Home






SCHEME OF WORK
Mathematics
Form 3 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 1
Circles: Chords and Tangents
Length of an arc
By the end of the lesson, the learner should be able to:
Calculate the length of an arc
Apply arc length formula
Understand arc-radius relationships
Q/A on circle properties and terminology
Discussions on arc measurement concepts
Solving basic arc length problems
Demonstrations of formula application
Explaining arc-angle relationships
Geometrical set, calculators
KLB Mathematics Book Three Pg 124-125
2 2
Circles: Chords and Tangents
Chords
By the end of the lesson, the learner should be able to:
Calculate the length of a chord
Apply chord properties and theorems
Understand chord-radius relationships
Q/A on chord definition and properties
Discussions on chord calculation methods
Solving basic chord problems
Demonstrations of geometric constructions
Explaining chord theorems
Geometrical set, calculators
KLB Mathematics Book Three Pg 126-128
2 3
Circles: Chords and Tangents
Parallel chords
Equal chords
By the end of the lesson, the learner should be able to:
Calculate the perpendicular bisector
Find the value of parallel chords
Apply parallel chord properties
Q/A on parallel chord concepts
Discussions on perpendicular bisector properties
Solving parallel chord problems
Demonstrations of construction techniques
Explaining geometric relationships
Geometrical set, calculators
KLB Mathematics Book Three Pg 129-131
2 4
Circles: Chords and Tangents
Intersecting chords
By the end of the lesson, the learner should be able to:
Calculate the length of intersecting chords
Apply intersecting chord theorem
Understand chord intersection properties
Q/A on chord intersection concepts
Discussions on intersection theorem
Solving basic intersection problems
Demonstrations of theorem application
Explaining geometric proofs
Geometrical set, calculators
KLB Mathematics Book Three Pg 132-135
2 5
Circles: Chords and Tangents
Intersecting chords
Chord properties
By the end of the lesson, the learner should be able to:
Calculate the length of intersecting chords
Solve complex intersection problems
Apply advanced chord theorems
Q/A on advanced intersection scenarios
Discussions on complex chord relationships
Solving challenging intersection problems
Demonstrations of advanced techniques
Explaining sophisticated applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 135-139
2 6
Circles: Chords and Tangents
Tangent to a circle
By the end of the lesson, the learner should be able to:
Construct a tangent to a circle
Understand tangent properties
Apply tangent construction methods
Q/A on tangent definition and properties
Discussions on tangent construction
Solving basic tangent problems
Demonstrations of construction techniques
Explaining tangent characteristics
Geometrical set, calculators
KLB Mathematics Book Three Pg 139-140
2 7
Circles: Chords and Tangents
Tangent to a circle
Properties of tangents to a circle from an external point
By the end of the lesson, the learner should be able to:
Calculate the length of tangent
Calculate the angle between tangents
Apply tangent measurement techniques
Q/A on tangent calculations
Discussions on tangent measurement
Solving tangent calculation problems
Demonstrations of measurement methods
Explaining tangent applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 141-142
3 1
Circles: Chords and Tangents
Tangent properties
By the end of the lesson, the learner should be able to:
Solve comprehensive tangent problems
Apply all tangent concepts
Integrate tangent knowledge systematically
Q/A on comprehensive tangent mastery
Discussions on integrated applications
Solving mixed tangent problems
Demonstrations of complete understanding
Explaining systematic problem-solving
Geometrical set, calculators
KLB Mathematics Book Three Pg 139-147
3 2
Circles: Chords and Tangents
Tangents to two circles
By the end of the lesson, the learner should be able to:
Calculate the tangents of direct common tangents
Find direct common tangent properties
Apply two-circle tangent concepts
Q/A on two-circle tangent concepts
Discussions on direct tangent properties
Solving direct tangent problems
Demonstrations of construction methods
Explaining geometric relationships
Geometrical set, calculators
KLB Mathematics Book Three Pg 148-149
3 3
Circles: Chords and Tangents
Contact of circles
By the end of the lesson, the learner should be able to:
Calculate the radii of contact circles
Understand internal contact properties
Apply contact circle concepts
Q/A on circle contact concepts
Discussions on internal contact properties
Solving internal contact problems
Demonstrations of contact relationships
Explaining geometric principles
Geometrical set, calculators
KLB Mathematics Book Three Pg 151-153
3 4
Circles: Chords and Tangents
Contact of circles
Circle contact
By the end of the lesson, the learner should be able to:
Calculate the radii of contact circles
Understand external contact properties
Compare internal and external contact
Q/A on external contact concepts
Discussions on contact type differences
