Home






SCHEME OF WORK
Mathematics
Form 3 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1

Opening of School and Revision

2 1
Matrices
Introduction and real-life applications
Order of a matrix and elements
By the end of the lesson, the learner should be able to:
Define matrices and identify matrix applications
Recognize matrices in everyday contexts
Understand tabular data representation
Appreciate the importance of matrices
Q/A on tabular data in daily life
Discussions on school exam results tables
Analyzing bus timetables and price lists
Demonstrations using newspaper sports tables
Explaining matrix notation using grid patterns
Old newspapers with league tables, chalk and blackboard, exercise books
Chalk and blackboard, ruled exercise books, class register
KLB Mathematics Book Three Pg 168-169
2 2
Matrices
Square matrices, row and column matrices
Addition of matrices
Subtraction of matrices
Combined addition and subtraction
By the end of the lesson, the learner should be able to:
Classify matrices by their dimensions
Identify square, row, and column matrices
Understand zero and null matrices
Apply matrix equality conditions
Q/A on matrix classification using drawn examples
Discussions on special matrix types using patterns
Solving matrix identification using cutout papers
Demonstrations using classroom objects arrangement
Explaining matrix comparison using simple examples
Paper cutouts, chalk and blackboard, counters or bottle tops
Counters or stones, chalk and blackboard, exercise books
Chalk and blackboard, exercise books, number cards made from cardboard
Chalk and blackboard, exercise books, locally made operation cards
KLB Mathematics Book Three Pg 169-170
2 3
Matrices
Scalar multiplication
Introduction to matrix multiplication
Matrix multiplication (2×2 matrices)
By the end of the lesson, the learner should be able to:
Multiply matrices by scalar quantities
Apply scalar multiplication rules
Understand the effect of scalar multiplication
Solve scalar multiplication problems
Q/A on scalar multiplication using times tables
Discussions on scaling using multiplication concepts
Solving scalar problems using repeated addition
Demonstrations using groups of objects
Explaining scalar effects using enlargement concepts
Beans or stones for grouping, chalk and blackboard, exercise books
Chalk and blackboard, rulers for tracing, exercise books
Chalk and blackboard, exercise books, homemade grid templates
KLB Mathematics Book Three Pg 174-175
2 4
Matrices
Matrix multiplication (larger matrices)
Properties of matrix multiplication
By the end of the lesson, the learner should be able to:
Multiply matrices of various orders
Apply multiplication to 3×3 and larger matrices
Determine when multiplication is possible
Calculate products efficiently
Q/A on larger matrix multiplication using patterns
Discussions on efficiency techniques using shortcuts
Solving advanced problems using systematic methods
Demonstrations using organized calculation procedures
Explaining general principles using examples
Chalk and blackboard, large sheets of paper for working, exercise books
Chalk and blackboard, exercise books, cardboard for property cards
KLB Mathematics Book Three Pg 176-179
2 5
Matrices
Real-world matrix multiplication applications
Identity matrix
By the end of the lesson, the learner should be able to:
Apply matrix multiplication to practical problems
Solve business and economic applications
Calculate costs, revenues, and quantities
Interpret matrix multiplication results
Q/A on practical applications using local business examples
Discussions on market problems using familiar contexts
Solving real-world problems using matrix methods
Demonstrations using shop keeper scenarios
Explaining result interpretation using meaningful contexts
Chalk and blackboard, local price lists, exercise books
Chalk and blackboard, exercise books, pattern cards made from paper
KLB Mathematics Book Three Pg 176-179
2 6
Matrices
Determinant of 2×2 matrices
Inverse of 2×2 matrices - theory
By the end of the lesson, the learner should be able to:
Calculate determinants of 2×2 matrices
Apply the determinant formula correctly
Understand geometric interpretation of determinants
Use determinants to classify matrices
Q/A on determinant calculation using cross multiplication
Discussions on formula application using memory aids
Solving determinant problems using systematic approach
Demonstrations using cross pattern method
Explaining geometric meaning using area concepts
Chalk and blackboard, exercise books, crossed sticks for demonstration
Chalk and blackboard, exercise books, fraction examples
KLB Mathematics Book Three Pg 183
2 7
Matrices
Inverse of 2×2 matrices - practice
Introduction to solving simultaneous equations
By the end of the lesson, the learner should be able to:
