Home






SCHEME OF WORK
Mathematics
Form 3 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 2
Formulae and Variations
Introduction to formulae
By the end of the lesson, the learner should be able to:
Define formulae and identify formula components
Recognize formulae in everyday contexts
Understand the relationship between variables
Appreciate the importance of formulae in mathematics
Q/A on familiar formulae from daily life
Discussions on cooking recipes as formulae
Analyzing distance-time relationships using walking examples
Demonstrations using perimeter and area calculations
Explaining formula notation using simple examples
Chalk and blackboard, measuring tape or string, exercise books
KLB Mathematics Book Three Pg 191-193
2 3-4
Formulae and Variations
Subject of a formula - basic cases
Subject of a formula - intermediate cases
Subject of a formula - advanced cases
Applications of formula manipulation
By the end of the lesson, the learner should be able to:
Make simple variables the subject of formulae
Apply inverse operations to rearrange formulae
Understand the concept of subject change
Solve basic subject transformation problems
Make variables subject in complex formulae
Handle square roots and quadratic expressions
Apply advanced algebraic manipulation
Solve challenging subject transformation problems
Q/A on inverse operations using number examples
Discussions on formula rearrangement using balance method
Solving basic subject change problems using step-by-step approach
Demonstrations using see-saw balance analogy
Explaining inverse operations using practical examples
Q/A on advanced manipulation using careful steps
Discussions on square root handling using examples
Solving complex problems using systematic approach
Demonstrations using detailed blackboard work
Explaining quadratic handling using factoring
Chalk and blackboard, simple balance (stones and stick), exercise books
Chalk and blackboard, fraction strips made from paper, exercise books
Chalk and blackboard, squared paper patterns, exercise books
Chalk and blackboard, local measurement tools, exercise books
KLB Mathematics Book Three Pg 191-193
2 5
Formulae and Variations
Introduction to variation
Direct variation - introduction
By the end of the lesson, the learner should be able to:
Understand the concept of variation
Distinguish between variables and constants
Recognize variation in everyday situations
Identify different types of variation
Q/A on variable relationships using daily examples
Discussions on changing quantities in nature and commerce
Analyzing variation patterns using local market prices
Demonstrations using speed-time relationships
Explaining variation types using practical examples
Chalk and blackboard, local price lists from markets, exercise books
Chalk and blackboard, beans or stones for counting, exercise books
KLB Mathematics Book Three Pg 194-196
2 6
Sequences and Series
Introduction to sequences and finding terms
General term of sequences and applications
By the end of the lesson, the learner should be able to:
Define sequences and identify sequence patterns
Find next terms using established patterns
Recognize different types of sequence patterns
Apply pattern recognition systematically
Q/A on number patterns from daily life
Discussions on counting patterns using classroom arrangements
Solving pattern completion problems step-by-step
Demonstrations using bead or stone arrangements
Explaining sequence terminology and pattern continuation
Chalk and blackboard, stones or beans for patterns, exercise books
Chalk and blackboard, numbered cards made from paper, exercise books
KLB Mathematics Book Three Pg 207-208
2 7
Sequences and Series
Arithmetic sequences and nth term
Arithmetic sequence applications
By the end of the lesson, the learner should be able to:
Define arithmetic sequences and common differences
Calculate common differences correctly
Derive and apply the nth term formula
Solve problems using arithmetic sequence concepts
Q/A on arithmetic patterns using step-by-step examples
Discussions on constant difference patterns and formula derivation
Solving arithmetic sequence problems systematically
Demonstrations using equal-step progressions
Explaining formula structure using algebraic reasoning
Chalk and blackboard, measuring tape or string, exercise books
Chalk and blackboard, local employment/savings examples, exercise books
KLB Mathematics Book Three Pg 209-210
3

Opener Exam

4 1
Sequences and Series
Geometric sequences and nth term
Geometric sequence applications
By the end of the lesson, the learner should be able to:
Define geometric sequences and common ratios
Calculate common ratios correctly
Derive and apply the geometric nth term formula
Understand exponential growth patterns
Q/A on geometric patterns using multiplication examples
Discussions on ratio-based progressions and formula derivation
Solving geometric sequence problems systematically
