with examples -Colored markers -KLB Mathematics Grade 9 Textbook page 247 -Chart paper -Ruler |
-Oral questions
-Written exercise
-Observation
-Group work assessment
|
|
6 | 1 |
Data Handling and Probability
|
Data Interpretation - Creating frequency tables with different class intervals
Data Interpretation - Modal class |
By the end of the
lesson, the learner
should be able to:
Construct frequency tables starting with different class intervals; Use tally marks to represent data in frequency tables; Appreciate the use of different class intervals in data representation. |
Learners construct a frequency table for given data starting from the class interval 60-64.
Learners use tally marks to count frequency of data in each class. Learners compare and discuss different frequency tables. |
How do we choose appropriate starting points for class intervals?
|
-KLB Mathematics Grade 9 Textbook page 247
-Calculator -Ruler -Graph paper -Manila paper -Worksheets with data -KLB Mathematics Grade 9 Textbook page 248 -Chart showing frequency distribution tables -Colored markers |
-Oral questions
-Written exercise
-Group presentations
-Observation
|
|
6 | 2 |
Data Handling and Probability
|
Data Interpretation - Mean of ungrouped data
Data Interpretation - Mean of grouped data |
By the end of the
lesson, the learner
should be able to:
Calculate the mean of ungrouped data in a frequency table; Multiply each value by its frequency and find their sum; Show interest in calculating mean in real-life situations. |
Learners consider the height, in metres, of 10 people recorded in a frequency distribution table.
Learners complete a table showing the product of height and frequency (fx). Learners find the sum of frequencies, sum of fx, and divide to find the mean. |
How do we calculate the mean of data presented in a frequency table?
|
-KLB Mathematics Grade 9 Textbook page 249
-Calculator -Chart showing frequency tables -Worksheets -Manila paper -Colored markers -KLB Mathematics Grade 9 Textbook page 250 -Graph paper -Chart with examples |
-Oral questions
-Written exercise
-Observation
-Assessment rubrics
|
|
6 | 3 |
Data Handling and Probability
|
Data Interpretation - Mean calculation in real-life situations
|
By the end of the
lesson, the learner
should be able to:
Calculate the mean of grouped data from real-life situations; Apply the formula for finding mean of grouped data; Appreciate the use of mean in summarizing data in real life. |
Learners are presented with data about plants that survived in 50 sampled schools during an environmental week.
Learners find midpoints of class intervals, multiply by frequencies, and sum them up. Learners calculate the mean number of plants that survived by dividing the sum of fx by the sum of f. |
How is the mean used to summarize real-life data?
|
-KLB Mathematics Grade 9 Textbook page 251
-Calculator -Manila paper -Chart with examples -Worksheets -Colored markers |
-Oral questions
-Group work
-Written exercise
-Assessment rubrics
|
|
6 | 4 |
Data Handling and Probability
|
Data Interpretation - Median of grouped data
Data Interpretation - Calculating median using formula |
By the end of the
lesson, the learner
should be able to:
Determine the median of grouped data; Find cumulative frequencies to locate the median class; Value the importance of median in data interpretation. |
Learners consider the mass of 50 learners recorded in a table.
Learners complete the column for cumulative frequency. Learners find the sum of frequency, divide by 2, and identify the position of the median mass. |
How do we determine the median of grouped data?
|
-KLB Mathematics Grade 9 Textbook page 252
-Calculator -Chart showing cumulative frequency tables -Worksheets -Manila paper -Colored markers -KLB Mathematics Grade 9 Textbook page 253 -Graph paper -Chart showing median formula |
-Oral questions
-Written exercise
-Group presentations
-Observation
|
|
6 | 5 |
Data Handling and Probability
|
Data Interpretation - Median calculations in real-life situations
Probability - Equally likely outcomes |
By the end of the
lesson, the learner
should be able to:
Calculate median in real-life data situations; Apply the median formula to various data sets; Appreciate the role of median in data interpretation. |
Learners are presented with data on number of nights spent by people in a table.