Calculate inverses of 2×2 matrices systematically
Verify inverse calculations through multiplication
Apply inverse properties correctly
Solve complex inverse problems
Q/A on inverse calculation verification methods
Discussions on accuracy checking using multiplication
Solving advanced inverse problems using practice
Demonstrations using verification procedures
Explaining checking methods using examples
Chalk and blackboard, exercise books, scrap paper for verification
Chalk and blackboard, exercise books, equation examples from previous topics
KLB Mathematics Book Three Pg 185-187
3 1
Matrices
Solving 2×2 simultaneous equations using matrices
Advanced simultaneous equation problems
By the end of the lesson, the learner should be able to:
Solve 2×2 simultaneous equations using matrix methods
Apply inverse matrix techniques
Verify solutions by substitution
Compare matrix method with other techniques
Q/A on matrix solution methods using step-by-step approach
Discussions on solution verification using substitution
Solving 2×2 systems using complete method
Demonstrations using organized solution process
Explaining method advantages using comparisons
Chalk and blackboard, exercise books, previous elimination method examples
Chalk and blackboard, exercise books, graph paper if available
KLB Mathematics Book Three Pg 188-190
3 2
Matrices
Matrix applications in real-world problems
Transpose of matrices
By the end of the lesson, the learner should be able to:
Apply matrix operations to practical scenarios
Solve business, engineering, and scientific problems
Model real situations using matrices
Interpret matrix solutions in context
Q/A on practical applications using local examples
Discussions on modeling using familiar situations
Solving comprehensive problems using matrix tools
Demonstrations using community-based scenarios
Explaining solution interpretation using meaningful contexts
Chalk and blackboard, local business examples, exercise books
Chalk and blackboard, exercise books, paper cutouts for demonstration
KLB Mathematics Book Three Pg 168-190
3 3
Matrices
Formulae and Variations
Matrix equation solving
Introduction to formulae
By the end of the lesson, the learner should be able to:
Solve matrix equations systematically
Find unknown matrices in equations
Apply inverse operations to solve equations
Verify matrix equation solutions
Q/A on equation solving using algebraic analogy
Discussions on unknown determination using systematic methods
Solving matrix equations using step-by-step approach
Demonstrations using organized solution procedures
Explaining verification using checking methods
Chalk and blackboard, exercise books, algebra reference examples
Chalk and blackboard, measuring tape or string, exercise books
KLB Mathematics Book Three Pg 183-190
3 4
Formulae and Variations
Subject of a formula - basic cases
Subject of a formula - intermediate cases
By the end of the lesson, the learner should be able to:
Make simple variables the subject of formulae
Apply inverse operations to rearrange formulae
Understand the concept of subject change
Solve basic subject transformation problems
Q/A on inverse operations using number examples
Discussions on formula rearrangement using balance method
Solving basic subject change problems using step-by-step approach
Demonstrations using see-saw balance analogy
Explaining inverse operations using practical examples
Chalk and blackboard, simple balance (stones and stick), exercise books
Chalk and blackboard, fraction strips made from paper, exercise books
KLB Mathematics Book Three Pg 191-193
3 5
Formulae and Variations
Subject of a formula - advanced cases
Applications of formula manipulation
By the end of the lesson, the learner should be able to:
Make variables subject in complex formulae
Handle square roots and quadratic expressions
Apply advanced algebraic manipulation
Solve challenging subject transformation problems
Q/A on advanced manipulation using careful steps
Discussions on square root handling using examples
Solving complex problems using systematic approach
Demonstrations using detailed blackboard work
Explaining quadratic handling using factoring
Chalk and blackboard, squared paper patterns, exercise books
Chalk and blackboard, local measurement tools, exercise books
KLB Mathematics Book Three Pg 191-193
3 6
Formulae and Variations
Introduction to variation
Direct variation - introduction
By the end of the lesson, the learner should be able to:
Understand the concept of variation
Distinguish between variables and constants
Recognize variation in everyday situations
Identify different types of variation
Q/A on variable relationships using daily examples
Discussions on changing quantities in nature and commerce
Analyzing variation patterns using local market prices