Solving external contact problems
Demonstrations of contact analysis
Explaining contact applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 153-154
3 5
Circles: Chords and Tangents
Angle in alternate segment
By the end of the lesson, the learner should be able to:
Calculate the angles in alternate segments
Apply alternate segment theorem
Understand segment angle properties
Q/A on alternate segment concepts
Discussions on segment angle relationships
Solving basic segment problems
Demonstrations of theorem application
Explaining geometric proofs
Geometrical set, calculators
KLB Mathematics Book Three Pg 157-160
3 6
Circles: Chords and Tangents
Angle in alternate segment
Circumscribed circle
By the end of the lesson, the learner should be able to:
Calculate the angles in alternate segments
Solve complex segment problems
Apply advanced segment theorems
Q/A on advanced segment applications
Discussions on complex angle relationships
Solving challenging segment problems
Demonstrations of sophisticated techniques
Explaining advanced applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 160-161
3 7
Circles: Chords and Tangents
Escribed circles
By the end of the lesson, the learner should be able to:
Construct escribed circles
Find escribed circle properties
Apply escription concepts
Q/A on escription concepts
Discussions on escribed circle construction
Solving escription problems
Demonstrations of construction methods
Explaining escription applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 165-166
4

Mid-term exams

5 1
Circles: Chords and Tangents
Centroid
Orthocenter
By the end of the lesson, the learner should be able to:
Construct centroid
Find centroid properties
Apply centroid concepts
Q/A on centroid definition and properties
Discussions on centroid construction
Solving centroid problems
Demonstrations of construction techniques
Explaining centroid applications
Geometrical set, calculators
KLB Mathematics Book Three Pg 166
5 2
Circles: Chords and Tangents
Matrices
Circle and triangle relationships
Introduction and real-life applications
By the end of the lesson, the learner should be able to:
Solve comprehensive circle-triangle problems
Integrate all circle and triangle concepts
Apply advanced geometric relationships
Q/A on comprehensive geometric understanding
Discussions on integrated relationships
Solving complex geometric problems
Demonstrations of advanced applications
Explaining sophisticated geometric principles
Geometrical set, calculators
Old newspapers with league tables, chalk and blackboard, exercise books
KLB Mathematics Book Three Pg 164-167
5 3
Matrices
Order of a matrix and elements
Square matrices, row and column matrices
Addition of matrices
By the end of the lesson, the learner should be able to:
Determine the order of given matrices
Identify matrix elements by position
Use correct notation for matrix elements
Distinguish between different matrix types
Q/A on matrix structure using grid drawings
Discussions on rows and columns using classroom seating
Solving element location using coordinate games
Demonstrations using drawn grids on blackboard
Explaining position notation using class register
Chalk and blackboard, ruled exercise books, class register
Paper cutouts, chalk and blackboard, counters or bottle tops
Counters or stones, chalk and blackboard, exercise books
KLB Mathematics Book Three Pg 169-170
5 4
Matrices
Subtraction of matrices
Combined addition and subtraction
Scalar multiplication
By the end of the lesson, the learner should be able to:
Subtract matrices of the same order
Apply matrix subtraction rules correctly
Understand order requirements for subtraction
Solve complex matrix subtraction problems
Q/A on matrix subtraction using simple numbers
Discussions on element-wise subtraction using examples
Solving subtraction problems on blackboard
Demonstrations using number line concepts
Explaining sign changes using practical examples
Chalk and blackboard, exercise books, number cards made from cardboard
Chalk and blackboard, exercise books, locally made operation cards
Beans or stones for grouping, chalk and blackboard, exercise books
KLB Mathematics Book Three Pg 170-171
5 5
Matrices
Introduction to matrix multiplication
Matrix multiplication (2×2 matrices)
By the end of the lesson, the learner should be able to:
Understand matrix multiplication prerequisites
Learn compatibility requirements for multiplication
Apply row-by-column multiplication method
Calculate simple matrix products
Q/A on multiplication compatibility using dimensions
Discussions on row-column method using finger tracing
Solving basic multiplication using dot product method
Demonstrations using physical row-column matching
Explaining order requirements using practical examples
Chalk and blackboard, rulers for tracing, exercise books
Chalk and blackboard, exercise books, homemade grid templates
KLB Mathematics Book Three Pg 174-176
5 6
Matrices
Matrix multiplication (larger matrices)
Properties of matrix multiplication
By the end of the lesson, the learner should be able to:
