If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 | 1 |
Statistics II
|
Introduction to Advanced Statistics
Working Mean Concept |
By the end of the
lesson, the learner
should be able to:
-Review measures of central tendency from Form 2 -Identify limitations of simple mean calculations -Understand need for advanced statistical methods -Recognize patterns in large datasets |
-Review mean, median, mode from previous work -Discuss challenges with large numbers -Examine real data from Kenya (population, rainfall) -Q&A on statistical applications in daily life |
Exercise books
-Manila paper -Real data examples -Chalk/markers -Sample datasets |
KLB Secondary Mathematics Form 4, Pages 39-42
|
|
1 | 2 |
Statistics II
|
Mean Using Working Mean - Simple Data
Mean Using Working Mean - Frequency Tables |
By the end of the
lesson, the learner
should be able to:
-Calculate mean using working mean for ungrouped data -Apply the formula: mean = working mean + mean of deviations -Verify results using direct calculation method -Solve problems with whole numbers |
-Work through step-by-step examples on chalkboard -Practice with student marks and heights data -Verify answers using traditional method -Individual practice with guided support |
Exercise books
-Manila paper -Student data -Chalk/markers -Community data |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
1 | 3 |
Statistics II
|
Mean for Grouped Data Using Working Mean
Advanced Working Mean Techniques |
By the end of the
lesson, the learner
should be able to:
-Calculate mean for grouped continuous data -Select appropriate working mean for grouped data -Use midpoints of class intervals correctly -Apply working mean formula to grouped data |
-Use height/weight data of students in class -Practice finding midpoints of class intervals -Work through complex calculations step by step -Students practice with agricultural production data |
Exercise books
-Manila paper -Real datasets -Chalk/markers -Economic data |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
1 | 4 |
Statistics II
|
Introduction to Quartiles, Deciles, Percentiles
Calculating Quartiles for Ungrouped Data |
By the end of the
lesson, the learner
should be able to:
-Define quartiles, deciles, and percentiles -Understand how they divide data into parts -Explain the relationship between these measures -Identify their importance in data analysis |
-Use physical demonstration with student heights -Arrange 20 students by height to show quartiles -Explain percentile ranks in exam results -Discuss applications in grading systems |
Exercise books
-Manila paper -Student height data -Measuring tape -Test score data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
1 | 5 |
Statistics II
|
Quartiles for Grouped Data
Deciles and Percentiles Calculations |
By the end of the
lesson, the learner
should be able to:
-Calculate quartiles using interpolation formula -Identify quartile classes correctly -Apply the formula: Q = L + [(n/4 - CF)/f] × h -Solve problems with continuous grouped data |
-Work through detailed examples on chalkboard -Practice identifying quartile positions -Use cumulative frequency systematically -Apply to real examination grade data |
Exercise books
-Manila paper -Grade data -Chalk/markers -Performance data |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
1 | 6 |
Statistics II
|
Introduction to Cumulative Frequency
Drawing Cumulative Frequency Curves (Ogives) |
By the end of the
lesson, the learner
should be able to:
-Construct cumulative frequency tables -Understand "less than" cumulative frequencies -Plot cumulative frequency against class boundaries -Identify the characteristic S-shape of ogives |
-Create cumulative frequency table with class data -Plot points on manila paper grid -Join points to form smooth curve -Discuss properties of ogive curves |
Exercise books
-Manila paper -Ruler -Class data -Pencils |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
1 | 7 |
Statistics II
|
Reading Values from Ogives
Applications of Ogives |
By the end of the
lesson, the learner
should be able to:
-Read median from cumulative frequency curve -Find quartiles using ogive -Estimate any percentile from the curve -Interpret readings in real-world context |
-Demonstrate reading techniques on large ogive -Practice finding median position (n/2) -Read quartile positions systematically -Students practice reading their own curves |
Exercise books
-Manila paper -Completed ogives -Ruler -Real problem datasets |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
2 | 1 |
Statistics II
|
Introduction to Measures of Dispersion
|
By the end of the
lesson, the learner
should be able to:
-Define dispersion and its importance -Understand limitations of central tendency alone -Compare datasets with same mean but different spread -Identify different measures of dispersion |
-Compare test scores of two classes with same mean -Show how different spreads affect interpretation -Discuss variability in real-world data -Introduce range as simplest measure |
Exercise books
-Manila paper -Comparative datasets -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 60-65
|
|
2 | 2 |
Statistics II
|
Range and Interquartile Range
Mean Absolute Deviation |
By the end of the
lesson, the learner
should be able to:
-Calculate range for different datasets -Find interquartile range (Q3 - Q1) -Calculate quartile deviation (semi-interquartile range) -Compare advantages and limitations of each measure |