Demonstrations using speed-time relationships
Explaining variation types using practical examples
Chalk and blackboard, local price lists from markets, exercise books
Chalk and blackboard, beans or stones for counting, exercise books
KLB Mathematics Book Three Pg 194-196
3 7
Sequences and Series
Introduction to sequences and finding terms
General term of sequences and applications
By the end of the lesson, the learner should be able to:
Define sequences and identify sequence patterns
Find next terms using established patterns
Recognize different types of sequence patterns
Apply pattern recognition systematically
Q/A on number patterns from daily life
Discussions on counting patterns using classroom arrangements
Solving pattern completion problems step-by-step
Demonstrations using bead or stone arrangements
Explaining sequence terminology and pattern continuation
Chalk and blackboard, stones or beans for patterns, exercise books
Chalk and blackboard, numbered cards made from paper, exercise books
KLB Mathematics Book Three Pg 207-208
4 1
Sequences and Series
Arithmetic sequences and nth term
Arithmetic sequence applications
By the end of the lesson, the learner should be able to:
Define arithmetic sequences and common differences
Calculate common differences correctly
Derive and apply the nth term formula
Solve problems using arithmetic sequence concepts
Q/A on arithmetic patterns using step-by-step examples
Discussions on constant difference patterns and formula derivation
Solving arithmetic sequence problems systematically
Demonstrations using equal-step progressions
Explaining formula structure using algebraic reasoning
Chalk and blackboard, measuring tape or string, exercise books
Chalk and blackboard, local employment/savings examples, exercise books
KLB Mathematics Book Three Pg 209-210
4 2
Sequences and Series
Geometric sequences and nth term
Geometric sequence applications
By the end of the lesson, the learner should be able to:
Define geometric sequences and common ratios
Calculate common ratios correctly
Derive and apply the geometric nth term formula
Understand exponential growth patterns
Q/A on geometric patterns using multiplication examples
Discussions on ratio-based progressions and formula derivation
Solving geometric sequence problems systematically
Demonstrations using doubling and scaling examples
Explaining exponential structure using practical examples
Chalk and blackboard, objects for doubling demonstrations, exercise books
Chalk and blackboard, population/growth data examples, exercise books
KLB Mathematics Book Three Pg 211-213
4 3
Sequences and Series
Arithmetic series and sum formula
Geometric series and applications
Mixed problems and advanced applications
By the end of the lesson, the learner should be able to:
Define arithmetic series as sums of sequences
Derive the sum formula for arithmetic series
Apply the arithmetic series formula systematically
Calculate sums efficiently using the formula
Q/A on series concepts using summation examples
Discussions on sequence-to-series relationships and formula derivation
Solving arithmetic series problems using step-by-step approach
Demonstrations using cumulative sum examples
Explaining derivation logic using algebraic reasoning
Chalk and blackboard, counting materials for summation, exercise books
Chalk and blackboard, convergence demonstration materials, exercise books
Chalk and blackboard, mixed problem collections, exercise books
KLB Mathematics Book Three Pg 214-215
4 4
Sequences and Series
Vectors (II)
Sequences in nature and technology
Coordinates in two dimensions
By the end of the lesson, the learner should be able to:
Identify mathematical patterns in natural phenomena
Analyze sequences in biological and technological contexts
Apply sequence concepts to environmental problems
Appreciate mathematics in the natural and modern world
Q/A on natural and technological patterns using examples
Discussions on biological sequences and digital applications
Solving nature and technology-based problems
Demonstrations using natural pattern examples
Explaining mathematical beauty using real phenomena
Chalk and blackboard, natural and technology examples, exercise books
Chalk and blackboard, squared paper or grid drawn on ground, exercise books
KLB Mathematics Book Three Pg 207-219
4 5
Vectors (II)
Coordinates in three dimensions
Column and position vectors in three dimensions
By the end of the lesson, the learner should be able to:
Identify the coordinates of a point in three dimensions
Understand the three-dimensional coordinate system
Plot points in 3D space systematically
Apply 3D coordinates to spatial problems
Q/A on 3D coordinate understanding using room corner references
Discussions on height, length, and width measurements
Solving 3D coordinate problems using systematic approaches