Multiply matrices of various orders
Apply multiplication to 3×3 and larger matrices
Determine when multiplication is possible
Calculate products efficiently
Q/A on larger matrix multiplication using patterns
Discussions on efficiency techniques using shortcuts
Solving advanced problems using systematic methods
Demonstrations using organized calculation procedures
Explaining general principles using examples
Chalk and blackboard, large sheets of paper for working, exercise books
Chalk and blackboard, exercise books, cardboard for property cards
KLB Mathematics Book Three Pg 176-179
5 7
Matrices
Real-world matrix multiplication applications
By the end of the lesson, the learner should be able to:
Apply matrix multiplication to practical problems
Solve business and economic applications
Calculate costs, revenues, and quantities
Interpret matrix multiplication results
Q/A on practical applications using local business examples
Discussions on market problems using familiar contexts
Solving real-world problems using matrix methods
Demonstrations using shop keeper scenarios
Explaining result interpretation using meaningful contexts
Chalk and blackboard, local price lists, exercise books
KLB Mathematics Book Three Pg 176-179
6 1
Matrices
Identity matrix
Determinant of 2×2 matrices
By the end of the lesson, the learner should be able to:
Define and identify identity matrices
Understand identity matrix properties
Apply identity matrices in multiplication
Recognize the multiplicative identity role
Q/A on identity concepts using number 1 analogy
Discussions on multiplicative identity using examples
Solving identity problems using pattern recognition
Demonstrations using multiplication by 1 concept
Explaining diagonal properties using visual patterns
Chalk and blackboard, exercise books, pattern cards made from paper
Chalk and blackboard, exercise books, crossed sticks for demonstration
KLB Mathematics Book Three Pg 182-183
6 2
Matrices
Inverse of 2×2 matrices - theory
By the end of the lesson, the learner should be able to:
Understand the concept of matrix inverse
Identify conditions for matrix invertibility
Apply the inverse formula for 2×2 matrices
Understand singular matrices
Q/A on inverse concepts using reciprocal analogy
Discussions on invertibility using determinant conditions
Solving basic inverse problems using formula
Demonstrations using step-by-step method
Explaining singular matrices using zero determinant
Chalk and blackboard, exercise books, fraction examples
KLB Mathematics Book Three Pg 183-185
6 3
Matrices
Inverse of 2×2 matrices - practice
Introduction to solving simultaneous equations
By the end of the lesson, the learner should be able to:
Calculate inverses of 2×2 matrices systematically
Verify inverse calculations through multiplication
Apply inverse properties correctly
Solve complex inverse problems
Q/A on inverse calculation verification methods
Discussions on accuracy checking using multiplication
Solving advanced inverse problems using practice
Demonstrations using verification procedures
Explaining checking methods using examples
Chalk and blackboard, exercise books, scrap paper for verification
Chalk and blackboard, exercise books, equation examples from previous topics
KLB Mathematics Book Three Pg 185-187
6 4
Matrices
Solving 2×2 simultaneous equations using matrices
By the end of the lesson, the learner should be able to:
Solve 2×2 simultaneous equations using matrix methods
Apply inverse matrix techniques
Verify solutions by substitution
Compare matrix method with other techniques
Q/A on matrix solution methods using step-by-step approach
Discussions on solution verification using substitution
Solving 2×2 systems using complete method
Demonstrations using organized solution process
Explaining method advantages using comparisons
Chalk and blackboard, exercise books, previous elimination method examples
KLB Mathematics Book Three Pg 188-190
6 5
Matrices
Advanced simultaneous equation problems
Matrix applications in real-world problems
By the end of the lesson, the learner should be able to:
Solve complex simultaneous equation systems
Handle systems with no solution or infinite solutions
Interpret determinant values in solution context
Apply matrix methods to word problems
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation
Solving challenging problems using complete analysis
Demonstrations using classification methods
Explaining geometric meaning using line concepts
Chalk and blackboard, exercise books, graph paper if available
Chalk and blackboard, local business examples, exercise books
KLB Mathematics Book Three Pg 188-190
6 6
Matrices
Transpose of matrices
By the end of the lesson, the learner should be able to:
Define and calculate matrix transpose
Understand transpose properties
Apply transpose operations correctly
Solve problems involving transpose
Q/A on transpose concepts using reflection ideas
Discussions on row-column interchange using visual methods
Solving transpose problems using systematic approach
Demonstrations using flip and rotate concepts
Explaining properties using symmetry ideas