Demonstrations using doubling and scaling examples
Explaining exponential structure using practical examples
Chalk and blackboard, objects for doubling demonstrations, exercise books
Chalk and blackboard, population/growth data examples, exercise books
KLB Mathematics Book Three Pg 211-213
4 2
Sequences and Series
Arithmetic series and sum formula
Geometric series and applications
By the end of the lesson, the learner should be able to:
Define arithmetic series as sums of sequences
Derive the sum formula for arithmetic series
Apply the arithmetic series formula systematically
Calculate sums efficiently using the formula
Q/A on series concepts using summation examples
Discussions on sequence-to-series relationships and formula derivation
Solving arithmetic series problems using step-by-step approach
Demonstrations using cumulative sum examples
Explaining derivation logic using algebraic reasoning
Chalk and blackboard, counting materials for summation, exercise books
Chalk and blackboard, convergence demonstration materials, exercise books
KLB Mathematics Book Three Pg 214-215
4 3-4
Sequences and Series
Vectors (II)
Mixed problems and advanced applications
Sequences in nature and technology
Coordinates in two dimensions
Coordinates in three dimensions
By the end of the lesson, the learner should be able to:
Combine arithmetic and geometric concepts
Solve complex mixed sequence and series problems
Apply appropriate methods for different types
Model real-world situations using mathematical sequences
Identify the coordinates of a point in two dimensions
Plot points on coordinate planes accurately
Understand position representation using coordinates
Apply coordinate concepts to practical situations
Q/A on problem type identification using systematic analysis
Discussions on method selection and comprehensive applications
Solving mixed problems using appropriate techniques
Demonstrations using interdisciplinary scenarios
Explaining method choice using logical reasoning
Q/A on coordinate identification using grid references
Discussions on map reading and location finding
Solving coordinate plotting problems using systematic methods
Demonstrations using classroom grid systems and floor patterns
Explaining coordinate applications using local maps and directions
Chalk and blackboard, mixed problem collections, exercise books
Chalk and blackboard, natural and technology examples, exercise books
Chalk and blackboard, squared paper or grid drawn on ground, exercise books
Chalk and blackboard, 3D models made from sticks and clay, exercise books
KLB Mathematics Book Three Pg 207-219
KLB Mathematics Book Three Pg 221-222
4 5
Vectors (II)
Column and position vectors in three dimensions
Position vectors and applications
Column vectors in terms of unit vectors i, j, k
By the end of the lesson, the learner should be able to:
Find a displacement and represent it in column vector
Calculate the position vector
Express vectors in column form
Apply column vector notation systematically
Q/A on displacement representation using movement examples
Discussions on vector notation using organized column format
Solving column vector problems using systematic methods
Demonstrations using physical movement and direction examples
Explaining vector components using practical displacement
Chalk and blackboard, movement demonstration space, exercise books
Chalk and blackboard, origin marking systems, exercise books
Chalk and blackboard, direction indicators, unit vector reference charts, exercise books
KLB Mathematics Book Three Pg 223-224
4 6
Vectors (II)
Vector operations using unit vectors
Magnitude of a vector in three dimensions
By the end of the lesson, the learner should be able to:
Express vectors in terms of unit vectors
Perform vector addition using unit vector notation
Calculate vector subtraction with i, j, k components
Apply scalar multiplication to unit vectors
Q/A on vector operations using component-wise calculation
Discussions on systematic operation methods
Solving vector operation problems using organized approaches
Demonstrations using component separation and combination
Explaining operation logic using algebraic reasoning
Chalk and blackboard, component calculation aids, exercise books
Chalk and blackboard, 3D measurement aids, exercise books
KLB Mathematics Book Three Pg 226-228
4 7
Vectors (II)
Magnitude applications and unit vectors
Parallel vectors
By the end of the lesson, the learner should be able to:
Calculate the magnitude of a vector in three dimensions
Find unit vectors from given vectors
Apply magnitude concepts to practical problems
Use magnitude in vector normalization
Q/A on magnitude and unit vector relationships
Discussions on normalization and direction finding
Solving magnitude and unit vector problems
Demonstrations using direction and length separation
Explaining practical applications using navigation examples
Chalk and blackboard, direction finding aids, exercise books