Demonstrations using classroom corners and building structures
Explaining 3D visualization using physical room examples
Chalk and blackboard, 3D models made from sticks and clay, exercise books
Chalk and blackboard, movement demonstration space, exercise books
KLB Mathematics Book Three Pg 222
4 6
Vectors (II)
Position vectors and applications
Column vectors in terms of unit vectors i, j, k
By the end of the lesson, the learner should be able to:
Calculate the position vector
Apply position vectors to geometric problems
Find distances using position vector methods
Solve positioning problems systematically
Q/A on position vector calculation using origin references
Discussions on position determination using coordinate methods
Solving position vector problems using systematic calculation
Demonstrations using fixed origin and variable endpoints
Explaining position concepts using practical location examples
Chalk and blackboard, origin marking systems, exercise books
Chalk and blackboard, direction indicators, unit vector reference charts, exercise books
KLB Mathematics Book Three Pg 224
4 7
Vectors (II)
Vector operations using unit vectors
Magnitude of a vector in three dimensions
By the end of the lesson, the learner should be able to:
Express vectors in terms of unit vectors
Perform vector addition using unit vector notation
Calculate vector subtraction with i, j, k components
Apply scalar multiplication to unit vectors
Q/A on vector operations using component-wise calculation
Discussions on systematic operation methods
Solving vector operation problems using organized approaches
Demonstrations using component separation and combination
Explaining operation logic using algebraic reasoning
Chalk and blackboard, component calculation aids, exercise books
Chalk and blackboard, 3D measurement aids, exercise books
KLB Mathematics Book Three Pg 226-228
5 1
Vectors (II)
Magnitude applications and unit vectors
Parallel vectors
By the end of the lesson, the learner should be able to:
Calculate the magnitude of a vector in three dimensions
Find unit vectors from given vectors
Apply magnitude concepts to practical problems
Use magnitude in vector normalization
Q/A on magnitude and unit vector relationships
Discussions on normalization and direction finding
Solving magnitude and unit vector problems
Demonstrations using direction and length separation
Explaining practical applications using navigation examples
Chalk and blackboard, direction finding aids, exercise books
Chalk and blackboard, parallel line demonstrations, exercise books
KLB Mathematics Book Three Pg 229-230
5 2
Vectors (II)
Collinearity
Advanced collinearity applications
By the end of the lesson, the learner should be able to:
Show that points are collinear
Apply vector methods to prove collinearity
Test for collinear points using vector techniques
Solve collinearity problems systematically
Q/A on collinearity testing using vector proportion methods
Discussions on point alignment using vector analysis
Solving collinearity problems using systematic verification
Demonstrations using straight-line point examples
Explaining collinearity using geometric alignment concepts
Chalk and blackboard, straight-line demonstrations, exercise books
Chalk and blackboard, complex geometric aids, exercise books
KLB Mathematics Book Three Pg 232-234
5 3
Vectors (II)
Proportional division of a line
External division of a line
By the end of the lesson, the learner should be able to:
Divide a line internally in the given ratio
Apply the internal division formula
Calculate division points using vector methods
Understand proportional division concepts
Q/A on internal division using systematic formula application
Discussions on ratio division using proportional methods
Solving internal division problems using organized approaches
Demonstrations using internal point construction examples
Explaining internal division using geometric visualization
Chalk and blackboard, internal division models, exercise books
Chalk and blackboard, external division models, exercise books
KLB Mathematics Book Three Pg 237-238
5 4
Vectors (II)
Combined internal and external division
Ratio theorem
By the end of the lesson, the learner should be able to:
Divide a line internally and externally in the given ratio
Apply both division formulas systematically
Compare internal and external division results
Handle mixed division problems
Q/A on combined division using comparative methods
Discussions on division type selection using problem analysis
Solving combined division problems using systematic approaches
Demonstrations using both division types
Explaining division relationships using geometric reasoning
Chalk and blackboard, combined division models, exercise books
Chalk and blackboard, ratio theorem aids, exercise books