Chalk and blackboard, exercise books, paper cutouts for demonstration
KLB Mathematics Book Three Pg 170-174
6 7
Matrices
Matrix equation solving
By the end of the lesson, the learner should be able to:
Solve matrix equations systematically
Find unknown matrices in equations
Apply inverse operations to solve equations
Verify matrix equation solutions
Q/A on equation solving using algebraic analogy
Discussions on unknown determination using systematic methods
Solving matrix equations using step-by-step approach
Demonstrations using organized solution procedures
Explaining verification using checking methods
Chalk and blackboard, exercise books, algebra reference examples
KLB Mathematics Book Three Pg 183-190
7 1
Formulae and Variations
Introduction to formulae
Subject of a formula - basic cases
By the end of the lesson, the learner should be able to:
Define formulae and identify formula components
Recognize formulae in everyday contexts
Understand the relationship between variables
Appreciate the importance of formulae in mathematics
Q/A on familiar formulae from daily life
Discussions on cooking recipes as formulae
Analyzing distance-time relationships using walking examples
Demonstrations using perimeter and area calculations
Explaining formula notation using simple examples
Chalk and blackboard, measuring tape or string, exercise books
Chalk and blackboard, simple balance (stones and stick), exercise books
KLB Mathematics Book Three Pg 191-193
7 2
Formulae and Variations
Subject of a formula - intermediate cases
By the end of the lesson, the learner should be able to:
Make complex variables the subject of formulae
Handle formulae with fractions and powers
Apply multiple inverse operations systematically
Solve intermediate difficulty problems
Q/A on complex rearrangement using systematic approach
Discussions on fraction handling using common denominators
Solving intermediate problems using organized methods
Demonstrations using step-by-step blackboard work
Explaining systematic approaches using flowcharts
Chalk and blackboard, fraction strips made from paper, exercise books
KLB Mathematics Book Three Pg 191-193
7 3
Formulae and Variations
Subject of a formula - advanced cases
Applications of formula manipulation
By the end of the lesson, the learner should be able to:
Make variables subject in complex formulae
Handle square roots and quadratic expressions
Apply advanced algebraic manipulation
Solve challenging subject transformation problems
Q/A on advanced manipulation using careful steps
Discussions on square root handling using examples
Solving complex problems using systematic approach
Demonstrations using detailed blackboard work
Explaining quadratic handling using factoring
Chalk and blackboard, squared paper patterns, exercise books
Chalk and blackboard, local measurement tools, exercise books
KLB Mathematics Book Three Pg 191-193
7 4
Formulae and Variations
Introduction to variation
By the end of the lesson, the learner should be able to:
Understand the concept of variation
Distinguish between variables and constants
Recognize variation in everyday situations
Identify different types of variation
Q/A on variable relationships using daily examples
Discussions on changing quantities in nature and commerce
Analyzing variation patterns using local market prices
Demonstrations using speed-time relationships
Explaining variation types using practical examples
Chalk and blackboard, local price lists from markets, exercise books
KLB Mathematics Book Three Pg 194-196
7 5
Formulae and Variations
Probability
Direct variation - introduction
Introduction
By the end of the lesson, the learner should be able to:
Understand direct proportionality concepts
Recognize direct variation patterns
Use direct variation notation correctly
Calculate constants of proportionality
Q/A on direct relationships using simple examples
Discussions on proportional changes using market scenarios
Solving basic direct variation problems
Demonstrations using doubling and tripling examples
Explaining proportionality using ratio concepts
Chalk and blackboard, beans or stones for counting, exercise books
Chalk and blackboard, coins, dice made from cardboard, exercise books
KLB Mathematics Book Three Pg 194-196
7 6
Probability
Experimental Probability
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Conduct probability experiments systematically
Record and analyze experimental data
Compare experimental results with expectations
Q/A on frequency counting using repeated experiments
Discussions on trial repetition and result recording
Solving experimental probability problems using data collection
Demonstrations using coin toss and dice roll experiments
Explaining frequency ratio calculations using practical examples
Chalk and blackboard, coins, cardboard dice, tally charts, exercise books
KLB Mathematics Book Three Pg 262-264
7 7
Probability
Experimental Probability applications
Range of Probability Measure
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Apply experimental methods to various scenarios