-Calculate range for student heights in class -Find IQR for the same data -Discuss effect of outliers on range -Compare IQR stability with range |
Exercise books
-Manila paper -Student data -Measuring tape -Test score data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 60-65
|
|
2 | 3 |
Statistics II
|
Introduction to Variance
Variance Using Alternative Formula |
By the end of the
lesson, the learner
should be able to:
-Define variance as mean of squared deviations -Calculate variance using definition formula -Understand why deviations are squared -Compare variance with other dispersion measures |
-Work through variance calculation step by step -Explain squaring deviations eliminates negatives -Calculate variance for simple datasets -Compare with mean absolute deviation |
Exercise books
-Manila paper -Simple datasets -Chalk/markers -Frequency data |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
2 | 4 |
Statistics II
|
Standard Deviation Calculations
Standard Deviation for Grouped Data |
By the end of the
lesson, the learner
should be able to:
-Calculate standard deviation as square root of variance -Apply standard deviation to ungrouped data -Use standard deviation to compare datasets -Interpret standard deviation in practical contexts |
-Calculate SD for student exam scores -Compare SD values for different subjects -Interpret what high/low SD means -Use SD to identify consistent performance |
Exercise books
-Manila paper -Exam score data -Chalk/markers -Agricultural data |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
2 | 5 |
Statistics II
Trigonometry III |
Advanced Standard Deviation Techniques
Review of Basic Trigonometric Ratios |
By the end of the
lesson, the learner
should be able to:
-Apply transformation properties of standard deviation -Use coding with class width division -Solve problems with multiple transformations -Verify results using different methods |
-Demonstrate coding transformations -Show how SD changes with data transformations -Practice reverse calculations -Verify using alternative methods |
Exercise books
-Manila paper -Transformation examples -Chalk/markers -Rulers -Calculators (if available) |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
2 | 6 |
Trigonometry III
|
Deriving the Identity sin²θ + cos²θ = 1
Applications of sin²θ + cos²θ = 1 |
By the end of the
lesson, the learner
should be able to:
-Understand the derivation of fundamental identity -Apply Pythagoras theorem to unit circle -Use the identity to solve trigonometric equations -Convert between sin, cos using the identity |
-Demonstrate using right-angled triangle with hypotenuse 1 -Show algebraic derivation step by step -Practice substituting values to verify identity -Solve equations using the fundamental identity |
Exercise books
-Manila paper -Unit circle diagrams -Calculators -Trigonometric tables -Real-world examples |
KLB Secondary Mathematics Form 4, Pages 99-103
|
|
2 | 7 |
Trigonometry III
|
Additional Trigonometric Identities
Introduction to Waves |
By the end of the
lesson, the learner
should be able to:
-Derive and apply tan θ = sin θ/cos θ -Use reciprocal ratios (sec, cosec, cot) -Apply multiple identities in problem solving -Verify trigonometric identities algebraically |
-Demonstrate relationship between tan, sin, cos -Introduce reciprocal ratios with examples -Practice identity verification techniques -Solve composite identity problems |
Exercise books
-Manila paper -Identity reference sheet -Calculators -String/rope -Wave diagrams |
KLB Secondary Mathematics Form 4, Pages 99-103
|
|
3 |
OPENER EXAM |
|||||||
4 | 1 |
Trigonometry III
|
Sine and Cosine Waves
Transformations of Sine Waves |
By the end of the
lesson, the learner
should be able to:
-Plot graphs of y = sin x and y = cos x -Identify amplitude and period of basic functions -Compare sine and cosine wave patterns -Read values from trigonometric graphs |
-Plot sin x and cos x on same axes using manila paper -Mark key points (0°, 90°, 180°, 270°, 360°) -Measure and compare wave characteristics -Practice reading values from completed graphs |
Exercise books
-Manila paper -Rulers -Graph paper (if available) -Colored pencils |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
4 | 2 |
Trigonometry III
|
Period Changes in Trigonometric Functions
|
By the end of the
lesson, the learner
should be able to:
-Understand effect of coefficient on period -Plot graphs of y = sin(bx) for different values of b -Calculate periods of transformed functions -Apply period changes to cyclical phenomena |
-Plot y = sin(2x), y = sin(x/2) on manila paper -Compare periods with y = sin x -Calculate period using formula 360°/b -Apply to frequency and musical pitch examples |
Exercise books
-Manila paper -Rulers -Period calculation charts |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
4 | 3 |
Trigonometry III
|
Combined Amplitude and Period Transformations
Phase Angles and Wave Shifts |
By the end of the
lesson, the learner
should be able to:
-Plot graphs of y = a sin(bx) functions -Identify both amplitude and period changes -Solve problems with multiple transformations -Apply to complex wave phenomena |
-Plot y = 2 sin(3x), y = 3 sin(x/2) on manila paper -Calculate both amplitude and period for each function -Compare multiple transformed waves -Apply to radio waves or tidal patterns |
Exercise books