KLB Mathematics Book Three Pg 239
5 5
Vectors (II)
Advanced ratio theorem applications
Mid-point
By the end of the lesson, the learner should be able to:
Find the position vector
Apply ratio theorem to complex scenarios
Solve multi-step ratio problems
Use ratio theorem in geometric proofs
Q/A on advanced ratio applications using complex problems
Discussions on multi-step ratio calculation
Solving challenging ratio problems using systematic methods
Demonstrations using comprehensive ratio examples
Explaining advanced applications using detailed reasoning
Chalk and blackboard, advanced ratio models, exercise books
Chalk and blackboard, midpoint demonstration aids, exercise books
KLB Mathematics Book Three Pg 242
5 6
Vectors (II)
Ratio theorem and midpoint integration
Advanced ratio theorem applications
By the end of the lesson, the learner should be able to:
Use ratio theorem to find the given vectors
Apply midpoint and ratio concepts together
Solve complex ratio and midpoint problems
Integrate division and midpoint methods
Q/A on integrated problem-solving using combined methods
Discussions on complex scenario analysis using systematic approaches
Solving challenging problems using integrated techniques
Demonstrations using comprehensive geometric examples
Explaining integration using logical problem-solving
Chalk and blackboard, complex problem materials, exercise books
Chalk and blackboard, advanced geometric aids, exercise books
KLB Mathematics Book Three Pg 244-245
5 7
Vectors (II)
Applications of vectors in geometry
Rectangle diagonal applications
By the end of the lesson, the learner should be able to:
Use vectors to show the diagonals of a parallelogram
Apply vector methods to geometric proofs
Demonstrate parallelogram properties using vectors
Solve geometric problems using vector techniques
Q/A on geometric proof using vector methods
Discussions on parallelogram properties using vector analysis
Solving geometric problems using systematic vector techniques
Demonstrations using vector-based geometric constructions
Explaining geometric relationships using vector reasoning
Chalk and blackboard, parallelogram models, exercise books
Chalk and blackboard, rectangle models, exercise books
KLB Mathematics Book Three Pg 248-249
6 1
Vectors (II)
Binomial Expansion
Advanced geometric applications
Binomial expansions up to power four
By the end of the lesson, the learner should be able to:
Use vectors to show geometric properties
Apply vectors to complex geometric proofs
Solve challenging geometric problems using vectors
Integrate all vector concepts in geometric contexts
Q/A on comprehensive geometric applications using vector methods
Discussions on advanced proof techniques using vectors
Solving complex geometric problems using integrated approaches
Demonstrations using sophisticated geometric constructions
Explaining advanced applications using comprehensive reasoning
Chalk and blackboard, advanced geometric models, exercise books
Chalk and blackboard, rectangular cutouts from paper, exercise books
KLB Mathematics Book Three Pg 248-250
6 2
Binomial Expansion
Binomial expansions up to power four (continued)
Pascal's triangle
By the end of the lesson, the learner should be able to:
Expand binomial function up to power four
Handle increasingly complex coefficient patterns
Apply systematic expansion techniques efficiently
Verify expansions using substitution methods
Q/A on power expansion using multiplication techniques
Discussions on coefficient identification using pattern analysis
Solving expansion problems using systematic approaches
Demonstrations using geometric representations
Explaining verification methods using numerical substitution
Chalk and blackboard, squared paper for geometric models, exercise books
Chalk and blackboard, triangular patterns drawn/cut from paper, exercise books
KLB Mathematics Book Three Pg 256
6 3
Binomial Expansion
Pascal's triangle applications
Pascal's triangle (continued)
By the end of the lesson, the learner should be able to:
Use Pascal's triangle
Apply Pascal's triangle to binomial expansions efficiently
Use triangle coefficients for various powers
Solve expansion problems using triangle methods
Q/A on triangle application using coefficient identification
Discussions on efficient expansion using triangle methods
Solving expansion problems using Pascal's triangle
Demonstrations using triangle-guided calculations
Explaining efficiency benefits using comparative methods
Chalk and blackboard, Pascal's triangle reference charts, exercise books
Chalk and blackboard, advanced triangle patterns, exercise books
KLB Mathematics Book Three Pg 257-258
6 4
Binomial Expansion
Pascal's triangle advanced
Applications to numerical cases
By the end of the lesson, the learner should be able to:
Use Pascal's triangle
Apply general binomial theorem concepts