Chalk and blackboard, parallel line demonstrations, exercise books
KLB Mathematics Book Three Pg 229-230
5 1
Vectors (II)
Collinearity
Advanced collinearity applications
By the end of the lesson, the learner should be able to:
Show that points are collinear
Apply vector methods to prove collinearity
Test for collinear points using vector techniques
Solve collinearity problems systematically
Q/A on collinearity testing using vector proportion methods
Discussions on point alignment using vector analysis
Solving collinearity problems using systematic verification
Demonstrations using straight-line point examples
Explaining collinearity using geometric alignment concepts
Chalk and blackboard, straight-line demonstrations, exercise books
Chalk and blackboard, complex geometric aids, exercise books
KLB Mathematics Book Three Pg 232-234
5 2
Vectors (II)
Proportional division of a line
External division of a line
By the end of the lesson, the learner should be able to:
Divide a line internally in the given ratio
Apply the internal division formula
Calculate division points using vector methods
Understand proportional division concepts
Q/A on internal division using systematic formula application
Discussions on ratio division using proportional methods
Solving internal division problems using organized approaches
Demonstrations using internal point construction examples
Explaining internal division using geometric visualization
Chalk and blackboard, internal division models, exercise books
Chalk and blackboard, external division models, exercise books
KLB Mathematics Book Three Pg 237-238
5 3-4
Vectors (II)
Combined internal and external division
Ratio theorem
Advanced ratio theorem applications
Mid-point
By the end of the lesson, the learner should be able to:
Divide a line internally and externally in the given ratio
Apply both division formulas systematically
Compare internal and external division results
Handle mixed division problems
Find the position vector
Apply ratio theorem to complex scenarios
Solve multi-step ratio problems
Use ratio theorem in geometric proofs
Q/A on combined division using comparative methods
Discussions on division type selection using problem analysis
Solving combined division problems using systematic approaches
Demonstrations using both division types
Explaining division relationships using geometric reasoning
Q/A on advanced ratio applications using complex problems
Discussions on multi-step ratio calculation
Solving challenging ratio problems using systematic methods
Demonstrations using comprehensive ratio examples
Explaining advanced applications using detailed reasoning
Chalk and blackboard, combined division models, exercise books
Chalk and blackboard, ratio theorem aids, exercise books
Chalk and blackboard, advanced ratio models, exercise books
Chalk and blackboard, midpoint demonstration aids, exercise books
KLB Mathematics Book Three Pg 239
KLB Mathematics Book Three Pg 242
5 5
Vectors (II)
Ratio theorem and midpoint integration
Advanced ratio theorem applications
By the end of the lesson, the learner should be able to:
Use ratio theorem to find the given vectors
Apply midpoint and ratio concepts together
Solve complex ratio and midpoint problems
Integrate division and midpoint methods
Q/A on integrated problem-solving using combined methods
Discussions on complex scenario analysis using systematic approaches
Solving challenging problems using integrated techniques
Demonstrations using comprehensive geometric examples
Explaining integration using logical problem-solving
Chalk and blackboard, complex problem materials, exercise books
Chalk and blackboard, advanced geometric aids, exercise books
KLB Mathematics Book Three Pg 244-245
5 6
Vectors (II)
Applications of vectors in geometry
Rectangle diagonal applications
By the end of the lesson, the learner should be able to:
Use vectors to show the diagonals of a parallelogram
Apply vector methods to geometric proofs
Demonstrate parallelogram properties using vectors
Solve geometric problems using vector techniques
Q/A on geometric proof using vector methods
Discussions on parallelogram properties using vector analysis
Solving geometric problems using systematic vector techniques
Demonstrations using vector-based geometric constructions
Explaining geometric relationships using vector reasoning
Chalk and blackboard, parallelogram models, exercise books
Chalk and blackboard, rectangle models, exercise books
KLB Mathematics Book Three Pg 248-249
5 7
Vectors (II)
Binomial Expansion
Advanced geometric applications
Binomial expansions up to power four
By the end of the lesson, the learner should be able to:
Use vectors to show geometric properties
Apply vectors to complex geometric proofs
Solve challenging geometric problems using vectors
Integrate all vector concepts in geometric contexts
Q/A on comprehensive geometric applications using vector methods
Discussions on advanced proof techniques using vectors