-Manila paper -Rulers -Transformation examples -Colored pencils -Phase shift examples |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
4 | 4 |
Trigonometry III
|
General Trigonometric Functions
Cosine Wave Transformations |
By the end of the
lesson, the learner
should be able to:
-Work with y = a sin(bx + c) functions -Identify amplitude, period, and phase angle -Plot complex trigonometric functions -Solve problems involving all transformations |
-Plot y = 2 sin(3x + 60°) step by step -Identify all transformation parameters -Practice reading values from complex waves -Apply to real-world periodic phenomena |
Exercise books
-Manila paper -Rulers -Complex function examples -Temperature data |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
4 | 5 |
Trigonometry III
|
Introduction to Trigonometric Equations
Solving Basic Trigonometric Equations |
By the end of the
lesson, the learner
should be able to:
-Understand concept of trigonometric equations -Identify that trig equations have multiple solutions -Solve simple equations like sin x = 0.5 -Find all solutions in given ranges |
-Demonstrate using unit circle or graphs -Show why sin x = 0.5 has multiple solutions -Practice finding principal values -Use graphs to identify all solutions in range |
Exercise books
-Manila paper -Unit circle diagrams -Trigonometric tables -Calculators -Solution worksheets |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
4 | 6 |
Trigonometry III
|
Quadratic Trigonometric Equations
Equations Involving Multiple Angles |
By the end of the
lesson, the learner
should be able to:
-Solve equations like sin²x - sin x = 0 -Apply factoring techniques to trigonometric equations -Use substitution methods for complex equations -Find all solutions systematically |
-Demonstrate substitution method (let y = sin x) -Factor quadratic expressions in trigonometry -Solve resulting quadratic equations -Back-substitute to find angle solutions |
Exercise books
-Manila paper -Factoring techniques -Substitution examples -Multiple angle examples -Real applications |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
4 | 7 |
Trigonometry III
|
Using Graphs to Solve Trigonometric Equations
Trigonometric Equations with Identities |
By the end of the
lesson, the learner
should be able to:
-Solve equations graphically using intersections -Plot trigonometric functions on same axes -Find intersection points as equation solutions -Verify algebraic solutions graphically |
-Plot y = sin x and y = 0.5 on same axes -Identify intersection points as solutions -Use graphical method for complex equations -Compare graphical and algebraic solutions |
Exercise books
-Manila paper -Rulers -Graphing examples -Identity reference sheets -Complex examples |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
5 | 1 |
Compound Proportion and Rates of Work
|
Compound Proportions
Compound Proportions applications |
By the end of the
lesson, the learner
should be able to:
Find the compound proportions Understand compound proportion relationships Apply compound proportion methods systematically Solve problems involving multiple variables |
Q/A on compound relationships using practical examples
Discussions on multiple variable situations using local scenarios Solving compound proportion problems using systematic methods Demonstrations using business and trade examples Explaining compound proportion logic using step-by-step reasoning |
Chalk and blackboard, local business examples, calculators if available, exercise books
Chalk and blackboard, construction/farming examples, exercise books |
KLB Mathematics Book Three Pg 288-290
|
|
5 | 2 |
Compound Proportion and Rates of Work
|
Proportional Parts
Proportional Parts applications |
By the end of the
lesson, the learner
should be able to:
Calculate the proportional parts Understand proportional division concepts Apply proportional parts to sharing problems Solve distribution problems using proportional methods |
Q/A on proportional sharing using practical examples
Discussions on fair distribution using ratio concepts Solving proportional parts problems using systematic division Demonstrations using sharing scenarios and inheritance examples Explaining proportional distribution using logical reasoning |
Chalk and blackboard, sharing demonstration materials, exercise books
Chalk and blackboard, business partnership examples, exercise books |
KLB Mathematics Book Three Pg 291-293
|
|
5 | 3 |
Compound Proportion and Rates of Work
|
Rates of Work
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of work Understand work rate relationships Apply time-work-efficiency concepts Solve basic rate of work problems |
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios Solving basic rate of work problems using systematic methods Demonstrations using construction and labor examples Explaining work rate concepts using practical work situations |
Chalk and blackboard, work scenario examples, exercise books
|
KLB Mathematics Book Three Pg 294-295
|
|
5 | 4 |
Compound Proportion and Rates of Work
Graphical Methods |
Rates of Work and Mixtures
Tables of given relations |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of work Apply work rates to complex scenarios Handle mixture problems and combinations Solve advanced rate and mixture problems |
Q/A on advanced work rates using complex scenarios