Understand combination notation in expansions
Use general term formula applications
Q/A on general formula understanding using pattern analysis
Discussions on combination notation using counting principles
Solving general term problems using formula application
Demonstrations using systematic formula usage
Explaining general principles using algebraic reasoning
Chalk and blackboard, combination calculation aids, exercise books
Chalk and blackboard, simple calculation aids, exercise books
KLB Mathematics Book Three Pg 258-259
6 5
Binomial Expansion
Probability
Applications to numerical cases (continued)
Introduction
By the end of the lesson, the learner should be able to:
Use binomial expansion to solve numerical problems
Apply binomial methods to complex calculations
Handle decimal approximations using expansions
Solve practical numerical problems
Q/A on advanced numerical applications using complex scenarios
Discussions on decimal approximation using expansion techniques
Solving challenging numerical problems using systematic methods
Demonstrations using detailed calculation procedures
Explaining practical relevance using real-world examples
Chalk and blackboard, advanced calculation examples, exercise books
Chalk and blackboard, coins, dice made from cardboard, exercise books
KLB Mathematics Book Three Pg 259-260
6 6
Probability
Experimental Probability
Experimental Probability applications
By the end of the lesson, the learner should be able to:
Calculate the experimental probability
Conduct probability experiments systematically
Record and analyze experimental data
Compare experimental results with expectations
Q/A on frequency counting using repeated experiments
Discussions on trial repetition and result recording
Solving experimental probability problems using data collection
Demonstrations using coin toss and dice roll experiments
Explaining frequency ratio calculations using practical examples
Chalk and blackboard, coins, cardboard dice, tally charts, exercise books
Chalk and blackboard, extended experimental materials, data recording sheets, exercise books
KLB Mathematics Book Three Pg 262-264
6 7
Probability
Range of Probability Measure
Probability Space
By the end of the lesson, the learner should be able to:
Calculate the range of probability measure
Express probabilities on scale from 0 to 1
Convert between fractions, decimals, and percentages
Interpret probability values correctly
Q/A on probability scale using number line representations
Discussions on probability conversion between forms
Solving probability scale problems using systematic methods
Demonstrations using probability line and scale examples
Explaining scale interpretation using practical scenarios
Chalk and blackboard, number line drawings, probability scale charts, exercise books
Chalk and blackboard, playing cards (locally made), spinners from cardboard, exercise books
KLB Mathematics Book Three Pg 265-266
7 1
Probability
Theoretical Probability
Theoretical Probability advanced
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply mathematical reasoning to find probabilities
Use equally likely outcome assumptions
Calculate theoretical probabilities systematically
Q/A on theoretical calculation using mathematical principles
Discussions on equally likely assumptions and calculations
Solving theoretical problems using systematic approaches
Demonstrations using fair dice and unbiased coin examples
Explaining mathematical probability using logical reasoning
Chalk and blackboard, fair dice and coins, probability calculation aids, exercise books
Chalk and blackboard, complex probability materials, advanced calculation aids, exercise books
KLB Mathematics Book Three Pg 266-268
7 2
Probability
Theoretical Probability applications
Combined Events
By the end of the lesson, the learner should be able to:
Calculate the probability space for the theoretical probability
Apply theoretical concepts to real situations
Solve practical probability problems
Interpret results in meaningful contexts
Q/A on practical probability using local examples
Discussions on real-world applications using community scenarios
Solving application problems using theoretical methods
Demonstrations using local games and practical situations
Explaining practical interpretation using meaningful contexts
Chalk and blackboard, local game examples, practical scenario materials, exercise books
Chalk and blackboard, playing cards, multiple dice, Venn diagram drawings, exercise books
KLB Mathematics Book Three Pg 268-270
7 3
Probability
Combined Events OR probability
Independent Events
By the end of the lesson, the learner should be able to:
Find the probability of a combined events
Apply addition rule for OR events
Calculate "A or B" probabilities
Handle mutually exclusive events