Solving complex geometric problems using integrated approaches
Demonstrations using sophisticated geometric constructions
Explaining advanced applications using comprehensive reasoning
Chalk and blackboard, advanced geometric models, exercise books
Chalk and blackboard, rectangular cutouts from paper, exercise books
KLB Mathematics Book Three Pg 248-250
6 1
Binomial Expansion
Binomial expansions up to power four (continued)
Pascal's triangle
Pascal's triangle applications
By the end of the lesson, the learner should be able to:
Expand binomial function up to power four
Handle increasingly complex coefficient patterns
Apply systematic expansion techniques efficiently
Verify expansions using substitution methods
Q/A on power expansion using multiplication techniques
Discussions on coefficient identification using pattern analysis
Solving expansion problems using systematic approaches
Demonstrations using geometric representations
Explaining verification methods using numerical substitution
Chalk and blackboard, squared paper for geometric models, exercise books
Chalk and blackboard, triangular patterns drawn/cut from paper, exercise books
Chalk and blackboard, Pascal's triangle reference charts, exercise books
KLB Mathematics Book Three Pg 256
6 2
Binomial Expansion
Pascal's triangle (continued)
Pascal's triangle advanced
By the end of the lesson, the learner should be able to:
Use Pascal's triangle
Apply triangle to complex expansion problems
Handle higher powers using Pascal's triangle
Integrate triangle concepts with algebraic expansion
Q/A on advanced triangle applications using complex examples
Discussions on higher power expansion using triangle methods
Solving challenging problems using Pascal's triangle
Demonstrations using detailed triangle constructions
Explaining integration using comprehensive examples
Chalk and blackboard, advanced triangle patterns, exercise books
Chalk and blackboard, combination calculation aids, exercise books
KLB Mathematics Book Three Pg 258-259
6 3-4
Binomial Expansion
Probability
Applications to numerical cases
Applications to numerical cases (continued)
Introduction
Experimental Probability
By the end of the lesson, the learner should be able to:
Use binomial expansion to solve numerical problems
Apply expansions for numerical approximations
Calculate values using binomial methods
Understand practical applications of expansions
Calculate the experimental probability
Understand probability concepts in daily life
Distinguish between certain and uncertain events
Recognize probability situations
Q/A on numerical applications using approximation techniques
Discussions on calculation shortcuts using expansion methods
Solving numerical problems using binomial approaches
Demonstrations using practical calculation scenarios
Explaining approximation benefits using real examples
Q/A on uncertain events from daily life experiences
Discussions on weather prediction and game outcomes
Analyzing chance events using coin tossing and dice rolling
Demonstrations using simple probability experiments
Explaining probability language using familiar examples
Chalk and blackboard, simple calculation aids, exercise books
Chalk and blackboard, advanced calculation examples, exercise books
Chalk and blackboard, coins, dice made from cardboard, exercise books
Chalk and blackboard, coins, cardboard dice, tally charts, exercise books
KLB Mathematics Book Three Pg 259-260
KLB Mathematics Book Three Pg 262-264
6 5
Probability
Experimental Probability applications
Range of Probability Measure
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Apply experimental methods to various scenarios
Handle large sample experiments
Analyze experimental probability patterns
Q/A on advanced experimental techniques using extended trials
Discussions on sample size effects using comparative data
Solving complex experimental problems using systematic methods
Demonstrations using extended experimental procedures
Explaining pattern analysis using accumulated data
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books
Chalk and blackboard, number line drawings, probability scale charts, exercise books
KLB Mathematics Book Three Pg 262-264
6 6
Probability
Probability Space
Theoretical Probability
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Define sample space systematically
List all possible outcomes
Apply sample space concepts
Q/A on outcome listing using systematic enumeration
Discussions on complete outcome identification
Solving sample space problems using organized listing
Demonstrations using dice, cards, and spinner examples
Explaining probability calculation using outcome counting
Chalk and blackboard, playing cards (locally made), spinners from cardboard, exercise books
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books
KLB Mathematics Book Three Pg 266-267
6 7
Probability
Theoretical Probability advanced