Discussions on mixture problems using practical examples Solving challenging rate and mixture problems using systematic approaches Demonstrations using cooking, construction, and manufacturing examples Explaining mixture concepts using practical applications |
Chalk and blackboard, mixture demonstration materials, exercise books
Chalk and blackboard, ruled paper for tables, exercise books |
KLB Mathematics Book Three Pg 295-296
|
|
5 | 5 |
Graphical Methods
|
Graphs of given relations
Tables and graphs integration |
By the end of the
lesson, the learner
should be able to:
Draw graphs of given relations Plot points accurately on coordinate systems Connect points to show relationships Interpret graphs from given data |
Q/A on graph plotting using coordinate methods
Discussions on point plotting and curve drawing Solving graph construction problems using systematic plotting Demonstrations using coordinate systems and curve sketching Explaining graph interpretation using visual analysis |
Chalk and blackboard, graph paper or grids, rulers, exercise books
Chalk and blackboard, graph paper, data examples, exercise books |
KLB Mathematics Book Three Pg 300
|
|
5 | 6 |
Graphical Methods
|
Introduction to cubic equations
Graphical solution of cubic equations |
By the end of the
lesson, the learner
should be able to:
Draw tables of cubic functions Understand cubic equation characteristics Prepare cubic function data systematically Recognize cubic curve patterns |
Q/A on cubic function evaluation using systematic calculation
Discussions on cubic equation properties using mathematical analysis Solving cubic table preparation using organized methods Demonstrations using cubic function examples Explaining cubic characteristics using pattern recognition |
Chalk and blackboard, cubic function examples, exercise books
Chalk and blackboard, graph paper, cubic equation examples, exercise books |
KLB Mathematics Book Three Pg 301
|
|
5 | 7 |
Graphical Methods
|
Advanced cubic solutions
Introduction to rates of change |
By the end of the
lesson, the learner
should be able to:
Draw graphs of cubic equations Apply graphical methods to complex cubic problems Handle multiple root scenarios Verify solutions using graphical analysis |
Q/A on advanced cubic graphing using complex examples
Discussions on multiple root identification using graph analysis Solving challenging cubic problems using systematic methods Demonstrations using detailed cubic constructions Explaining verification methods using graphical checking |
Chalk and blackboard, advanced graph examples, exercise books
Chalk and blackboard, rate calculation examples, exercise books |
KLB Mathematics Book Three Pg 302-304
|
|
6 | 1 |
Graphical Methods
|
Average rates of change
Advanced average rates |
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Apply average rate methods to various functions Use graphical methods for rate calculation Solve practical rate problems |
Q/A on average rate calculation using graphical methods
Discussions on rate applications using real-world scenarios Solving average rate problems using systematic approaches Demonstrations using graph-based rate calculation Explaining practical applications using meaningful contexts |
Chalk and blackboard, graph paper, rate examples, exercise books
Chalk and blackboard, advanced rate scenarios, exercise books |
KLB Mathematics Book Three Pg 304-306
|
|
6 | 2 |
Graphical Methods
|
Introduction to instantaneous rates
Rate of change at an instant |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Understand instantaneous rate concepts Distinguish between average and instantaneous rates Apply instant rate methods |
Q/A on instantaneous rate concepts using limiting methods
Discussions on instant vs average rate differences Solving basic instantaneous rate problems Demonstrations using tangent line concepts Explaining instantaneous rate using practical examples |
Chalk and blackboard, tangent line examples, exercise books
Chalk and blackboard, detailed graph examples, exercise books |
KLB Mathematics Book Three Pg 310-311
|
|
6 | 3 |
Graphical Methods
|
Advanced instantaneous rates
Empirical graphs |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Handle complex instantaneous rate scenarios Apply instant rates to advanced problems Integrate instantaneous concepts with applications |
Q/A on advanced instantaneous applications using complex examples
Discussions on sophisticated rate problems using detailed analysis Solving challenging instantaneous problems using systematic methods Demonstrations using comprehensive rate constructions Explaining advanced applications using detailed reasoning |
Chalk and blackboard, advanced rate examples, exercise books
Chalk and blackboard, experimental data examples, exercise books |
KLB Mathematics Book Three Pg 310-315
|
|
6 | 4 |
Graphical Methods
|
Advanced empirical methods
|
By the end of the
lesson, the learner
should be able to:
Draw the empirical graphs Apply empirical methods to complex data Handle large datasets and trends Interpret empirical results meaningfully |
Q/A on advanced empirical techniques using complex datasets
Discussions on trend analysis using systematic methods Solving challenging empirical problems using organized approaches Demonstrations using comprehensive data analysis Explaining advanced interpretations using detailed reasoning |
Chalk and blackboard, complex data examples, exercise books
|
KLB Mathematics Book Three Pg 315-321
|
|
7-8 |
FORM FOUR ENTRY EXAM |
Your Name Comes Here