Q/A on addition rule application using systematic methods
Discussions on mutually exclusive identification and calculation
Solving OR probability problems using organized approaches
Demonstrations using card selection and event combination
Explaining addition rule logic using Venn diagrams
Chalk and blackboard, Venn diagram materials, card examples, exercise books
Chalk and blackboard, multiple coins and dice, independence demonstration materials, exercise books
KLB Mathematics Book Three Pg 272-274
7 4
Probability
Independent Events advanced
Independent Events applications
By the end of the lesson, the learner should be able to:
Find the probability of independent events
Distinguish between independent and dependent events
Apply conditional probability concepts
Handle complex independence scenarios
Q/A on independence verification using mathematical methods
Discussions on dependence concepts using card drawing examples
Solving dependent and independent event problems using systematic approaches
Demonstrations using replacement and non-replacement scenarios
Explaining conditional probability using practical examples
Chalk and blackboard, playing cards for replacement scenarios, multiple experimental setups, exercise books
Chalk and blackboard, complex experimental materials, advanced calculation aids, exercise books
KLB Mathematics Book Three Pg 276-278
7 5
Probability
Tree Diagrams
Tree Diagrams advanced
By the end of the lesson, the learner should be able to:
Draw tree diagrams to show the probability space
Construct tree diagrams systematically
Represent sequential events using trees
Apply tree diagram methods
Q/A on tree construction using step-by-step methods
Discussions on sequential event representation
Solving basic tree diagram problems using systematic drawing
Demonstrations using branching examples and visual organization
Explaining tree structure using logical branching principles
Chalk and blackboard, tree diagram templates, branching materials, exercise books
Chalk and blackboard, complex tree examples, detailed calculation aids, exercise books
KLB Mathematics Book Three Pg 282
7 6
Compound Proportion and Rates of Work
Compound Proportions
Compound Proportions applications
By the end of the lesson, the learner should be able to:
Find the compound proportions
Understand compound proportion relationships
Apply compound proportion methods systematically
Solve problems involving multiple variables
Q/A on compound relationships using practical examples
Discussions on multiple variable situations using local scenarios
Solving compound proportion problems using systematic methods
Demonstrations using business and trade examples
Explaining compound proportion logic using step-by-step reasoning
Chalk and blackboard, local business examples, calculators if available, exercise books
Chalk and blackboard, construction/farming examples, exercise books
KLB Mathematics Book Three Pg 288-290
7 7
Compound Proportion and Rates of Work
Proportional Parts
Proportional Parts applications
By the end of the lesson, the learner should be able to:
Calculate the proportional parts
Understand proportional division concepts
Apply proportional parts to sharing problems
Solve distribution problems using proportional methods
Q/A on proportional sharing using practical examples
Discussions on fair distribution using ratio concepts
Solving proportional parts problems using systematic division
Demonstrations using sharing scenarios and inheritance examples
Explaining proportional distribution using logical reasoning
Chalk and blackboard, sharing demonstration materials, exercise books
Chalk and blackboard, business partnership examples, exercise books
KLB Mathematics Book Three Pg 291-293
8 1
Compound Proportion and Rates of Work
Rates of Work
Rates of Work and Mixtures
By the end of the lesson, the learner should be able to:
Calculate the rate of work
Understand work rate relationships
Apply time-work-efficiency concepts
Solve basic rate of work problems
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios
Solving basic rate of work problems using systematic methods
Demonstrations using construction and labor examples
Explaining work rate concepts using practical work situations
Chalk and blackboard, work scenario examples, exercise books
Chalk and blackboard, mixture demonstration materials, exercise books
KLB Mathematics Book Three Pg 294-295
8 2
Graphical Methods
Tables of given relations
Graphs of given relations
By the end of the lesson, the learner should be able to:
Draw tables of given relations
Construct organized data tables systematically
Prepare data for graphical representation
Understand relationship between variables
Q/A on table construction using systematic data organization
Discussions on variable relationships using practical examples