Handle large sample experiments
Analyze experimental probability patterns
Q/A on advanced experimental techniques using extended trials
Discussions on sample size effects using comparative data
Solving complex experimental problems using systematic methods
Demonstrations using extended experimental procedures
Explaining pattern analysis using accumulated data
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books
Chalk and blackboard, number line drawings, probability scale charts, exercise books
KLB Mathematics Book Three Pg 262-264
8 1
Probability
Probability Space
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Define sample space systematically
List all possible outcomes
Apply sample space concepts
Q/A on outcome listing using systematic enumeration
Discussions on complete outcome identification
Solving sample space problems using organized listing
Demonstrations using dice, cards, and spinner examples
Explaining probability calculation using outcome counting
Chalk and blackboard, playing cards (locally made), spinners from cardboard, exercise books
KLB Mathematics Book Three Pg 266-267
8 2
Probability
Theoretical Probability
Theoretical Probability advanced
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply mathematical reasoning to find probabilities
Use equally likely outcome assumptions
Calculate theoretical probabilities systematically
Q/A on theoretical calculation using mathematical principles
Discussions on equally likely assumptions and calculations
Solving theoretical problems using systematic approaches
Demonstrations using fair dice and unbiased coin examples
Explaining mathematical probability using logical reasoning
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books
Chalk and blackboard, complex probability materials, advanced calculation aids, exercise books
KLB Mathematics Book Three Pg 266-268
8 3
Probability
Theoretical Probability applications
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply theoretical concepts to real situations
Solve practical probability problems
Interpret results in meaningful contexts
Q/A on practical probability using local examples
Discussions on real-world applications using community scenarios
Solving application problems using theoretical methods
Demonstrations using local games and practical situations
Explaining practical interpretation using meaningful contexts
Chalk and blackboard, local game examples, practical scenario materials, exercise books
KLB Mathematics Book Three Pg 268-270
8 4
Probability
Combined Events
Combined Events OR probability
By the end of the lesson, the learner should be able to:
Find the probability of a combined events
Understand compound events and combinations
Distinguish between different event types
Apply basic combination rules
Q/A on event combination using practical examples
Discussions on exclusive and inclusive event identification
Solving basic combined event problems using visual methods
Demonstrations using card drawing and dice rolling combinations
Explaining combination principles using Venn diagrams
Chalk and blackboard, playing cards, multiple dice, Venn diagram drawings, exercise books
Chalk and blackboard, Venn diagram materials, card examples, exercise books
KLB Mathematics Book Three Pg 272-273
8 5
Probability
Independent Events
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Apply multiplication rule for independent events
Calculate "A and B" probabilities
Understand independence concepts
Q/A on multiplication rule using independent event examples
Discussions on independence identification and verification
Solving AND probability problems using systematic calculation
Demonstrations using multiple coin tosses and dice combinations
Explaining multiplication rule using logical reasoning
Chalk and blackboard, multiple coins and dice, independence demonstration materials, exercise books
KLB Mathematics Book Three Pg 274-275
8 6
Probability
Independent Events advanced
Independent Events applications
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Distinguish between independent and dependent events
Apply conditional probability concepts
Handle complex independence scenarios
Q/A on independence verification using mathematical methods
Discussions on dependence concepts using card drawing examples
Solving dependent and independent event problems using systematic approaches
Demonstrations using replacement and non-replacement scenarios
Explaining conditional probability using practical examples
Chalk and blackboard, playing cards for replacement scenarios, multiple experimental setups, exercise books
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books
KLB Mathematics Book Three Pg 276-278
8 7
Probability
Tree Diagrams
By the end of the lesson, the learner should be able to:
Draw tree diagrams to show the probability space
Construct tree diagrams systematically
Represent sequential events using trees
Apply tree diagram methods
Q/A on tree construction using step-by-step methods
Discussions on sequential event representation
Solving basic tree diagram problems using systematic drawing