Learners complete the cumulative frequency column and determine the median class. Learners apply the median formula to calculate the median value. |
How is the median used to interpret real-life data?
|
-KLB Mathematics Grade 9 Textbook page 254
-Calculator -Chart with example calculations -Worksheets with real-life data -Manila paper -Colored markers -KLB Mathematics Grade 9 Textbook page 256 -Coins -Chart paper -Table for recording outcomes |
-Oral questions
-Written exercise
-Group presentations
-Peer assessment
|
|
7 | 1 |
Data Handling and Probability
|
Probability - Range of probability
Probability - Complementary events |
By the end of the
lesson, the learner
should be able to:
Determine the range of probability of an event; Understand that probability ranges from 0 to 1; Value the concept of probability range in real-life situations. |
Learners use a fair die in this activity and toss it 20 times.
Learners record the number of times each face shows up and calculate relative frequencies. Learners find the sum of the fractions and discuss that probabilities range from 0 to 1. |
What is the range of probability values and what do these values signify?
|
-KLB Mathematics Grade 9 Textbook page 257
-Dice -Table for recording outcomes -Chart showing probability scale (0-1) -Manila paper -Colored markers -KLB Mathematics Grade 9 Textbook page 258 -Calculator -Chart showing complementary events -Worksheets with problems |
-Oral questions
-Practical activity
-Written exercise
-Group presentations
|
|
7 | 2 |
Data Handling and Probability
|
Probability - Mutually exclusive events
Probability - Experiments with mutually exclusive events |
By the end of the
lesson, the learner
should be able to:
Identify mutually exclusive events in real-life situations; Recognize events that cannot occur simultaneously; Appreciate the concept of mutually exclusive events. |
Learners flip a fair coin several times and record the face that shows up.
Learners discuss that heads and tails cannot show up at the same time (mutually exclusive). Learners identify mutually exclusive events from various examples. |
What makes events mutually exclusive?
|
-KLB Mathematics Grade 9 Textbook page 258
-Coins -Chart with examples of mutually exclusive events -Flashcards with different scenarios -Manila paper -Colored markers -KLB Mathematics Grade 9 Textbook page 259 -Dice -Colored objects in boxes -Calculator -Chart showing probability calculations -Worksheets with problems |
-Oral questions
-Group discussions
-Written exercise
-Observation
|
|
7 | 3 |
Data Handling and Probability
|
Probability - Independent events
Probability - Calculating probabilities of independent events |
By the end of the
lesson, the learner
should be able to:
Perform experiments involving independent events; Understand that outcome of one event doesn't affect another; Show interest in applying independent events probability in real-life. |
Learners toss a fair coin and a fair die at the same time and record outcomes.
Learners repeat the experiment several times. Learners discuss that the outcome of the coin toss doesn't affect the outcome of the die roll (independence). |
What makes events independent from each other?
|
-KLB Mathematics Grade 9 Textbook page 260
-Coins and dice -Table for recording outcomes -Chart showing examples of independent events -Manila paper -Colored markers -KLB Mathematics Grade 9 Textbook page 261 -Calculator -Chart showing multiplication rule -Worksheets with problems |
-Oral questions
-Practical activity
-Group discussions
-Observation
|
|
7 | 4 |
Data Handling and Probability
|
Probability - Tree diagrams for single outcomes
Probability - Complex tree diagrams |
By the end of the
lesson, the learner
should be able to:
Draw a probability tree diagram for a single outcome; Represent probability situations using tree diagrams; Value the use of tree diagrams in organizing probability information. |
Learners write down possible outcomes when a fair coin is flipped once.
Learners find the total number of all outcomes and probability of each outcome. Learners complete a tree diagram with possible outcomes and their probabilities. |
How do tree diagrams help us understand probability situations?
|
-KLB Mathematics Grade 9 Textbook page 262
-Chart paper -Ruler -Worksheets with blank tree diagrams -Chart showing completed tree diagrams -Colored markers -KLB Mathematics Grade 9 Textbook page 263 -Calculator -Chart showing complex tree diagrams -Worksheets with problems |
-Oral questions
-Practical activity
-Group work assessment
-Checklist
|
|
7 | 5 |
Data Handling and Probability
|
Probability - Complex tree diagrams
|
By the end of the
lesson, the learner
should be able to:
|
|
|
|
|
|
9 |
National Exam preparation |
Your Name Comes Here