Theoretical Probability applications
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply theoretical probability to complex problems
Handle multiple outcome scenarios
Solve advanced theoretical problems
Q/A on advanced theoretical applications using complex scenarios
Discussions on multiple outcome analysis using systematic methods
Solving challenging theoretical problems using organized approaches
Demonstrations using complex probability setups
Explaining advanced theoretical concepts using detailed reasoning
Chalk and blackboard, complex probability materials, advanced calculation aids, exercise books
Chalk and blackboard, local game examples, practical scenario materials, exercise books
KLB Mathematics Book Three Pg 268-270
7 1
Probability
Combined Events
Combined Events OR probability
By the end of the lesson, the learner should be able to:
Find the probability of a combined events
Understand compound events and combinations
Distinguish between different event types
Apply basic combination rules
Q/A on event combination using practical examples
Discussions on exclusive and inclusive event identification
Solving basic combined event problems using visual methods
Demonstrations using card drawing and dice rolling combinations
Explaining combination principles using Venn diagrams
Chalk and blackboard, playing cards, multiple dice, Venn diagram drawings, exercise books
Chalk and blackboard, Venn diagram materials, card examples, exercise books
KLB Mathematics Book Three Pg 272-273
7 2
Probability
Independent Events
Independent Events advanced
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Apply multiplication rule for independent events
Calculate "A and B" probabilities
Understand independence concepts
Q/A on multiplication rule using independent event examples
Discussions on independence identification and verification
Solving AND probability problems using systematic calculation
Demonstrations using multiple coin tosses and dice combinations
Explaining multiplication rule using logical reasoning
Chalk and blackboard, multiple coins and dice, independence demonstration materials, exercise books
Chalk and blackboard, playing cards for replacement scenarios, multiple experimental setups, exercise books
KLB Mathematics Book Three Pg 274-275
7 3-4
Probability
Compound Proportion and Rates of Work
Independent Events applications
Tree Diagrams
Tree Diagrams advanced
Compound Proportions
Compound Proportions applications
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Apply independence to practical problems
Solve complex multi-event scenarios
Integrate independence with other concepts
Find the compound proportions
Understand compound proportion relationships
Apply compound proportion methods systematically
Solve problems involving multiple variables
Q/A on complex event analysis using systematic problem-solving
Discussions on rule selection and application strategies
Solving advanced combined problems using integrated approaches
Demonstrations using complex experimental scenarios
Explaining strategic problem-solving using logical analysis
Q/A on compound relationships using practical examples
Discussions on multiple variable situations using local scenarios
Solving compound proportion problems using systematic methods
Demonstrations using business and trade examples
Explaining compound proportion logic using step-by-step reasoning
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books
Chalk and blackboard, tree diagram templates, branching materials, exercise books
Chalk and blackboard, complex tree examples, detailed calculation aids, exercise books
Chalk and blackboard, local business examples, calculators if available, exercise books
Chalk and blackboard, construction/farming examples, exercise books
KLB Mathematics Book Three Pg 278-280
KLB Mathematics Book Three Pg 288-290
7 5
Compound Proportion and Rates of Work
Proportional Parts
Proportional Parts applications
By the end of the lesson, the learner should be able to:
Calculate the proportional parts
Understand proportional division concepts
Apply proportional parts to sharing problems
Solve distribution problems using proportional methods
Q/A on proportional sharing using practical examples
Discussions on fair distribution using ratio concepts
Solving proportional parts problems using systematic division
Demonstrations using sharing scenarios and inheritance examples
Explaining proportional distribution using logical reasoning
Chalk and blackboard, sharing demonstration materials, exercise books
Chalk and blackboard, business partnership examples, exercise books
KLB Mathematics Book Three Pg 291-293
7 6
Compound Proportion and Rates of Work
Rates of Work
Rates of Work and Mixtures
By the end of the lesson, the learner should be able to:
Calculate the rate of work
Understand work rate relationships
Apply time-work-efficiency concepts
Solve basic rate of work problems
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios
Solving basic rate of work problems using systematic methods
Demonstrations using construction and labor examples
Explaining work rate concepts using practical work situations
Chalk and blackboard, work scenario examples, exercise books
Chalk and blackboard, mixture demonstration materials, exercise books
KLB Mathematics Book Three Pg 294-295
7 7
Graphical Methods
Tables of given relations
Graphs of given relations
By the end of the lesson, the learner should be able to:
Draw tables of given relations
Construct organized data tables systematically
Prepare data for graphical representation
Understand relationship between variables
Q/A on table construction using systematic data organization
Discussions on variable relationships using practical examples
Solving table preparation problems using organized methods
Demonstrations using data collection and tabulation
Explaining systematic data arrangement using logical procedures
Chalk and blackboard, ruled paper for tables, exercise books
Chalk and blackboard, graph paper or grids, rulers, exercise books
KLB Mathematics Book Three Pg 299
8 1
Graphical Methods
Tables and graphs integration
Introduction to cubic equations
By the end of the lesson, the learner should be able to:
Draw tables and graphs of given relations
Integrate table construction with graph plotting
Analyze relationships using both methods
Compare tabular and graphical representations
Q/A on integrated table-graph construction using comprehensive methods
Discussions on data flow from tables to graphs
Solving integrated problems using systematic approaches
Demonstrations using complete data analysis procedures
Explaining relationship analysis using combined methods
Chalk and blackboard, graph paper, data examples, exercise books
Chalk and blackboard, cubic function examples, exercise books
KLB Mathematics Book Three Pg 299-300
8 2
Graphical Methods
Graphical solution of cubic equations
Advanced cubic solutions
By the end of the lesson, the learner should be able to:
Draw graphs of cubic equations
Plot cubic curves accurately
Use graphs to solve cubic equations
Find roots using graphical methods
Q/A on cubic curve plotting using systematic point plotting
Discussions on curve characteristics and root finding
Solving cubic graphing problems using careful plotting
Demonstrations using cubic curve construction
Explaining root identification using graph analysis
Chalk and blackboard, graph paper, cubic equation examples, exercise books
Chalk and blackboard, advanced graph examples, exercise books
KLB Mathematics Book Three Pg 302-304
8 3-4
Graphical Methods
Introduction to rates of change
Average rates of change
Advanced average rates
Introduction to instantaneous rates
By the end of the lesson, the learner should be able to:
Calculate the average rates of change
Understand rate of change concepts
Apply rate calculations to practical problems
Interpret rate meanings in context
Calculate the average rates of change
Handle complex rate scenarios
Apply rates to business and scientific problems
Integrate rate concepts with other topics
Q/A on rate calculation using slope methods
Discussions on rate interpretation using practical examples
Solving basic rate problems using systematic calculation
Demonstrations using speed-time and distance examples
Explaining rate concepts using practical analogies
Q/A on complex rate applications using advanced scenarios
Discussions on business and scientific rate applications
Solving challenging rate problems using integrated methods
Demonstrations using comprehensive rate examples
Explaining advanced applications using detailed analysis
Chalk and blackboard, rate calculation examples, exercise books
Chalk and blackboard, graph paper, rate examples, exercise books
Chalk and blackboard, advanced rate scenarios, exercise books
Chalk and blackboard, tangent line examples, exercise books
KLB Mathematics Book Three Pg 304-306
KLB Mathematics Book Three Pg 304-310
8 5
Graphical Methods
Rate of change at an instant
Advanced instantaneous rates
Empirical graphs
Advanced empirical methods
By the end of the lesson, the learner should be able to:
Calculate the rate of change at an instant
Apply instantaneous rate methods systematically
Use graphical techniques for instant rates
Solve practical instantaneous rate problems
Q/A on instantaneous rate calculation using graphical methods
Discussions on tangent line slope interpretation
Solving instantaneous rate problems using systematic approaches
Demonstrations using detailed tangent constructions
Explaining practical applications using real scenarios
Chalk and blackboard, detailed graph examples, exercise books
Chalk and blackboard, advanced rate examples, exercise books
Chalk and blackboard, experimental data examples, exercise books
Chalk and blackboard, complex data examples, exercise books
KLB Mathematics Book Three Pg 310-311

Your Name Comes Here


Download

Feedback