Demonstrations using branching examples and visual organization
Explaining tree structure using logical branching principles
Chalk and blackboard, tree diagram templates, branching materials, exercise books
KLB Mathematics Book Three Pg 282
9 1
Probability
Compound Proportion and Rates of Work
Tree Diagrams advanced
Compound Proportions
By the end of the lesson, the learner should be able to:
Use tree diagrams to find probability
Apply trees to multi-stage problems
Handle complex sequential events
Calculate final probabilities using trees
Q/A on complex tree application using multi-stage examples
Discussions on replacement scenario handling
Solving complex tree problems using systematic calculation
Demonstrations using detailed tree constructions
Explaining systematic probability calculation using tree methods
Chalk and blackboard, complex tree examples, detailed calculation aids, exercise books
Chalk and blackboard, local business examples, calculators if available, exercise books
KLB Mathematics Book Three Pg 283-285
9 2
Compound Proportion and Rates of Work
Compound Proportions applications
By the end of the lesson, the learner should be able to:
Find the compound proportions
Apply compound proportions to complex problems
Handle multi-step compound proportion scenarios
Solve real-world compound proportion problems
Q/A on advanced compound proportion using complex scenarios
Discussions on multi-variable relationships using practical contexts
Solving challenging compound problems using systematic approaches
Demonstrations using construction and farming examples
Explaining practical applications using community-based scenarios
Chalk and blackboard, construction/farming examples, exercise books
KLB Mathematics Book Three Pg 290-291
9 3
Compound Proportion and Rates of Work
Proportional Parts
Proportional Parts applications
By the end of the lesson, the learner should be able to:
Calculate the proportional parts
Understand proportional division concepts
Apply proportional parts to sharing problems
Solve distribution problems using proportional methods
Q/A on proportional sharing using practical examples
Discussions on fair distribution using ratio concepts
Solving proportional parts problems using systematic division
Demonstrations using sharing scenarios and inheritance examples
Explaining proportional distribution using logical reasoning
Chalk and blackboard, sharing demonstration materials, exercise books
Chalk and blackboard, business partnership examples, exercise books
KLB Mathematics Book Three Pg 291-293
9 4
Compound Proportion and Rates of Work
Rates of Work
By the end of the lesson, the learner should be able to:
Calculate the rate of work
Understand work rate relationships
Apply time-work-efficiency concepts
Solve basic rate of work problems
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios
Solving basic rate of work problems using systematic methods
Demonstrations using construction and labor examples
Explaining work rate concepts using practical work situations
Chalk and blackboard, work scenario examples, exercise books
KLB Mathematics Book Three Pg 294-295
9 5
Compound Proportion and Rates of Work
Graphical Methods
Rates of Work and Mixtures
Tables of given relations
By the end of the lesson, the learner should be able to:
Calculate the rate of work
Apply work rates to complex scenarios
Handle mixture problems and combinations
Solve advanced rate and mixture problems
Q/A on advanced work rates using complex scenarios
Discussions on mixture problems using practical examples
Solving challenging rate and mixture problems using systematic approaches
Demonstrations using cooking, construction, and manufacturing examples
Explaining mixture concepts using practical applications
Chalk and blackboard, mixture demonstration materials, exercise books
Chalk and blackboard, ruled paper for tables, exercise books
KLB Mathematics Book Three Pg 295-296
9 6
Graphical Methods
Graphs of given relations
By the end of the lesson, the learner should be able to:
Draw graphs of given relations
Plot points accurately on coordinate systems
Connect points to show relationships
Interpret graphs from given data
Q/A on graph plotting using coordinate methods
Discussions on point plotting and curve drawing
Solving graph construction problems using systematic plotting
Demonstrations using coordinate systems and curve sketching
Explaining graph interpretation using visual analysis
Chalk and blackboard, graph paper or grids, rulers, exercise books
KLB Mathematics Book Three Pg 300
9 7
Graphical Methods
Tables and graphs integration
Introduction to cubic equations
By the end of the lesson, the learner should be able to:
Draw tables and graphs of given relations
Integrate table construction with graph plotting
Analyze relationships using both methods
Compare tabular and graphical representations
Q/A on integrated table-graph construction using comprehensive methods
Discussions on data flow from tables to graphs
Solving integrated problems using systematic approaches
Demonstrations using complete data analysis procedures