Solving table preparation problems using organized methods
Demonstrations using data collection and tabulation
Explaining systematic data arrangement using logical procedures
Chalk and blackboard, ruled paper for tables, exercise books
Chalk and blackboard, graph paper or grids, rulers, exercise books
KLB Mathematics Book Three Pg 299
8 3
Graphical Methods
Tables and graphs integration
Introduction to cubic equations
By the end of the lesson, the learner should be able to:
Draw tables and graphs of given relations
Integrate table construction with graph plotting
Analyze relationships using both methods
Compare tabular and graphical representations
Q/A on integrated table-graph construction using comprehensive methods
Discussions on data flow from tables to graphs
Solving integrated problems using systematic approaches
Demonstrations using complete data analysis procedures
Explaining relationship analysis using combined methods
Chalk and blackboard, graph paper, data examples, exercise books
Chalk and blackboard, cubic function examples, exercise books
KLB Mathematics Book Three Pg 299-300
8 4
Graphical Methods
Graphical solution of cubic equations
Advanced cubic solutions
By the end of the lesson, the learner should be able to:
Draw graphs of cubic equations
Plot cubic curves accurately
Use graphs to solve cubic equations
Find roots using graphical methods
Q/A on cubic curve plotting using systematic point plotting
Discussions on curve characteristics and root finding
Solving cubic graphing problems using careful plotting
Demonstrations using cubic curve construction
Explaining root identification using graph analysis
Chalk and blackboard, graph paper, cubic equation examples, exercise books
Chalk and blackboard, advanced graph examples, exercise books
KLB Mathematics Book Three Pg 302-304
8 5
Graphical Methods
Introduction to rates of change
Average rates of change
By the end of the lesson, the learner should be able to:
Calculate the average rates of change
Understand rate of change concepts
Apply rate calculations to practical problems
Interpret rate meanings in context
Q/A on rate calculation using slope methods
Discussions on rate interpretation using practical examples
Solving basic rate problems using systematic calculation
Demonstrations using speed-time and distance examples
Explaining rate concepts using practical analogies
Chalk and blackboard, rate calculation examples, exercise books
Chalk and blackboard, graph paper, rate examples, exercise books
KLB Mathematics Book Three Pg 304-306
8 6
Graphical Methods
Advanced average rates
Introduction to instantaneous rates
By the end of the lesson, the learner should be able to:
Calculate the average rates of change
Handle complex rate scenarios
Apply rates to business and scientific problems
Integrate rate concepts with other topics
Q/A on complex rate applications using advanced scenarios
Discussions on business and scientific rate applications
Solving challenging rate problems using integrated methods
Demonstrations using comprehensive rate examples
Explaining advanced applications using detailed analysis
Chalk and blackboard, advanced rate scenarios, exercise books
Chalk and blackboard, tangent line examples, exercise books
KLB Mathematics Book Three Pg 304-310
8 7
Graphical Methods
Rate of change at an instant
Advanced instantaneous rates
By the end of the lesson, the learner should be able to:
Calculate the rate of change at an instant
Apply instantaneous rate methods systematically
Use graphical techniques for instant rates
Solve practical instantaneous rate problems
Q/A on instantaneous rate calculation using graphical methods
Discussions on tangent line slope interpretation
Solving instantaneous rate problems using systematic approaches
Demonstrations using detailed tangent constructions
Explaining practical applications using real scenarios
Chalk and blackboard, detailed graph examples, exercise books
Chalk and blackboard, advanced rate examples, exercise books
KLB Mathematics Book Three Pg 310-311
9

End of Term exam

10 1
Graphical Methods
Empirical graphs
Advanced empirical methods
By the end of the lesson, the learner should be able to:
Draw the empirical graphs
Understand empirical data representation
Plot experimental data systematically
Analyze empirical relationships
Q/A on empirical data plotting using experimental examples
Discussions on real data representation using practical scenarios
Solving empirical graphing problems using systematic methods
Demonstrations using experimental data examples
Explaining empirical analysis using practical interpretations
Chalk and blackboard, experimental data examples, exercise books
Chalk and blackboard, complex data examples, exercise books
KLB Mathematics Book Three Pg 315-316

Your Name Comes Here


Download

Feedback