Explaining relationship analysis using combined methods
Chalk and blackboard, graph paper, data examples, exercise books
Chalk and blackboard, cubic function examples, exercise books
KLB Mathematics Book Three Pg 299-300
10 1
Graphical Methods
Graphical solution of cubic equations
By the end of the lesson, the learner should be able to:
Draw graphs of cubic equations
Plot cubic curves accurately
Use graphs to solve cubic equations
Find roots using graphical methods
Q/A on cubic curve plotting using systematic point plotting
Discussions on curve characteristics and root finding
Solving cubic graphing problems using careful plotting
Demonstrations using cubic curve construction
Explaining root identification using graph analysis
Chalk and blackboard, graph paper, cubic equation examples, exercise books
KLB Mathematics Book Three Pg 302-304
10 2
Graphical Methods
Advanced cubic solutions
Introduction to rates of change
By the end of the lesson, the learner should be able to:
Draw graphs of cubic equations
Apply graphical methods to complex cubic problems
Handle multiple root scenarios
Verify solutions using graphical analysis
Q/A on advanced cubic graphing using complex examples
Discussions on multiple root identification using graph analysis
Solving challenging cubic problems using systematic methods
Demonstrations using detailed cubic constructions
Explaining verification methods using graphical checking
Chalk and blackboard, advanced graph examples, exercise books
Chalk and blackboard, rate calculation examples, exercise books
KLB Mathematics Book Three Pg 302-304
10 3
Graphical Methods
Average rates of change
By the end of the lesson, the learner should be able to:
Calculate the average rates of change
Apply average rate methods to various functions
Use graphical methods for rate calculation
Solve practical rate problems
Q/A on average rate calculation using graphical methods
Discussions on rate applications using real-world scenarios
Solving average rate problems using systematic approaches
Demonstrations using graph-based rate calculation
Explaining practical applications using meaningful contexts
Chalk and blackboard, graph paper, rate examples, exercise books
KLB Mathematics Book Three Pg 304-306
10 4
Graphical Methods
Advanced average rates
Introduction to instantaneous rates
By the end of the lesson, the learner should be able to:
Calculate the average rates of change
Handle complex rate scenarios
Apply rates to business and scientific problems
Integrate rate concepts with other topics
Q/A on complex rate applications using advanced scenarios
Discussions on business and scientific rate applications
Solving challenging rate problems using integrated methods
Demonstrations using comprehensive rate examples
Explaining advanced applications using detailed analysis
Chalk and blackboard, advanced rate scenarios, exercise books
Chalk and blackboard, tangent line examples, exercise books
KLB Mathematics Book Three Pg 304-310
10 5
Graphical Methods
Rate of change at an instant
By the end of the lesson, the learner should be able to:
Calculate the rate of change at an instant
Apply instantaneous rate methods systematically
Use graphical techniques for instant rates
Solve practical instantaneous rate problems
Q/A on instantaneous rate calculation using graphical methods
Discussions on tangent line slope interpretation
Solving instantaneous rate problems using systematic approaches
Demonstrations using detailed tangent constructions
Explaining practical applications using real scenarios
Chalk and blackboard, detailed graph examples, exercise books
KLB Mathematics Book Three Pg 310-311
10 6
Graphical Methods
Advanced instantaneous rates
Empirical graphs
By the end of the lesson, the learner should be able to:
Calculate the rate of change at an instant
Handle complex instantaneous rate scenarios
Apply instant rates to advanced problems
Integrate instantaneous concepts with applications
Q/A on advanced instantaneous applications using complex examples
Discussions on sophisticated rate problems using detailed analysis
Solving challenging instantaneous problems using systematic methods
Demonstrations using comprehensive rate constructions
Explaining advanced applications using detailed reasoning
Chalk and blackboard, advanced rate examples, exercise books
Chalk and blackboard, experimental data examples, exercise books
KLB Mathematics Book Three Pg 310-315
10 7
Graphical Methods
Advanced empirical methods
By the end of the lesson, the learner should be able to:
Draw the empirical graphs
Apply empirical methods to complex data
Handle large datasets and trends
Interpret empirical results meaningfully
Q/A on advanced empirical techniques using complex datasets
Discussions on trend analysis using systematic methods
Solving challenging empirical problems using organized approaches
Demonstrations using comprehensive data analysis
Explaining advanced interpretations using detailed reasoning
Chalk and blackboard, complex data examples, exercise books
KLB Mathematics Book Three Pg 315-321

Your Name Comes Here


Download

Feedback